Exponential asymptotic for fronts connecting an homogenous state and an hexagonal pattern

Gregory Kozyreff and Jon Chapman

Université libre de Bruxelles (ULB) ${ }^{1}$ Oxford University

July 25, 2011

Outline

- Motivation: snaking 1D vs 2D
- Part 1: Sketch of the calculation technique in 1D
- Part 2: application to 2D localized hexagons

snaking 1D vs 2D

Required: subcritical Turing bifurcation. Simplest model: the Swift-Hohenberg equation

$$
\frac{\partial u}{\partial t}=r u+\nu u^{2}-u^{3}-\left(1+\nabla^{2}\right)^{2} u .
$$

In 1D, subcritical Turing to roll pattern:

$$
\text { set } r=-\epsilon^{4}, u(x, y, t)=-\epsilon f(x), \nu=3 E \text { : }
$$

$$
\left(1+\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\right)^{2} f+\epsilon^{4} f+3 E \epsilon f^{2}+\epsilon^{2} f^{3}=0
$$

snaking 1D vs 2D

Inside the pinning range:

Woods \& Champneys, Physica D 1999, Hunt, Lord \& Champneys (1999), Beck et al 2009...

Pinning range:

Burke and Knobloch, PRE 2006

For $\epsilon \ll 1$, the pinning range $\sim \epsilon^{-4} \exp \left(-\pi / \epsilon^{2}\right)$. (Kozyreff Chapman PRL 2006, Physica D 2009)

snaking 1D vs 2D

$$
\frac{\partial u}{\partial t}=r u+\nu u^{2}-u^{3}-\left(1+\nabla^{2}\right)^{2} u .
$$

In 2D, subcritical bifurcation diagram for extended hexagon pattern:

$$
\begin{aligned}
& \text { set } r=-\epsilon^{2}, u(x, y, t)=-\epsilon f(x, y), \\
& \nu=3 E \text { : } \\
& \qquad\left(1+\nabla^{2}\right)^{2} f+\epsilon^{2} f+3 E \epsilon f^{2}+\epsilon^{2} f^{3}=0 .
\end{aligned}
$$

snaking 1D vs 2D

The snaking diagram for localized hexagons is more complicated.

Lloyd et al SIADS 2008
The width of the snaking oscillations depends on the growth direction.

snaking 1D vs 2D

How does the width of the pinning region scale for small ϵ ?

Lloyd et al. SIADS 2008

Calculation in 1D

Study

$$
\left(1+\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\right)^{2} f+\epsilon^{4} f+3 E \epsilon f^{2}+\epsilon^{2} f^{3}=0, \quad \epsilon \ll 1
$$

Look for front solutions $f \sim A(X)\left(e^{\mathrm{i}(x+\varphi)}+\right.$ c.c. $)+\epsilon f_{1}+\epsilon^{2} f_{2}+\ldots$,

where $X=\epsilon^{2} x, \varphi$ arbitrary phase.
Define $\tilde{x}=x+\varphi$.

Standard multiple scale analysis yields a Ginzburg-Landau eq., which can be put in the form

$$
\frac{\mathrm{d}^{2} A}{\mathrm{~d} X^{2}}+\frac{\partial V(A)}{\partial A}=0 .
$$

Calculation in 1D

This allows one to identify the Maxwell value $E_{M}(\epsilon)$:

Calculation in 1D

Standard theory predicts that, away from E_{M}, say with $E=E_{M}+\delta E$, the front solution ceases to exist:

We have $f \sim f_{0}+\epsilon f_{1}+\ldots+\delta f$ with

$$
\delta f \propto \epsilon^{-2} \delta E e^{X}\left(e^{\mathrm{i} \tilde{x}}+\text { c.c. }\right)
$$

as $X \rightarrow \infty$.
The theory, however, misses some exponentially small terms, " $R_{N}(\varphi)$ ", which also appear in δf and which can counterbalance the divergence above. The balance between the two yields the finite pinning range

