\$Id: Banff, 2011/7/26, teramoto\$

Deformation-induced spot dynamics in reactiondiffusion systems

Takashi Teramoto

Chitose Institute of Science and Technology

Traveling spots in three-component systems

substrate U ; activator V ; inhibitor W ;

$$
\left\{\begin{align*}
u_{t} & =D_{u} \Delta u-\frac{u v^{2}}{1+f_{2} w}+f_{0}(1-u) \tag{0}\\
v_{t} & =D_{v} \Delta v+\frac{u v^{2}}{1+f_{2} w}-\left(f_{0}+f_{1}\right) v \\
\tau w_{t} & =D_{w} \Delta w+f_{3}(v-w)
\end{align*}\right.
$$

\qquad

The third inhibitor W is a necessary condition for traveling spot to avoid a decay of pattern. (see Purwins)

symmetry-breaking bifurcation

Traveling spots keep the shape firmly and propagate in a straight way with constant speed.

Strategy for analyzing spot behaviors

Blended methodology between computers and mathematics

* Phase 1: Computers

Numerical simulations
\rightarrow careful observation of change of pattern dynamics
Newton method and spectral analysis
\rightarrow characterization of instabilities
unstable patterns and local dynamics around them
Continuation and bifurcation analysis
\rightarrow global bifurcation diagram and higher singularity search

* Network of unstable patterns is a key to understand the large deformation during collision dynamics.
Scattering of traveling spots in dissipative systems, Chaos 15 (2005) 047509.

Strategy for analyzing spot behaviors

* Phase 2: Mathematical analyses

Extraction of essential dynamics
Weak interaction based on center manifold theory
\rightarrow reduction to motion of particle (ODE) near bifur. pt.
Investigation of underlying mechanism
from a view of dynamical systems theory
\rightarrow standard dynamics classification prototypical bifurcation diagram unfolding of global bifurcations ($T \nearrow \infty$) degeneration of singularities
Rigorous analysis by using singular perturbation theory
Detection and characterization of instabilities Application of the dynamical systems theory

Dynamics of spot solution in the neighborhood of codimension 1 bifurcation point

Interacting spots in reaction diffusion systems,
Ei, Mimura, Nagayama, Disc. Cont. Dyn. Syst. 14 (2006) 31-62.
A general setup for the PDE system in a neighborhood of driftbifurcation point reads, with small parameter η as $\lambda=\lambda_{c}+\eta$,

$$
u_{t}=D \triangle u+F(u ; \lambda) \equiv \mathcal{L}\left(u ; \lambda^{c}\right)+\eta g(u)
$$

We assume that the nontrivial standing spot solution $S(\mathbf{r} ; \lambda)$ exists at $\lambda=\lambda_{c}$, i. e., $\mathcal{L}\left(S ; \lambda^{c}\right)=0$.

Linearized operator; $L=\mathcal{L}^{\prime}\left(S\left(\mathbf{r}, \lambda^{c}\right)\right)$

$$
L \phi_{i}=0, \quad L \psi_{i}=-\phi_{i}
$$

Ampelmann
where $\phi_{i}=\partial S / \partial x_{i}$ and ψ_{i} represents the deformation vector with Jordan from for the drift bifurcation.

Similar properties also holds for $L^{*}, L^{*} \phi_{i}^{*}=0, \quad L^{*} \psi_{i}^{*}=-\phi_{i}^{*}$.

Let $E=\operatorname{span}\left\{\phi_{i}, \psi_{i}\right\}$.
Normalization; $\left\langle\phi_{i}, \psi_{i}^{*}\right\rangle_{L^{2}}=\left\langle\psi_{i}, \phi_{i}^{*}\right\rangle_{L^{2}}= \begin{cases}\pi & i=j, \\ 0 & i \neq j .\end{cases}$
The motion of a spot solution U is essentially described by twodimensional vector functions of time t;

$$
\begin{aligned}
& \text { Location of the spot; } \mathbf{p}=\left(p_{1}, p_{2}\right) \\
& \text { Velocity of the spot; } \quad \mathbf{q}=\left(q_{1}, q_{2}\right)
\end{aligned}
$$

