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Motivation: snaking 1D vs 2D

Part 1: Sketch of the calculation technique in 1D

Part 2: application to 2D localized hexagons
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snaking 1D vs 2D

Required: subcritical Turing bifurcation. Simplest model: the
Swift-Hohenberg equation

∂u

∂t
= ru+ νu2 − u3 −

(
1 +∇2

)2
u.

In 1D, subcritical Turing to roll pattern:

set r = −ε4, u(x, y, t) = −εf(x), ν = 3E:

(
1 +

d2

dx2

)2

f + ε4f + 3Eεf2 + ε2f3 = 0.
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snaking 1D vs 2D

Inside the pinning range:
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Pinning range:

the u+ state is always less than !greater than" the u− state.
Moreover, no pinning is possible. Thus no stationary fronts
between these two flat states are possible when v!0. Kink
solutions, present when v=0, are discussed in Ref. #8$.

IV. LOCALIZED STATES AS A FUNCTION OF v

Thus far we have studied the behavior of Eq. !1" as r
varies at fixed values of qc, v, and g. To explore the v de-
pendence of our results we rescale x and u so that qc=0.5
and g=1.0, and vary v. Consider first the bifurcation from
the u=0 flat state, shown in Fig. 8 at v=0.41. Within the
normal form !21" changing v corresponds to changing q2.
The condition q2=0 defines a codimension-2 point in the
!r ,v" plane with coordinates r=0, v= ±%27gqc

4 /38; without
loss of generality we take v!0. At this point q4
=2202g2 /361qc

6!0 and the reversible Hopf bifurcation at r
=0 in Eq. !1" is of the type shown in Fig. 6!b". In this case
normal form theory predicts that homoclinic solutions only
exist in the subcritical regime q2"0 !i.e., v2!27gqc

4 /38"
and only in the range #D"#"0. The heteroclinic solution
at #D in the normal form corresponds to the Maxwell point
rM1 in the partial differential equation. Away from the
codimension-2 point we can use the normal form to confirm
the existence of homoclinic solutions when r$0 and it is
these small amplitude solutions that provide a starting point
for the numerical continuation to large amplitude used to
determine the extent of the pinning region. We can also fol-
low the Maxwell point.

Figure 18 summarizes the regions of existence of hetero-
clinic connections to the trivial flat state u0. In view of the
parameter symmetry !u ,v"→ !−u ,−v" of Eq. !1" a mirror
image of this picture exists in the v"0 region of parameter
space. The bifurcation diagram in Fig. 8 corresponds to a
horizontal slice through this figure at v=0.41 and is typical
of the behavior below v&0.688. Above this value of v a new
Maxwell point, corresponding to equal energies of the u0 and
u+ states,

rM3 = qc
4 −

2v2

9g
, !29"

becomes dynamically important. For v!%9gqc
4 /2 this Max-

well point lies to the right of the bifurcation at r+, within the

region where u+ is stable, and at v&0.688 rM3=rP2. Thus for
v%0.688 !i.e., above the horizontal boundary of the shaded
region in Fig. 18" the new Maxwell point enters the pinning
region around rM1 and the structure of the flat and patterned
states changes, as do the homoclinic branches. In particular,
above v&0.735 the &=0,' homoclinic branches created at
the origin undergo homoclinic snaking towards the u+ state
instead of uP. Since u+ is a spatially homogeneous state no
pinning occurs, and the snakes collapse asymptotically to a
single point at r=rM3. Thus at rM3 an infinite number of
homoclinic states of different lengths biasymptotic to u0 is
still present, but away from rM3 only a finite number of such
states remains #23$. Bifurcation diagrams describing these
homoclinic states for &=0,' are shown in Fig. 19. The so-
lutions on the &=' branch, shown in Fig. 19!b", include a
small region of width of order Lc where the solution profile
dips back down to u'0 in order that x=0 remains a mini-
mum.