$$
\delta E=\delta E(\varphi), \quad 0 \leq \varphi<2 \pi .
$$

Calculation in 1D

In the multi-scale approach, one assumes
$f \sim f_{0}(x, X)+\epsilon f_{1}(x, X)+\ldots \epsilon^{n} f_{n}(x, X), X=\epsilon^{2} x$. This makes the perturbation problem singular: a small parameter multiplies the highest derivative in X

$$
\begin{aligned}
& \left(1+\frac{\partial^{2}}{\partial x^{2}}\right)^{2} f \rightarrow\left(1+\left(\frac{\partial}{\partial x}+\epsilon^{2} \frac{\partial}{\partial X}\right)^{2}\right)^{2} f \\
= & \epsilon^{8} \frac{\partial^{4} f}{\partial X^{4}}+4 \epsilon^{6} \frac{\partial^{4} f}{\partial x \partial X^{3}}+6 \epsilon^{4} \frac{\partial^{4} f}{\partial x^{2} \partial X^{2}}+4 \epsilon^{2} \frac{\partial^{4} f}{\partial x^{3} X}+\left(1+\frac{\partial^{2}}{\partial x^{2}}\right)^{2} f .
\end{aligned}
$$

As a result, when solving at $O\left(\epsilon^{n}\right)$, one gets

$$
f_{n} \propto \frac{\partial f_{n-2}}{\partial X}, \frac{\partial^{2} f_{n-4}}{\partial X^{2}}, \frac{\partial^{3} f_{n-6}}{\partial X^{3}}, \frac{\partial^{4} f_{n-8}}{\partial X^{4}} .
$$

Calculation in 1D

Now notice that $f_{0} \propto\left(e^{\mathrm{i} \tilde{x}}+\right.$ c.c. $) / \sqrt{1+e^{-X}}$ has singularities in the complex plane: $X_{0}= \pm \mathrm{i} \pi$. Hence,

$$
f_{0} \propto(X-\mathrm{i} \pi)^{-1 / 2} \text { and, at higher order, } f_{n} \propto(X-\mathrm{i} \pi)^{-n / 2-1 / 2}
$$

Besides, since the equation for f_{n} contains $\partial f_{n-2} / \partial X$, differentiation yields that $f_{n} \propto n f_{n-2}, n^{2} f_{n-4}, \ldots$ and every second order, the terms in the asymptotic expansion get bigger by a factor n. Hence the series diverges.

> One should therefore truncate the expansion and compute the remainder $R_{N}(\varphi)$.

Calculation in 1D

Let

$$
f=\sum_{n=0}^{N-1} \epsilon^{n} f_{n}(x, X)+R_{N}
$$

The equation for R_{N} is essentially the linearized S - H equation + inhomogeneous terms coming from the truncation.

$$
\begin{aligned}
& \left(1+\partial_{x}^{2}\right)^{2} R_{N}+4 \epsilon^{2}\left(1+\partial_{x}^{2}\right) R_{N_{x X}}+2 \epsilon^{4}\left(1+3 \partial_{x}^{2}\right) R_{N_{X X}}+4 \epsilon^{6} R_{N_{x X X X}} \\
+ & \epsilon^{8} R_{N_{X X X X}}+3 \epsilon^{2}\left(f_{0}^{2}+\cdots\right) R_{N}+\epsilon^{4} R_{N}+6 \epsilon E_{M}\left(f_{0}+\epsilon f_{1}+\cdots\right) R_{N} \\
\sim & \epsilon^{N}\left(1+\partial_{x}^{2}\right)^{2} f_{N}+\epsilon^{N+2}\left(-6 f_{N-2_{x x X X}}-4 f_{N-4_{x X X X}}-f_{N-6_{X X X X}}\right. \\
- & \left.2 f_{N-2_{X X}}\right)+\epsilon^{N+4}\left(-4 f_{N-2_{x X X X}}-f_{N-4_{X X X X}}\right)+\epsilon^{N+6}\left(-f_{N-2_{X X X X}}\right)+\cdots
\end{aligned}
$$

Calculation in 1D

For large n, one finds that
$\epsilon^{n} f_{n} \sim \epsilon^{n} \frac{e^{\mathrm{i} n \pi / 4} \Gamma(n / 2+\alpha)}{(\mathrm{i} \pi-X)^{n / 2+\alpha}}\left(F_{0}(X)+F_{2}(X) e^{2 \mathrm{i} \tilde{x}}\right)+$ c.c. $(\ldots$ plus other terms $)$
when n is odd, where α is determined by an analysis in the vicinity of $X=\mathrm{i} \pi$.

