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@ Motivation: snaking 1D vs 2D
@ Part 1: Sketch of the calculation technique in 1D

@ Part 2: application to 2D localized hexagons
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snaking 1D vs 2D

Required: subcritical Turing bifurcation. Simplest model: the
Swift-Hohenberg equation

0
F?:Tu—i—uuQ—u?’—(l—f—VQ)Qu.

In 1D, subcritical Turing to roll pattern:

O(e)

set r = —et, u(z,y,t) = —ef(x), v = 3E:

a2 \?
~~~~~ " 1+ | f+ef+3Bef2+2f2=0.
y daz?
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snaking 1D vs 2D

Inside the pinning range:
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Woods & Champneys, Physica D 1999, r
Hunt, Lord & Champneys (1999), Burke and Knobloch, PRE 2006

Beck et al 2009...

For € < 1, the pinning range ~ ¢ *exp(—7/e®). (Kozyreff Chapman PRL
2006, Physica D 2009)
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snaking 1D vs 2D

0
F?:Tu—i—uuQ—u?’—(l—f—VQ)Qu.

In 2D, subcritical bifurcation diagram for extended hexagon pattern:

0

2

set r = —€?, u(z,y,t) = —ef(x,y),

v =3E:

R (1+V2)2f+62f—|—3E€f2+62f3ZO.

g
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snaking 1D vs 2D

The snaking diagram for localized hexagons is more complicated.

Lloyd et al SIADS 2008

The width of the snaking oscillations depends on the growth direction.
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snaking 1D vs 2D

How does the width of the pinning region scale for small €7

Lloyd et al.
SIADS 2008
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Calculation in 1D

Study

2 2
<1+fz) FHEf43Ef?+ 25 =0, <L
xr

Look for front solutions f ~ A(X) (!9 4 c.c.) +efi + €2 fa+ ...,

where X = €2z, ¢ arbitrary phase.
Define T =z + ¢.

Standard multiple scale analysis yields a Ginzburg-Landau eq., which can
be put in the form
d?A oV (4)
dx?2 0A

=0.
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Calculation in 1D

This allows one to identify the Maxwell value Ej/(e):
V(A)

d’A N v _,
dx?2 A - 000

At E = E);, front solution

-0.05+

1

A o .
V14e X —o10|
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Calculation in 1D

Standard theory predicts that, away from E);, say with E = Ej; + 0F,
the front solution ceases to exist:

20

OE
a e We have f ~ fo+efi + ...+ 6f

0 with

ol .
of < e 26E e* (¢ +c.c.)

—mn - -

The theory, however, misses some exponentially small terms, " Ry ()",
which also appear in §f and which can counterbalance the divergence
above. The balance between the two yields the finite pinning range

O0F = 0E(p), 0<¢<2m.
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Calculation in 1D

In the multi-scale approach, one assumes

f~folx,X)+efi(x, X)+...€"fn(x, X), X = ¢2z. This makes the
perturbation problem singular: a small parameter multiplies the highest
derivative in X

92\ o, 0\
<1+ax2> f%<1+<6x+eax)> f

ot f ot f o f ot f 9% \?
— 8 6 4 2 o
~ ¢ x4 e 0ro X3 e 0120X? e 03X © <1+ T > I

As a result, when solving at O(e"), one gets

o Ofn—a 0?fn_a Bfrn6 O fn_s
0X 7 9X2 7 9X3 ' 9X4
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Calculation in 1D

Now notice that fy oc (€l + c.c.)/v/1 + e=X has singularities in the
complex plane: Xy = +im. Hence,

foox (X — i7r)_1/2 and, at higher order, f,, o (X — 177)_”/2_1/2.

Besides, since the equation for f,, contains df,_»/0X, differentiation

yields that f,, o nfn_2,n2fn_4,... and every second order, the terms in
the asymptotic expansion get bigger by a factor n. Hence the series
diverges.

ef,

One should therefore truncate
the expansion and compute
the remainder Ry (¢).

.2
1
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o o o o
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Calculation in 1D

Let
N-1

f= Z €" fn(z,X) + Rn.
n=0

The equation for Ry is essentially the linearized S-H equation +
inhomogeneous terms coming from the truncation.

(1+02)° Ry+4€® (14 02) Ry, +2¢* (1 4 30%) Rivyx 4 Ry,
+ € RNyxxx +3E(f5+ - )By + €' Ry +6eEr(fo+eft ++++ )Ry
2
~ eN (1 + aﬁ) fN + 6N+2(_6fN*2mXX - 4fN74.1:XXX - fN*GXXXX

_2fN—2xx)+€N+4 (—4fN—21xxx - fN—4XXXX)+€N+6 (_fN—Qxxxx)+' o
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Calculation in 1D

For large n, one finds that

L e (n/2 4+ a)
(ir — X)n/2+e

€ fn ~e€

(Fo(X) + F2(X)e* ) +c.c. (...plus other terms)

when n is odd, where « is determined by an analysis in the vicinity of