For small $\eta_{\text {, we can approximate a solution } \mathrm{U} \text { by }}$

$$
U=\tau(\mathbf{p})\left\{S(\mathbf{r})+\sum_{i=1}^{2} q_{i} \psi_{i}(\mathbf{r})+\zeta^{\dagger}\right\}
$$

where $(\tau(\mathbf{p}) u)(\mathbf{r})=u(\mathbf{r}-\mathbf{p})$.
The remaining term, $\zeta^{\dagger}=q_{1}^{2} \zeta_{1}+q_{2}^{2} \zeta_{2}+q_{1} q_{2} \zeta_{3}+\eta \zeta_{4}$, with $\zeta_{k}(k=1, \cdots 4) \in E^{\perp}$ are defined by solutions of

$$
\begin{aligned}
-L \zeta_{1} & =\frac{1}{2} F^{\prime \prime}(S) \psi_{1}^{2}+\psi_{1 x_{1}} \\
-L \zeta_{2} & =\frac{1}{2} F^{\prime \prime}(S) \psi_{2}^{2}+\psi_{2 x_{2}} \\
-L \zeta_{3} & =F^{\prime \prime}(S) \psi_{1} \psi_{2}+\psi_{1 x_{2}}+\psi_{2 x_{1}} \\
-L \zeta_{4} & =g(S)
\end{aligned}
$$

Substituting $\sqrt{2}^{2}$ into ${ }^{1}$ and taking inner product with the adjoints, we obtain the principal part by :

$$
\begin{cases}\dot{p}_{i}=q_{i}, & |q| \\ \dot{q}_{i}=M_{1} \sum_{j=1}^{2} q_{j}^{2} q_{i}+M_{2} \eta q_{i}, & M_{1} \approx-246<0 \\ M_{2} \approx-101<0\end{cases}
$$

$$
\left\{\begin{aligned}
\pi M_{1}= & \frac{1}{6}\left\langle F^{\prime \prime \prime}(S) \psi_{1}^{3}, \phi_{1}^{*}\right\rangle_{L^{2}} \\
& +\left\langle F^{\prime \prime}(S) \psi_{1} \zeta_{1}, \phi_{1}^{*}\right\rangle_{L^{2}}+\left\langle\zeta_{1 x_{1}}, \phi_{1}^{*}\right\rangle_{L^{2}} \\
\pi M_{2}= & \left\langle g^{\prime}(S) \psi_{1}, \phi_{1}^{*}\right\rangle_{L^{2}} \\
& +\left\langle F^{\prime \prime}(S) \psi_{1} \zeta_{4}, \phi_{1}^{*}\right\rangle_{L^{2}}+\left\langle\zeta_{4 x_{1}}, \phi_{1}^{*}\right\rangle_{L^{2}}
\end{aligned}\right.
$$

The coefficients M_{1}, M_{2} are crucial for understanding the dynamics of spot. Information specific to the original PDEs is contained in M_{1}, M_{2}.
codim 1

Rotational motion of traveling spot
serendipity!

Remark: Rotational motion of spots in gas-discharge system

Rotating bound states of dissipative solitons in systems of reaction-diffusion type, Liehr, Moskalenko, Astrov, Bode and Purwins, EPJB 37 (2004) 199-204.

$$
\left\{\begin{aligned}
u_{t} & =D_{u} \triangle u+k_{2} u-u^{3}-k_{3} v-k_{4} w+k_{1} \\
\tau v_{t} & =u-v \\
0 & =D_{w} \triangle w+u-w
\end{aligned}\right.
$$

oscillatory tail form --> attractive force --> bound states (cluster)

Dynamics of spot solution in the neighborhood of codimension 2 bifurcation point

The parameter values are located close to the drift and peanut bifurcation points as $\left(\lambda_{1}, \lambda_{2}\right)=\left(\lambda_{1}^{c}, \lambda_{2}^{c}\right)+\left(\eta_{1}, \eta_{2}\right)$.