Fourier components at $n^{\text {th }}$ order.

The spectrum of the late-terms is thus essentially non resonant but... at some places, the denominator above oscillates violently.

Calculation in 1D

1) Stirling formula:

$$
\begin{aligned}
& \Gamma(n / 2+\alpha) \sim \\
& \quad \sqrt{2 \pi n}(n / 2)^{n / 2+\alpha} e^{-n / 2}
\end{aligned}
$$

2) Just below the singularity, let $X=\mathrm{i} \pi-\mathrm{i} r+\xi$, with $\xi \ll r$.
Then

$$
\mathrm{i} \pi-X=-\mathrm{i} r(1+\mathrm{i} \xi / r) \sim-\mathrm{i} r e^{\mathrm{i} \xi / r+\frac{1}{2}(\xi / r)^{2}}
$$

Thus

$$
\epsilon^{n} \frac{e^{\mathrm{i} n \pi / 4} \Gamma(n / 2+\alpha)}{(\mathrm{i} \pi-X)^{n / 2+\alpha}} \sim \sqrt{2 \pi n}\left(\frac{n}{2 r}\right)^{\alpha}\left(\frac{\epsilon^{2} n}{2 r}\right)^{n / 2} e^{-n \mathrm{i} \xi /(2 r)-n(\xi / 2 r)^{2}} e^{-n}
$$

Optimal truncation: $n \sim 2 r / \epsilon^{2}$.

$$
\rightarrow \epsilon^{n} f_{n} \sim \sqrt{2 \pi n}\left(\frac{n}{2 r}\right)^{\alpha} e^{-\pi / \epsilon^{2}}\left(F_{0}(X) e^{-\mathrm{i} \tilde{x}}+F_{2}(X) e^{\mathrm{i} \tilde{x}}\right) e^{\mathrm{i} \varphi} e^{-\xi^{2} / 2 r \epsilon^{2}} .
$$

Calculation in 1D

We found that, in the region of the complex plane described by $X=\mathrm{i} \pi-\mathrm{i} r+\xi, \xi \ll r$,
$\epsilon^{n} f_{n} \sim \sqrt{2 \pi n}\left(\frac{n}{2 r}\right)^{\alpha} e^{-\pi / \epsilon^{2}}\left(F_{0}(X) e^{-\mathrm{i} \tilde{x}}+F_{2}(X) e^{\mathrm{i} \tilde{x}}\right) e^{\mathrm{i} \varphi} e^{-\xi^{2} / 2 r \epsilon^{2}}+$ c.c..
Hence, over a distance $\xi=O(\sqrt{2 r} \epsilon)$, the late terms of the asymptotic series $\sum \epsilon^{n} f_{n}$ become resonant.

Calculation in 1D

This is what generate a remainder

$$
R_{N}(\varphi) \propto e^{-\pi / \epsilon^{2}} \epsilon^{-6} \cos (\varphi+\ldots) e^{X}\left(e^{\mathrm{i} \tilde{x}}+\text { c.c. }\right), \quad \text { as } X \rightarrow \infty,
$$

eventually yielding

$$
\delta E \propto \epsilon^{-4} e^{-\pi / \epsilon^{2}} \cos (\varphi+\ldots)
$$

(full story in Physica D 2009)
(1) The physics of pinning is "beyond all orders".
(2) One must look at singularities of the front.
(0) The two nearest singularities, $\pm \mathrm{i} \pi$, are joined by a Stokes line.
(0) This is where the slow and fast scale interact and produce $R_{N}(\varphi)$.
(0) $R_{N}(\varphi)$ compensates deviation δE from Maxwell to give finite pinning range.
($R_{N}(\varphi)$ also allows the pattern to accommodate distant boundary conditions in large but finite domains (not shown here, see PRL 2009.)
(0) Not limited to SH. See numerous hydrodynamical studies and a recent study of the Lugiato-Lefever model in optics (to appear in PRA.)