X =im.

Ini The spectrum of the
late-terms is thus essentially
non resonant but...
at some places, the

] } I} b denominator above oscillates
-3 -2 -1 ! 1

violently.
Fourier components at nt" order.
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Calculation in 1D

1) Stirling formula: 2) Just below the singularity, let
X =ir—ir+ &, with £ < r.
L'(n/2+a)~ Then
VERR(n/2VE (1 i) ~ —ir SR
Thus

2

"™/ (n )2 + ) nye (En\"? o 2
n ~ (7) an —ni¢/(2r)—n(&/2r)* ,—n_
‘ (ir — X)n/2+e g 2r ¢ ¢

Optimal truncation: n ~ 27 /€.

B (L) (B(X)e X))

r
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Calculation in 1D

We found that, in the region of the complex plane described by
X=in—ir+§ &L,

(63 . . .
€' fn ~ V2N (22) e /e (Fo(X)e™™ + Fao(X)e') et e
T

Hence, over a distance £ = O(v/2r¢), the late terms of the asymptotic
series Y €" f,, become resonant.

f nk
-

e
.
R

LA
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Calculation in 1D

This is what generate a remainder
Ry (p) x e~/ =6 cos(p +...)eN (e +cc), as X — oo,

eventually yielding

6F oc e 4e™™/< cos(p +....).

(full story in Physica D 2009)
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1D lessons

© 000O0O0C

The physics of pinning is " beyond all orders”.

One must look at singularities of the front.

The two nearest singularities, +im, are joined by a Stokes line.
This is where the slow and fast scale interact and produce Ry (y).
RN (p) compensates deviation 0F from Maxwell to give finite
pinning range.

RN (p) also allows the pattern to accommodate distant boundary
conditions in large but finite domains (not shown here, see PRL

2009.)

Not limited to SH. See numerous hydrodynamical studies and a

recent study of the Lugiato-Lefever model in optics (to appear in
PRA.)
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Hexagons

Let us now consider hexagonal patterns. We thus study
(1+V2)2f+62f+3Eef2+62f3 =0.

An extended pattern is given by [ ~ Z?:l Aze’®i® 4 c.c. + O(e), where
X =X — X and @ is an arbitrary phase.

ks=—ki—ky

ISR -5 0 5 10 15
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Hexagons - coupled Ginzburg-Landau's

Consider a straight front perpendicular to the z-direction. With the slow
scale X = ex, the multiple-scale analysis yields £ = ¢F; and

d2A

4/@de; = Ay (14+3A% + 642 +6A42) + 65, Az A3,
2 d2A2 2 2 2

A3 s = A2 (14345 + 643 + 6AT) + 6F1 A3 Ay,

g2 TAs

feqxz =4 (14 3A3 + 647 + 6A3) + 6F; A; As.

where we used the fact that A; can be taken real and positive for
hexagons.

e No front solution between a hexagonal pattern and an homogenous
solution is documented.
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Hexagons - a front solution

One case is doable: k3, =0, i.e. the front is aligned with one of the k;.
This corresponds to one of the principal growth direction in Lloyd et al.
2008 paper. By symmetry, A; = Ay. We have

K, K,

d2A

0= A3 (1+3A3+1243) + 6E, A7

3

By eliminating A3 from the second equation, we get

V(AD

o001 f A/ 2/ 15

d2A1 8V(A1, El) —0 01 02 03 ; AI
dXx? 0A; o

-0.001 F

-0.002F

where V is nasty but OK. The
Maxwell point is By = —4/15/8.

—-0.003F

-0.004 1

-0.005F
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Hexagons - a front solution

A front solution is then obtained implicitly by

X(

A
1 1 0.20
A) = X(S +/ —dA. .
1) ( ) s /—QV(A/) ‘/
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Hexagons - a front solution

To locate the singularity, let A; tend to infinity through real values. A
complex jump takes place at A* = 1/2/15, where V vanishes:

A - plane:
XO:Ii_rg%X(S) s A*-o A* A*te o
+ AT—e dA]_ U
s \/ —2V(A1)
im X-plane:
+ —V”(A*) oo+ig/N-V"(A%*)

X, <
_ / diAl X(S)
A*te —2V(A1) L
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Hexagons - a front solution

Hence
+7 57
| = — = j: —_ r =
m(Xo) ) 56" (k3z =0)

only depends on the quadratic part of V' near the constant amplitude

A* = /2/15. In other words,

+m
Im(Xo) = N
where X is an eigenvalue of the linearized dynamics around A*:
Ay = A" + §A e

This observation can be applied to other front orientations, for which an
effective 1D potential cannot be found. In particular, for a front normal
to ks, we find in this way that

Im(Xo) = =L A0 (ksz =1).

A V67— V2409
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Hexagons - near the singularity

As X — X, we may assume that