Between v'0.688 and v'0.735 there is a transition re-
gion as the homoclinic snaking in the pinning region around
rM1 !Fig. 8" shifts to straddle the new heteroclinic connection
at rM3 !Fig. 19". This intermediate region !Fig. 20" is com-
plicated by the existence of yet another new Maxwell point,
labeled rM4, between u0 and the unstable section of the pat-
terned branch near r+. This Maxwell point is close to rM3
because near r+ the energies of the flat and patterned states
are very similar. The profiles along both the &=0 and
&=' branches contain domains within which u!x" resembles
three different states: u0, the !unstable" solution from the
upper segment of the patterned branch, and the !stable" so-
lution from the middle segment. As one proceeds up each
branch the fronts between the flat and unstable pattern move
apart filling most of the domain with the unstable pattern.
However, the fronts between the two structured states remain
fixed leaving a small patch of the stable pattern near the
origin. It is this “double” structure that is responsible for the
complex structure of the corresponding snakes, cf. Ref. #24$.

FIG. 17. !Color online" Sample profiles u!!x" at the saddle
nodes indicated in Fig. 16. !a"–!c" lie on the &=0 branch while
!d"–!f" lie on the &=' branch.

FIG. 18. The pinning region !shaded" of solutions heteroclinic
to the trivial u0 state. This region, located between rP1 and rP2, is
created in a codimension-2 bifurcation at !r ,v"&!0,0.2107".
Dashed lines correspond to the Maxwell points rM1 , rM3, and rM4.
The thick solid line corresponds to homoclinic snaking of the type
shown in Fig. 19. The dash-dotted line marks the location of the
heteroclinic orbits !Maxwell points" as predicted by the normal
form.

LOCALIZED STATES IN THE GENERALIZED SWIFT-¼ PHYSICAL REVIEW E 73, 056211 !2006"

056211-11

Burke and Knobloch, PRE 2006

For ε� 1, the pinning range ∼ ε−4 exp(−π/ε2). (Kozyreff Chapman PRL

2006, Physica D 2009)
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snaking 1D vs 2D

∂u

∂t
= ru+ νu2 − u3 −

(
1 +∇2

)2
u.

In 2D, subcritical bifurcation diagram for extended hexagon pattern:

set r = −ε2, u(x, y, t) = −εf(x, y),
ν = 3E:

(
1 +∇2

)2
f + ε2f + 3Eεf2 + ε2f3 = 0.
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snaking 1D vs 2D

The snaking diagram for localized hexagons is more complicated.

Figure 3: Color plots of two stationary fronts are shown for the planar Swift–Hohenberg equation (1.1):

both fronts connect hexagons to the trivial state along the horizontal x-direction, are periodic in the vertical

y-direction, and differ in the way in which their interfaces are aligned in a fixed hexagonal lattice.

3
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Figure 4: Part of the bifurcation curve corresponding to localized hexagon patches of (1.1) with ν = 1.6 is

shown. Color plots of representative solutions are shown in panels 1-4. The entire snaking curve and color

plots of the associated stationary solutions can be viewed in this [movie].

Proposition 1 (Conserved quantity for the 2D Swift–Hohenberg equation) If u(x, y) is a smooth

solution of the planar Swift–Hohenberg equation (1.1) which is spatially periodic with period � in the y-

variable, then the quantity

H(u) =

� �

0

�
uxxxux − u2

xx

2
+ u2

x +
(1 + µ)u2

2
− νu3

3
+

u4

4
− u2

xy − u2
y +

u2
yy

2

�
dy (1.6)

does not depend on x.

As in the 1D case, the first integral H provides a selection principle for hexagons: if we find a planar front

that connects hexagons to the trivial state and is periodic in the transverse direction, see Figure 3, then

H must vanish when evaluated along a single hexagon in the far field of the front. This selection principle

together with the local energy E will allow us to compute Maxwell points for the planar Swift–Hohenberg

equation (1.1). Our second result shows that, for each fixed ν > 0, and all sufficiently small µ > 0, there is

a unique small-amplitude hexagon pattern along which H vanishes. We refer to §3.3 for a stronger result.

Proposition 2 (Existence of hexagons with H = 0) For each fixed ν > 0, there is a number µ0 > 0 so

that the planar Swift–Hohenberg equation (1.1) admits a unique small-amplitude hexagon solution u∗(µ) that

satisfies H(u∗(µ)) = 0 for each µ ∈ (0, µ0). These hexagons satisfy u∗(0) = 0, have wavenumber κ∗(µ) with

κ∗(0) = 1, and depend smoothly on µ.