Hexagons

Let us now consider hexagonal patterns. We thus study

$$
\left(1+\nabla^{2}\right)^{2} f+\epsilon^{2} f+3 E \epsilon f^{2}+\epsilon^{2} f^{3}=0
$$

An extended pattern is given by $f \sim \sum_{i=1}^{3} A_{i} e^{i \mathbf{k}_{i} \cdot \tilde{\mathbf{x}}}+$ c.c. $+O(\epsilon)$, where $\tilde{\mathbf{x}}=\mathbf{x}-\varphi \hat{\mathbf{x}}$ and φ is an arbitrary phase.

Hexagons - coupled Ginzburg-Landau's

Consider a straight front perpendicular to the x-direction. With the slow scale $X=\epsilon x$, the multiple-scale analysis yields $E=\epsilon E_{1}$ and

$$
\begin{aligned}
& 4 k_{1, x}^{2} \frac{\mathrm{~d}^{2} A_{1}}{\mathrm{~d} X^{2}}=A_{1}\left(1+3 A_{1}^{2}+6 A_{2}^{2}+6 A_{3}^{2}\right)+6 E_{1} A_{2} A_{3}, \\
& 4 k_{2, x}^{2} \frac{\mathrm{~d}^{2} A_{2}}{\mathrm{~d} X^{2}}=A_{2}\left(1+3 A_{2}^{2}+6 A_{3}^{2}+6 A_{1}^{2}\right)+6 E_{1} A_{3} A_{1}, \\
& 4 k_{3, x}^{2} \frac{\mathrm{~d}^{2} A_{3}}{\mathrm{~d} X^{2}}=A_{3}\left(1+3 A_{3}^{2}+6 A_{1}^{2}+6 A_{2}^{2}\right)+6 E_{1} A_{1} A_{2}
\end{aligned}
$$

where we used the fact that A_{i} can be taken real and positive for hexagons.

- No front solution between a hexagonal pattern and an homogenous solution is documented.

Hexagons - a front solution

One case is doable: $k_{3 x}=0$, i.e. the front is aligned with one of the \mathbf{k}_{i}. This corresponds to one of the principal growth direction in Lloyd et al. 2008 paper. By symmetry, $A_{1}=A_{2}$. We have

$$
\begin{aligned}
3 \frac{\mathrm{~d}^{2} A_{1}}{\mathrm{~d} X^{2}} & =A_{1}\left(1+9 A_{1}^{2}+6 A_{3}^{2}\right)+6 E_{1} A_{1} A_{3} \\
0 & =A_{3}\left(1+3 A_{3}^{2}+12 A_{1}^{2}\right)+6 E_{1} A_{1}^{2}
\end{aligned}
$$

By eliminating A_{3} from the second equation, we get

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} A_{1}}{\mathrm{~d} X^{2}}+\frac{\partial V\left(A_{1}, E_{1}\right)}{\partial A_{1}}=0, \\
& \text { where } V \text { is nasty but OK. The } \\
& \text { Maxwell point is } E_{1}=-\sqrt{15 / 8} . \\
& \\
& \hline-0.001 \\
& -0.002 \\
& \hline-0.004 \\
& \hline-0.005
\end{aligned}
$$

Hexagons - a front solution

A front solution is then obtained implicitly by

$$
X\left(A_{1}\right)=X(S)+\int_{S}^{A_{1}} \frac{1}{\sqrt{-2 V\left(A^{\prime}\right)}} \mathrm{d} A^{\prime}
$$