$$
\begin{array}{r}
L \phi_{i}=0, \quad L \psi_{i}=-\phi_{i}, \quad L \xi_{i}=0 \\
L^{*} \phi_{i}^{*}=0, L^{*} \psi_{i}^{*}=-\phi_{i}^{*}, L^{*} \xi_{i}^{*}=0
\end{array}
$$

Drift instability originates in the translation-free mode and the associated deformation vector represents
\mathcal{D}_{1} a \mathcal{D}_{1} symmetry-breaking from a \mathcal{D}_{∞} shape.
$\}_{p_{2}}$
Peanut one is by \mathcal{D}_{2} symmetry-breaking bifurcation.

$$
\left\langle\phi_{i}, \psi_{i}^{*}\right\rangle_{L^{2}}=\left\langle\psi_{i}, \phi_{i}^{*}\right\rangle_{L^{2}}=\left\langle\xi_{i}, \xi_{i}^{*}\right\rangle_{L^{2}}= \begin{cases}\pi & i=j \\ 0 & i \neq j\end{cases}
$$

The motion of a spot solution U is essentially described by twodimensional vector functions of time t;

$$
\begin{array}{ll}
\text { Location of the spot; } & \mathbf{p}=\left(p_{1}, p_{2}\right) \\
\qquad \text { Velocity of the spot; } & \mathbf{q}=\left(q_{1}, q_{2}\right) \\
\text { Deformation of the spot; } & \mathbf{s}=\left(s_{1}, s_{2}\right)
\end{array}
$$

Let $E=\operatorname{span}\left\{\phi_{i}, \psi_{i}, \xi_{i}\right\}$.

For small η, we can approximate a solution U by

$$
U=\tau(\mathbf{p})\left\{S(\mathbf{r})+\sum_{i=1}^{2} q_{i} \psi_{i}(\mathbf{r})+\sum_{i=1}^{2} s_{i} \xi_{i}(\mathbf{r})+\zeta^{\dagger}\right\}
$$

The remaining term, center manifold,

$$
\begin{aligned}
\zeta^{\dagger} & =q_{1}^{2} \zeta_{1}+q_{2}^{2} \zeta_{2}+q_{1} q_{2} \zeta_{3}+s_{1}^{2} \zeta_{4}+s_{2}^{2} \zeta_{5}+s_{1} s_{2} \zeta_{6} \\
& +q_{1} s_{1} \zeta_{7}+q_{2} s_{2} \zeta_{8}+q_{1} s_{2} \zeta_{9}+q_{2} s_{1} \zeta_{10}+\eta_{1} \zeta_{11}+\eta_{2} \zeta_{12}
\end{aligned}
$$

with $\zeta_{k}(k=1, \cdots 12) \in E^{\perp}$

Substituting into ${ }^{1}$ and taking inner product with the adjoints, we obtain :

Here we introduce the complex variables,

$$
z_{0}=p_{1}+i p_{2}, z_{1}=q_{1}+i q_{2}, z_{2}=s_{1}+i s_{2}
$$

location $\quad\left\{\dot{z_{0}}=z_{1}-\beta^{\prime} \overline{z_{1}} z_{2}\right.$,
velocity
deformation

$$
\left\{\begin{array}{l}
\dot{z_{1}}=M_{1}\left|z_{1}\right|^{2} z_{1}+M_{2}\left|z_{2}\right|^{2} z_{1}+M_{3} z_{1}+\beta \overline{z_{1}} z_{2} \\
\dot{z_{2}}=N_{1}\left|z_{2}\right|^{2} z_{2}+N_{2}\left|z_{1}\right|^{2} z_{2}+N_{3} z_{2}+\alpha z_{1}^{2}
\end{array}\right.
$$

M_{3}, N_{3} are used as the new bifurcation parameter set.
Rotational motion of traveling spots in dissipative systems, Teramoto, Suzuki, Nishiura, Physical Review E 80 (2009) 046208.

The dynamics are essentially governed by the last two equations, exactly the same as the normal form obtained in the study of mode interaction of steady bifurcations in $O(2)$ symmetry.

Through the slave part of equations of motion, richness of dynamics in the master part is converted into that of particle motion.