Bo,1,0
A ~ L) A ~ 3y A ~ 3y 3
1 X_XO7 2 3

where B, m, .m, refers to nt order of the asymptotic expansion and to
wave vector q = miky + moks. Substituting into the Ginzburg Landau
equations, we find that

Bo1,0=DBoo1=+v2/3, Bo-1,-1=0.
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Hexagons - near the singularity

We may pursue the investigation to higher orders. With
Bn,ml,mz = Bn,qv q9=+v4 q

2 .

(1 — q2) By, q—4ing, (1 — q2) Bn_1,q+2n(n—1) (1 . 2q§,) Bh_2gq

—din(n—1)(n —2) ¢ Br_3q+n(n—1)(n—2)(n—3)By_4q
n—2n—2—j

+ Z Z Z Z Bj.q' Bm.q'Bn-2—j-m,q-q'—q" = 0.

j=0 m=0 q q"

At every order, new wave vectors are excited by the nonlinearity. The
recurrence relation invites us to look for solutions of the form

Bp.q ~ E"T(n + aq)bq

for large n. Through the offset ag, some wave vectors dominates the
others.

@ k is an eigenvalue of the recurrence relation.
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The idea behind all this

From what precedes, we expect that, for large n,

€"k"T'(n + «)
(X — Xo)"

iq-x
)

€" f,, ~ const X

for some dominating wave vector q, with X = x — pX. Following the
same reasoning as in 1D, the factorial over power will turns this into

pla%—iz /|| +iXo/ (elx])~ 52/ (relxl)

Hence, the dominating wave vector q can be brought onto some vectors
of the basic triad +k;, i = 1,2, 3 if the right eigenvalue & is excited:

3=

Gregory Kozyreff and Jon Chapman Exponential asymptotic for fronts connecting an homogenous state and an he:



The idea behind all this

When k3, = 0, one expected . el
eigenvalue is —i/\/g and the .
corresponding set of R 30
dominating wave vectors are B
2k; — ko, k1 — 2ko, ki, *
—ko, 2k;, and —2ks. 2 vi—Let)
-0

-3 1 {142}
The complementary 3,0
singularity X will "activate” -
the wave vectors 2ks — ki, ® °
kQ — 21{1, kg, —kl, 2k2, and L4
-2k . {~1g4)
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Outer analysis, with k3, = 0

Indeed, we found that, among others, f,, contains the terms

(XF(”; ;lzﬂ (\;%) B (€i(2k1—k2)~i 4k | omike % ei(k1—2k2)~)'c)
- X

forn>1as X — Xp.
Away from X = X, we are able to match this with the outer expansion

L'(n +42+4 (—1) {F(X) (ei(2k17k2)-f< 4ok R ke X ik —2ke) %)
(X — Xo) V3 /

F(X) (e2lr % 4 o2k %)]
where F(X) and ¢(X) satisfies the linearized amplitude equations:

d2F  0%V(Ay,Ey)
dx2 0A2

F(X) =0, (F(X)~ e X — 00.)
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Outer analysis, with k3, = 0

As in the 1D problem, the late terms of the multiple-scale expansion will
thus switch on an exponentially small hexagon amplitude in the
remainder Ry ().

Rg\f) ~ —36imeLel(Xo/e=0) /Il [F(X) (eikl»i 4 ek kX efikz-fc)
+¢(X) (eik3~)~( + e—lk3)~():| + c.c.

This amplitude grows with X and can compensate for a deviation dF
from the Maxwell point EF = eFj;. At the end of the day, we obtain

o . Im(Xg)
SE — 36mAe3e” <Ixl sin <\P —Re(Xp)/e X) .

0.0164...
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Discussion

In
_Im(Xq) — Re(Xp) /e
GE o 3o~ X0 (90<0)/ _ X) 7
||
K= —i/\/§ is the eigenvalue of the recurrence relation, which is

associated to a shift in the lattice of wave vectors in the z-direction.
More precisely, |x|~* = Ak. On the other hand, Im(X) was found to
correspond to the rate at which the front tends to the constant
amplitude /2/15. Hence, the exponential factor above can be written as

—mAk
exp > .

It is thus controlled by the ratio of the actual periodic scale and
relaxation scale in the direction normal to the front.
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Discussion

By the same token, if we consider a front oriented so that k3, = 1, we

expect k = —i

. . (392} fgl)
° {2.2) {3.1)

° (30
0g2) 240

=2 2.¢l)
-y Lgl

1) 1,42
30 0.2}

o 0,63}
& (173}

. g4
- - (2.4}

Gregory Kozyreff and Jon Chapman Exponential asymptotic for fronts connecting an homogenous state and an he:



Discussion

The same formula is expected for the pinning range as with k3, = 0 but
this time with X and « corresponding to different direction. In general,

we expect the pinning range to scale as
k, k;

ky

In particular, A/\]zg;) < A/\?:;g) and therefore the pinning range and

snaking is wider when 6 = 0 (as in Lloyd 2008) . Due to Ak(#), the
pinning range is expected to be much smaller for directions different from
6 = 0,7/2 or equivalent.
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