Hexagons - a front solution

To locate the singularity, let A_{1} tend to infinity through real values. A complex jump takes place at $A^{*}=\sqrt{2 / 15}$, where V vanishes:
$A_{1^{-}}$plane:

$$
\begin{aligned}
X_{0} & =\lim _{\epsilon \rightarrow 0} X(S) \\
& +\int_{S}^{A^{*}-\epsilon} \frac{\mathrm{d} A_{1}}{\sqrt{-2 V\left(A_{1}\right)}} \\
& +\frac{\mathrm{i} \pi}{\sqrt{-V^{\prime \prime}\left(A^{*}\right)}} \\
& -\int_{A^{*}+\epsilon}^{\infty} \frac{\mathrm{d} A_{1}}{\sqrt{-2 V\left(A_{1}\right)}}
\end{aligned}
$$

Hexagons - a front solution

Hence

$$
\operatorname{Im}\left(X_{0}\right)=\frac{ \pm \pi}{\sqrt{-V^{\prime \prime}\left(A^{*}\right)}}= \pm \sqrt{\frac{57}{26}} \pi \quad\left(k_{3 x}=0\right)
$$

only depends on the quadratic part of V near the constant amplitude $A^{*}=\sqrt{2 / 15}$. In other words,

$$
\operatorname{Im}\left(X_{0}\right)=\frac{ \pm \pi}{\lambda}
$$

where λ is an eigenvalue of the linearized dynamics around A^{*} : $A_{1}=A^{*}+\delta A_{1} e^{ \pm \lambda X}$.

This observation can be applied to other front orientations, for which an effective 1D potential cannot be found. In particular, for a front normal to \mathbf{k}_{3}, we find in this way that

$$
\operatorname{Im}\left(X_{0}\right)=\frac{ \pm \pi}{\lambda}=\frac{ \pm \pi \sqrt{40}}{\sqrt{67-\sqrt{2409}}}, \quad\left(k_{3 x}=1\right)
$$

Hexagons - near the singularity

As $X \rightarrow X_{0}$, we may assume that

$$
A_{1} \sim \frac{B_{0,1,0}}{X-X_{0}}, \quad A_{2} \sim \frac{B_{0,0,-1}}{X-X_{0}}, \quad A_{3} \sim \frac{B_{0,-1,-1}}{X-X_{0}},
$$

where $B_{n, m_{1}, m_{2}}$ refers to $n^{\text {th }}$ order of the asymptotic expansion and to wave vector $\mathbf{q}=m_{1} \mathbf{k}_{1}+m_{2} \mathbf{k}_{2}$. Substituting into the Ginzburg Landau equations, we find that

$$
B_{0,1,0}=B_{0,0,1}=\sqrt{2 / 3}, \quad B_{0,-1,-1}=0 .
$$

Hexagons - near the singularity

We may pursue the investigation to higher orders. With
$B_{n, m_{1}, m_{2}}=B_{n, \mathbf{q}}, q=\sqrt{\mathbf{q} \cdot \mathbf{q}}$,

$$
\begin{aligned}
& \left(1-q^{2}\right)^{2} B_{n, \mathbf{q}}-4 i n q_{x}\left(1-q^{2}\right) B_{n-1, \mathbf{q}}+2 n(n-1)\left(1-q^{2}-2 q_{x}^{2}\right) B_{n-2, \mathbf{q}} \\
& -4 \operatorname{in}(n-1)(n-2) q_{x} B_{n-3, \mathbf{q}}+n(n-1)(n-2)(n-3) B_{n-4, \mathbf{q}} \\
& \quad+\sum_{j=0}^{n-2} \sum_{m=0}^{n-2-j} \sum_{\mathbf{q}^{\prime}} \sum_{\mathbf{q}^{\prime \prime}} B_{j, \mathbf{q}^{\prime}} B_{m, \mathbf{q}^{\prime \prime}} B_{n-2-j-m, \mathbf{q}-\mathbf{q}^{\prime}-\mathbf{q}^{\prime \prime}}=0 .
\end{aligned}
$$

At every order, new wave vectors are excited by the nonlinearity. The recurrence relation invites us to look for solutions of the form

$$
B_{n, \mathbf{q}} \sim \kappa^{n} \Gamma\left(n+\alpha_{\mathbf{q}}\right) b_{\mathbf{q}}
$$

for large n. Through the offset $\alpha_{\mathbf{q}}$, some wave vectors dominates the others.

- κ is an eigenvalue of the recurrence relation.