\rightarrow Natural extension to the deformed particle dynamics

The constants are computed as,

$$
\begin{aligned}
\pi M_{1}= & \frac{1}{6}\left\langle F^{\prime \prime \prime}(S) \psi_{1}^{3}, \phi_{1}^{*}\right\rangle_{L^{2}} & \pi N_{1}= & \frac{1}{6}\left\langle F^{\prime \prime \prime}(S) \xi_{1}^{3}, \xi_{1}^{*}\right\rangle_{L^{2}}+\left\langle F^{\prime \prime}(S) \xi_{1} \zeta_{4}, \xi_{1}^{*}\right\rangle_{L^{2}}, \\
& +\left\langle F^{\prime \prime}(S) \psi_{1} \zeta_{1}, \phi_{1}^{*}\right\rangle_{L^{2}}+\left\langle\zeta_{1 x_{1}}, \phi_{1}^{*}\right\rangle_{L^{2}}, & \pi N_{2}= & \frac{1}{2}\left\langle F^{\prime \prime \prime}(S) \psi_{1}^{2} \xi_{1}, \xi_{1}^{*}\right\rangle_{L^{2}} \\
\pi M_{2}= & \frac{1}{2}\left\langle F^{\prime \prime \prime}(S) \xi_{1}^{2} \psi_{1}, \phi_{1}^{*}\right\rangle_{L^{2}} & & +\left\langle F^{\prime \prime}(S) \psi_{1} \zeta_{7}, \xi_{1}^{*}\right\rangle_{L^{2}}+\left\langle F^{\prime \prime}(S) \xi_{1} \zeta_{1}, \xi_{1}^{*}\right\rangle_{L^{2}} \\
& +\left\langle F^{\prime \prime}(S) \psi_{1} \zeta_{4}, \phi_{1}^{*}\right\rangle_{L^{2}}+\left\langle F^{\prime \prime}(S) \xi_{1} \zeta_{7}, \phi_{1}^{*}\right\rangle_{L^{2}} & & +\left\langle\zeta_{7 x_{1},}, \xi_{1}^{*}\right\rangle_{L^{2}}-\beta^{\prime}\left\langle\psi_{1 x_{1}}, \xi_{1}^{*}\right\rangle_{L^{2}}, \\
& +\left\langle\zeta_{\left.4 x_{1}, \phi_{1}^{*}\right\rangle_{L^{2}}-\beta^{\prime}\left\langle\xi_{1 x_{1}}, \phi_{1}^{*}\right\rangle_{L^{2}},}\right. & \pi N_{3}= & \eta_{1}\left(\left\langle F^{\prime \prime}(S) \xi_{1} \zeta_{11}, \xi_{1}^{*}\right\rangle_{L^{2}}+\left\langle g_{1}^{\prime}(S) \xi_{1}, \xi_{1}^{*}\right\rangle_{L^{2}}\right) \\
\pi M_{3}= & \eta_{1}\left(\left\langle F^{\prime \prime}(S) \psi_{1} \zeta_{11}, \phi_{1}^{*}\right\rangle_{L^{2}}\right. & & +\eta_{2}\left(\left\langle F^{\prime \prime}(S) \xi_{1} \zeta_{12}, \xi_{1}^{*}\right\rangle_{L^{2}}+\left\langle g_{2}^{\prime}(S) \xi_{1}, \xi_{1}^{*}\right\rangle_{L^{2}}\right) . \\
& \left.+\left\langle g_{1}^{\prime}(S) \psi_{1}, \phi_{1}^{*}\right\rangle_{L^{2}}+\left\langle\zeta_{11 x_{1}}, \phi_{1}^{*}\right\rangle_{L^{2}}\right) & & \\
& +\eta_{2}\left(\left\langle F^{\prime \prime}(S) \psi_{1} \zeta_{12}, \phi_{1}^{*}\right\rangle_{L^{2}}\right. & & \\
& \left.+\left\langle g_{2}^{\prime}(S) \psi_{1}, \phi_{1}^{*}\right\rangle_{L^{2}}+\left\langle\zeta_{12 x_{1}}, \phi_{1}^{*}\right\rangle_{L^{2}}\right) . & &
\end{aligned}
$$

$M_{1} \approx-61.3<0, M_{2} \approx-3.9$,

$$
N_{1} \approx-240.0<0, N_{2} \approx-35.6<0
$$

$$
\alpha \approx-31.8<0, \beta \approx 1.0>0, \beta^{\prime} \approx-326.7<0
$$

$M_{1}, M_{2}, N_{1}, N_{2}$ are all negative. $\beta>0, \alpha<0, \beta^{\prime}<0$.