From what precedes, we expect that, for large n,

$$
\epsilon^{n} f_{n} \sim \text { const } \times \frac{\epsilon^{n} \kappa^{n} \Gamma(n+\alpha)}{\left(X-X_{0}\right)^{n+\alpha}} e^{\mathrm{iq} \cdot \tilde{\mathrm{x}}}
$$

for some dominating wave vector \mathbf{q}, with $\tilde{\mathbf{x}}=\mathbf{x}-\varphi \hat{\mathbf{x}}$. Following the same reasoning as in 1D, the factorial over power will turns this into

$$
e^{\mathrm{i} \mathbf{q} \cdot \tilde{\mathbf{x}}-\mathrm{i} x /|\kappa|+\mathrm{i} X_{0} /(\epsilon|\kappa|)-\frac{1}{2} \xi^{2} /(r \epsilon|\kappa|)} .
$$

Hence, the dominating wave vector \mathbf{q} can be brought onto some vectors of the basic triad $\pm \mathbf{k}_{i}, i=1,2,3$ if the right eigenvalue κ is excited:

$$
\mathbf{q}-\frac{1}{\kappa} \hat{\mathbf{x}}= \pm \mathbf{k}_{i}
$$

The idea behind all this

When $k_{3 x}=0$, one expected eigenvalue is $-\mathrm{i} / \sqrt{3}$ and the corresponding set of
dominating wave vectors are $2 \mathbf{k}_{1}-\mathbf{k}_{2}, \mathbf{k}_{1}-2 \mathbf{k}_{2}, \mathbf{k}_{1}$, $-\mathbf{k}_{2}, 2 \mathbf{k}_{1}$, and $-2 \mathbf{k}_{2}$.

The complementary singularity \bar{X}_{0} will "activate" the wave vectors $2 \mathbf{k}_{2}-\mathbf{k}_{1}$, $\mathbf{k}_{2}-2 \mathbf{k}_{1}, \mathbf{k}_{2},-\mathbf{k}_{1}, 2 \mathbf{k}_{2}$, and $-2 \mathbf{k}_{1}$

Outer analysis, with $k_{3 x}=0$

Indeed, we found that, among others, f_{n} contains the terms

$$
\frac{\Gamma(n+4)}{\left(X-X_{0}\right)^{n+1}}\left(\frac{-\mathrm{i}}{\sqrt{3}}\right)^{n} \mathcal{B}\left(e^{\mathrm{i}\left(2 \mathbf{k}_{1}-\mathbf{k}_{2}\right) \cdot \tilde{\mathbf{x}}}+e^{i \mathbf{k}_{1} \cdot \tilde{\mathbf{x}}}+e^{-\mathrm{i} \mathbf{k}_{2} \cdot \tilde{\mathbf{x}}}+e^{\mathrm{i}\left(\mathbf{k}_{1}-2 \mathbf{k}_{2}\right) \cdot \tilde{\mathbf{x}}}\right)
$$

for $n \gg 1$ as $X \rightarrow X_{0}$.
Away from $X=X_{0}$, we are able to match this with the outer expansion

$$
\begin{gathered}
\frac{\Gamma(n+4)}{\left(X-X_{0}\right)^{n+4}}\left(\frac{-\mathrm{i}}{\sqrt{3}}\right)^{n}\left[F(X)\left(e^{\mathrm{i}\left(2 \mathbf{k}_{1}-\mathbf{k}_{2}\right) \cdot \tilde{\mathbf{x}}}+e^{i \mathbf{k}_{1} \cdot \tilde{\mathbf{x}}}+e^{-\mathrm{i} \mathbf{k}_{2} \cdot \tilde{\mathbf{x}}}+e^{\mathrm{i}\left(\mathbf{k}_{1}-2 \mathbf{k}_{2}\right) \cdot \tilde{\mathbf{x}}}\right)\right. \\
\left.+\phi(X)\left(e^{2 \mathbf{i} \mathbf{k}_{1} \cdot \tilde{\mathbf{x}}}+e^{-2 \mathbf{i} \mathbf{k}_{2} \cdot \tilde{\mathbf{x}}}\right)\right]
\end{gathered}
$$

where $F(X)$ and $\phi(X)$ satisfies the linearized amplitude equations:

$$
\frac{\mathrm{d}^{2} F}{\mathrm{~d} X^{2}}+\frac{\partial^{2} V\left(A_{1}, E_{M}\right)}{\partial A_{1}^{2}} F(X)=0, \quad\left(F(X) \sim e^{\lambda X}, X \rightarrow \infty .\right)
$$

Outer analysis, with $k_{3 x}=0$

As in the 1D problem, the late terms of the multiple-scale expansion will thus switch on an exponentially small hexagon amplitude in the remainder $R_{N}(\varphi)$.

$$
\begin{gathered}
R_{N}^{(S)} \sim-36 \mathbf{i} \pi \epsilon^{-4} e^{\mathrm{i}\left(X_{0} / \epsilon-\varphi\right) /|\kappa|}\left[F(X)\left(e^{\mathrm{i} \mathbf{k}_{1} \cdot \tilde{\mathbf{x}}}+e^{-\mathrm{i} \mathbf{k}_{1} \cdot \tilde{\mathbf{x}}}+e^{\mathrm{i} \mathbf{k}_{2} \cdot \tilde{\mathbf{x}}}+e^{-\mathrm{i} \mathbf{k}_{2} \cdot \tilde{\mathbf{x}}}\right)\right. \\
\left.+\phi(X)\left(e^{\mathrm{i} \mathbf{k}_{3} \cdot \tilde{\mathbf{x}}}+e^{-\mathrm{i} \mathbf{k}_{3} \cdot \tilde{\mathbf{x}}}\right)\right]+ \text { c.c. }
\end{gathered}
$$

This amplitude grows with X and can compensate for a deviation δE from the Maxwell point $E=\epsilon E_{M}$. At the end of the day, we obtain

$$
\delta E=\frac{36 \pi \Lambda \epsilon^{-3} e^{-\frac{\operatorname{lm}\left(X_{0}\right)}{\epsilon|\kappa|}}}{0.0164 \ldots} \sin \left(\frac{\varphi-\operatorname{Re}\left(X_{0}\right) / \epsilon}{|\kappa|}-\chi\right)
$$

In

$$
\delta E \propto \epsilon^{-3} e^{-\frac{\operatorname{lm}\left(X_{0}\right)}{\epsilon|\kappa|}} \sin \left(\frac{\varphi-\operatorname{Re}\left(X_{0}\right) / \epsilon}{|\kappa|}-\chi\right)
$$

$\kappa=-\mathrm{i} / \sqrt{3}$ is the eigenvalue of the recurrence relation, which is associated to a shift in the lattice of wave vectors in the x-direction. More precisely, $|\kappa|^{-1}=\Delta k$. On the other hand, $\operatorname{Im}\left(X_{0}\right)$ was found to correspond to the rate at which the front tends to the constant amplitude $\sqrt{2 / 15}$. Hence, the exponential factor above can be written as

$$
\exp \left(\frac{-\pi \Delta k}{\epsilon \lambda}\right)
$$

It is thus controlled by the ratio of the actual periodic scale and relaxation scale in the direction normal to the front.

Discussion

By the same token, if we consider a front oriented so that $k_{3 x}=1$, we expect $\kappa=-\mathrm{i}$

Discussion

The same formula is expected for the pinning range as with $k_{3 x}=0$ but this time with X_{0} and κ corresponding to different direction. In general, we expect the pinning range to scale as

$$
\epsilon^{-3} \exp \left(\frac{-\pi \Delta k(\theta)}{\epsilon \lambda(\theta)}\right) .
$$

In particular, $\frac{\Delta k(0)}{\lambda(0)}<\frac{\Delta k(\pi / 2)}{\lambda(\pi / 2)}$, and therefore the pinning range and snaking is wider when $\theta=0$ (as in Lloyd 2008). Due to $\Delta k(\theta)$, the pinning range is expected to be much smaller for directions different from $\theta=0, \pi / 2$ or equivalent.