Letting $z_{1}=Q e^{i \phi}, z_{2}=S e^{i \psi}$, we rewrite 5 as

$$
\left\{\begin{array}{l}
\dot{Q}=\left(M_{1} Q^{2}+M_{2} S^{2}+M_{3}\right) Q+\beta Q S \cos \theta \\
\dot{S}=\left(N_{1} S^{2}+N_{2} Q^{2}+N_{3}\right) S+\alpha Q^{2} \cos \theta \\
\dot{\theta}=-\left(2 \beta S+\frac{\alpha Q^{2}}{S}\right) \sin \theta
\end{array}\right.
$$

where we set $\theta=\psi-2 \phi$.
trivial fixed points \rightarrow
Standing disk (SD) spot solution: $Q=S=0$
fixed points with $|\cos \theta|=1 \rightarrow$
Standing peanut (SP) spot solution: $Q=0, \quad S^{2}=-N_{3} / N_{1}$

Traveling spot (TS) solution bifurcates from SD spot at $M_{3}=0$ and from SP spot at $M_{3}-M_{2} N_{3} / N_{1} \pm \beta\left(-N_{3} / N_{1}\right)^{1 / 2}=0$.

$$
\left\{\begin{array}{r}
M_{1} Q^{2}+M_{2} S^{2}+M_{3} \pm \beta S=0, \\
\left(N_{1} S^{2}+N_{2} Q^{2}+N_{3}\right) S \pm \alpha Q^{2}=0,
\end{array}\right.
$$

Traveling spot TS_{0} with $\cos \theta=+1$ corresponds to a propagation direction parallel to the long axis of the deformed shape.

Dictyostelid type

Traveling spot TS_{π} with $\cos \theta=-1$ corresponds to a propagation direction perpendicular to the long axis of the deformed shape.

Keratocyte type

Higher codimension singularity includes the lower ones and its dynamics owns the global property.

Rotating spot solutions with $|\cos \theta| \neq 1$ emanate via pitchfork bifurcation,

$$
\left\{\begin{aligned}
Q^{2} & =\left(-\frac{2 \beta}{\alpha}\right) S^{2}=\left(-\frac{2 \beta}{\alpha}\right) \frac{N_{3}+2 M_{3}}{K} \\
\cos ^{2} \theta & =\frac{\left(N_{3}\left(M_{2}-2 \beta M_{1} / \alpha\right)-M_{3}\left(N_{1}-2 \beta N_{2} / \alpha\right)\right)^{2}}{\beta^{2}\left(N_{3}+2 M_{3}\right) K}
\end{aligned}\right.
$$

where $K=4 \beta M_{1} / \alpha-2 M_{2}-N_{1}+2 \beta N_{2} / \alpha$.

$$
z_{0}=(2 / \alpha \beta)^{1 / 2}\left(\beta^{\prime} S e^{i \theta_{0}}-1\right) e^{i \beta S \sin \theta t} / \sin \theta
$$

This allows the occurrence of RS motion with radius

$$
\left|z_{0}\right|^{2}=2\left(\left(\beta^{\prime} S\right)^{2}-1\right) /\left(\alpha \beta \sin ^{2} \theta\right)
$$

and the phase speed $\dot{\psi}=2 \dot{\phi}=2 \beta S \sin \theta$.

Clockwise and counter-clockwise rotational motions bifurcate from a straight motion via the pitchfork bifurcation.

Rotational motion of traveling spots

How does RS destabilize?

Spots are asymptotically stable, but ...

* Intrinsic instability
destruction, drift, splitting, Hopf ...
\rightarrow Spot have a potential ability that display a variety of dynamics External interaction (perturbation)
head-on and oblique collision, heterogeneous media ...
\rightarrow Hidden instability emerges through interactions

Oblique collision with Neumann wall (external perturbation)

RS loose its stability via saddle-node bifurcation?

Unstable rotational spot appears as as scattor between the rotation and reflection behaviors after collision.

RS loose its stability via Torus bifurcation ?

Modulation of rotational motion occurs after collision for the phase boundary between splitting, rotation, and reflection behaviors.
\rightarrow Modulated spot (MS) motion plays a role of scattor for the complex behaviors.

Hidden dynamics in 1:2 mode interaction systems

$$
\text { location } \quad \dot{z}_{0}=z_{1}-\beta^{\prime} \bar{z}_{1} z_{2}
$$

$$
\text { velocity }\left\{\begin{array}{l}
\dot{z_{1}}=M_{1}\left|z_{1}\right|^{2} z_{1}+M_{2}\left|z_{2}\right|^{2} z_{1}+M_{3} z_{1}+\beta \overline{z_{1}} z_{2} \\
\dot{z_{2}}=N_{1}\left|z_{2}\right|^{2} z_{2}+N_{2}\left|z_{1}\right|^{2} z_{2}+N_{3} z_{2}+\alpha z_{1}^{2}
\end{array}\right.
$$

Heteroclinic cycles and modulated traveling waves in systems with $O(2)$ symmetry, Armbruster, Guckenheimer, Holmes, Physica D 29 (1988) 257-282

Remark: derivation using symmetry: translation and reflection invariance (the symmetry of rotations and reflections of a circle)

$$
\left(z_{1}, z_{2}\right) \rightarrow\left(e^{i \theta} z_{1}, r^{2 i \theta} z_{2}\right),\left(z_{1}, z_{2}\right) \rightarrow\left(\overline{z_{1}}, \overline{z_{2}}\right)
$$

Armbruster et al shows that traveling wave (TW) solution exist only when $\alpha<0$, and it emerge from mixed mode solutions (MMs) in pitchfork bifurcations for
$\left(\left(2 M_{1}+M_{2}\right) N_{3}-\left(2 M_{2}+N_{1}\right) M_{3}\right)^{2} \leq-\left(4 M_{1}+2 M_{2}+2 N_{2}+N_{1}\right)\left(2 M_{3}+N_{3}\right)$.

Here is the correspondence table.

O (trivial)	SS (Standing Spot)
P (Pure mode)	SP (Standing Peanut)
MM (Mixed mode)	TS (Traveling Spot)
TW (Traveling wave)	RS (Rotating Spot)
SW (Standing wave)	TB (Traveling Breather)
MTW (Modulated Traveling Wave)	MS (Modulated Spot)
AGH notations	

Modulated Spot motion

(movie from folder)

Numerical diagrams obtained by AUTO MS disappears at Heteroclinic connection between $\mathbf{S P}_{0}$ and $\mathbf{S P}_{\boldsymbol{\pi}}$.

MS emanates from RS via Torus bifurcation.

Trail of MS forms a torus.

Trail of AGH cycle

Armbruster-Guckenheimer-Holmes cycle:

$\mathbf{S P}_{0} \rightarrow \mathbf{S P}_{\pi} \rightarrow \mathbf{S P}_{0}$

linear stability of SPs (four eigenvalues):
$0,-2 N_{3}, \sigma_{ \pm}=M_{3}-\frac{N_{3} M_{2} \pm \sqrt{-N_{3} N_{1}}}{N_{1}}$

Stability with respect to 1-mode direction is assumed as $\sigma_{-}<0<\sigma_{+}$.
$\mathbf{S P}_{\mathbf{0}}$ is unstable in the direction associated with σ_{-}.
$\mathbf{S} \mathbf{P}_{\pi}$ is unstable in the direction associated with σ_{+}.
Armbruster et al proved that
if $M_{1}<0, N_{1}<0, M_{2}+N_{2}<2 \sqrt{M_{1} N_{1}}, N_{3}>0, M_{3}>0$,
there is a heteroclinic cycle of connecting SPs.
The cycle is locally asymptotically stable, if $\min \left\{2 N_{3},-\sigma_{-}\right\}>\sigma_{+}$.
Attracting structurally stable heteroclinic cycle!
(Robust heteroclinic cycles: see Krupa, and Sandstede and Scheel)

Equation for inhibitor: linear PDE

$$
\tau w_{t}=D_{w} \Delta w+f_{3}(v-w)
$$

rescale by $\tilde{r}=\frac{r}{\sqrt{D_{w}}}, f_{3} \sim O(1)$,
and consider the radial spot solution with m -mode deformation

$$
w(r, \theta, t)=\bar{w}(r)+\hat{w}(r) e^{i m \theta+\lambda t}
$$

stationary problem: $\quad \bar{w}_{r r}+\frac{1}{r} \bar{w}_{r}-\left(\frac{m^{2}}{r^{2}}+1\right) \bar{w}=0$

Stationary radial spot solution:

$$
\begin{aligned}
& \text { solution: } \\
& \bar{w}(r)=\left\{\begin{array}{c}
1-2 R K_{1}(R) I_{0}(r) \\
2 R I_{1}(R) K_{0}(R) \\
2 R I_{1}(R) K_{0}(r)
\end{array} ~\right.
\end{aligned}
$$

$0<r<R$

$$
r=R
$$

$$
r>R
$$

K_{m}, I_{m} : modified Bessel function

Eigenvalue problem:

$$
\hat{w}_{r r}+\frac{1}{r} \hat{w}_{r}-\frac{m^{2}}{r^{2}} \hat{w}=(1+\tau \lambda) \hat{w}
$$

Leading order eigenfunction:
(van Heijster's Talk)

$$
\hat{w}_{m}(r)=\left\{\begin{array}{cc}
-2 C R K_{m}(R) I_{m}(r) & 0<r<R \\
-2 C R I_{m}(R) K_{m}(R) & r=R \\
2 C R I_{m}(R) K_{m}(r) & r>R
\end{array}\right.
$$

location $\quad \dot{z_{0}}=z_{1}-\beta^{\prime} \overline{z_{1}} z_{2}$
velocity $\quad \dot{z_{1}}=M_{1}\left|z_{1}\right|^{2} z_{1}+M_{2}\left|z_{2}\right|^{2} z_{1}+M_{3} z_{1}+\beta \overline{z_{1}} z_{2}$
deformation $\dot{z_{2}}=N_{1}\left|z_{2}\right|^{2} z_{2}+N_{2}\left|z_{1}\right|^{2} z_{2}+N_{3} z_{2}+\alpha z_{1}^{2}$

$$
\begin{aligned}
z_{0} & =p_{1}+i p_{2}, z_{1}=q_{1}+i q_{2}, z_{2}=s_{1}+i s_{2} \\
W & =\tau(\mathbf{p})\left\{\bar{w}(\mathbf{r})+\sum_{i=1}^{2} q_{i} \hat{w}_{1 i}(\mathbf{r})+\sum_{i=1}^{2} s_{i} \hat{w}_{2 i}(\mathbf{r})\right\}
\end{aligned}
$$

$$
\text { Letting } X=S \cos \theta, Y=S \sin \theta \text {, we rewrite }{ }^{6} \text { as }
$$ the following autonomous systems in \mathbb{R}^{3}

$$
\left\{\begin{array}{l}
\dot{Q}=\left(M_{1} Q^{2}+M_{2}\left(X^{2}+Y^{2}\right)+M_{3}\right) Q+\beta Q X \\
\dot{X}=\left(N_{1}\left(X^{2}+Y^{2}\right)+N_{2} Q^{2}+N_{3}\right) X+\alpha Q^{2} \\
\dot{Y}=\left(N_{1}\left(X^{2}+Y^{2}\right)+N_{2} Q^{2}+N_{3}\right) Y-2 \beta X Y
\end{array}\right.
$$

Stationary solutions exist on the plane of $\mathrm{Y}=0$.

O	$S S$
P	SP
MM	TS
TW	RS
SW	TB
MTW	MS

$$
\boldsymbol{Y}=\boldsymbol{O}
$$

$T S_{0}$
$T S_{\pi}$
$\boldsymbol{S} \boldsymbol{P}_{\pi}$

Armbruster et al. formulate the conditions on the coefficients for the Hopf bifurcation on MMs, implying the appearance of standing wave (SW) solution. if $M_{1}<0, N_{1}<0$ and $\alpha<0$, Hopf bifurcations can occur only $\mathbf{T} \mathbf{S}_{\mathbf{0}}$.

Traveling Breather (TB) appears from $\mathbf{T S}_{\mathbf{0}}$ via Hopf bifurcation and its orbit grows up to Heteroclinic cycle of $\mathbf{S S} \rightarrow \mathbf{S P}_{\mathbf{0}} \rightarrow \mathbf{S S}$

Phase diagrams by Porter and Knobloch

New type of complex dynamics in the 1:2 spatial resonance, Porter and Knobloch, Physica D 159 (2001) 125-154.

The polar angle is chosen as a bifurcation parameter by taking clockwise circular paths.
$\left(M_{3}, N_{3}\right)=|\mu|(\cos \alpha, \sin \alpha)$

$$
a_{2} Q
$$

New types of Complex behaviors: Porter-Knobloch cycle

Hopf instability for $\mathbf{T S}_{\mathbf{0}}$, the appearance of unstable $\mathbf{T B}$, brings complex spot behaviors to the system.

long time periodic motion associated with the heteroclinic cycle of
$\mathrm{SS} \rightarrow \mathrm{SP}_{\pi} \rightarrow \mathrm{TS}_{\pi} \rightarrow \mathrm{TB} \rightarrow \mathrm{SS}$

$$
\begin{aligned}
& Q^{2}=-\frac{M_{3}+x+M_{2} x^{2}}{M_{1}} \\
& 0=\alpha M_{3}+\left(\alpha+M_{2} M_{3}-M_{1} N_{3}\right) x+\left(N_{2}+\alpha M_{2}\right) x^{2}+\left(M_{2} N_{2}-M_{1} N_{1}\right) x^{3}
\end{aligned}
$$

Long time periodic behavior associated with PK cycle

Intuitive Geometric Interpretation

There are several types of heteroclinc connections in the parameter regime:
$M_{1}<0, N_{1}<0, M_{2}+N_{2}<2 \sqrt{M_{1} N_{1}}$
$\mathbf{S S} \rightarrow \mathbf{S P}_{\mathbf{0}, \boldsymbol{\pi}} \quad \mathbf{T B} \rightarrow \mathbf{S S}$
$\mathbf{S P}_{\mathbf{0}, \pi} \rightarrow \mathbf{T S}_{\pi} \quad \mathbf{T S}_{\pi} \rightarrow \mathbf{T B}$

$$
Y=0
$$

There exists the PK cycle of

$$
\mathbf{S S} \rightarrow \mathbf{S P}_{\pi} \rightarrow \mathbf{T S}_{\pi} \rightarrow \mathbf{T B} \rightarrow \mathbf{S S}
$$

$\operatorname{dim} T_{p} W^{u}\left(T S_{\pi}\right)=1 \quad \operatorname{dim} T_{p} W^{s}(T B)=2$
$\operatorname{dim}\left(T_{p} W^{u}\left(T S_{\pi}\right)+T_{p} W^{s}(T B)\right) \neq 3 \quad$ structurally unstable

Variation of PK cycle

long long long time periodic motion?

Cascades of isolas and period doubling bifurcations

Spot dynamics in heterogeneous environments

* Blended methodology between computers and mathematics
\rightarrow detection and characterization of instabilities application of the dynamical systems theory
Spot dynamics near codimension 2 singularity
\rightarrow Rotational and its modulated motion
Heteroclinic cycle and its associated long time periodic motion
References:
"Rotational motion of traveling spots in dissipative systems", Phys.Rev.E 80, 046208 (2009).
* Hidden potential ability (instability) emerges through interactions. We have to go through unstable state to catch a new life (dynamics) after large deformation.
Degeneracy of abilities brings us the global properties in life. Remark: My first child was born a couple of weeks ago !