Our third result is a comprehensive numerical study of localized hexagon patches in the planar Swift–

Hohenberg equation (1.1). Instead of giving a detailed list of these results, which can be found in §5, we

4

Lloyd et al SIADS 2008

The width of the snaking oscillations depends on the growth direction.
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snaking 1D vs 2D

How does the width of the pinning region scale for small ε?
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Figure 34: Comparison of the snaking region of localized hexagon patches [blue] and the snaking regions

of planar �10� hexagon pulses [red] in panel (a) and �11� hexagon pulses [red] in panel (b). The hexagon

Maxwell curve is also shown [dashed grey].

(a) (b)

Figure 35: Panels (a) and (b) contain color plots of localized hexagon patches for (µ, ν2) = (0.7, 6.2355) and

(µ, ν2) = (0.0738, 0.8612), respectively.

0.22 0.26 0.3 0.34µ

�u�2
2

(a) (b)

Figure 36: Panel (a) contains the bifurcation diagram of localized rhomboid patches for ν = 1.6, while the

rhomboidal structure itself is shown as a color plot in panel (b) for µ = 0.2817. The vertical lines are the

asymptotes of the fold bifurcations of �10� and �11� hexagon pulses shown in Figure 26. The computations

were carried out on a square domain with dimensions 80 × 80.

37

Lloyd et al.

SIADS 2008
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Calculation in 1D

Study

(
1 +

d2

dx2

)2

f + ε4f + 3Eεf2 + ε2f3 = 0, ε� 1.

Look for front solutions f ∼ A(X)
(
ei(x+ϕ) + c.c.

)
+ εf1 + ε2f2 + . . .,

where X = ε2x, ϕ arbitrary phase.
Define x̃ = x+ ϕ.

Standard multiple scale analysis yields a Ginzburg-Landau eq., which can
be put in the form

d2A

dX2
+
∂V (A)

∂A
= 0.
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Calculation in 1D

This allows one to identify the Maxwell value EM (ε):

d2A

dX2
+
∂V (A)

∂A
= 0.

At E = EM , front solution

|A| ∝ 1√
1 + e−X

.
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Calculation in 1D

Standard theory predicts that, away from EM , say with E = EM + δE,
the front solution ceases to exist:

We have f ∼ f0 + εf1 + . . .+ δf
with

δf ∝ ε−2δE eX
(
eix̃ + c.c.

)

as X →∞.

The theory, however, misses some exponentially small terms, ”RN (ϕ)”,
which also appear in δf and which can counterbalance the divergence
above. The balance between the two yields the finite pinning range

δE = δE(ϕ), 0 ≤ ϕ < 2π.
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Calculation in 1D

In the multi-scale approach, one assumes
f ∼ f0(x,X) + εf1(x,X) + . . . εnfn(x,X), X = ε2x. This makes the
perturbation problem singular: a small parameter multiplies the highest
derivative in X

(
1 +

∂2

∂x2

)2

f →
(

1 +

(
∂

∂x
+ ε2

∂

∂X

)2
)2

f

= ε8
∂4f

∂X4
+ 4ε6

∂4f

∂x∂X3
+ 6ε4

∂4f

∂x2∂X2
+ 4ε2

∂4f

∂x3X
+

(
1 +

∂2

∂x2

)2

f.

As a result, when solving at O(εn), one gets

fn ∝
∂fn−2

∂X
,
∂2fn−4

∂X2
,
∂3fn−6

∂X3
,
∂4fn−8

∂X4
.
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Calculation in 1D

Now notice that f0 ∝ (eix̃ + c.c.)/
√

1 + e−X has singularities in the
complex plane: X0 = ±iπ. Hence,

f0 ∝ (X − iπ)
−1/2 and, at higher order, fn ∝ (X − iπ)

−n/2−1/2
.

Besides, since the equation for fn contains ∂fn−2/∂X, differentiation
yields that fn ∝ nfn−2, n

2fn−4, . . . and every second order, the terms in
the asymptotic expansion get bigger by a factor n. Hence the series
diverges.

N n
0.2

0.4

0.6

0.8

1

1.2

Εnfn

One should therefore truncate
the expansion and compute
the remainder RN (ϕ).
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Calculation in 1D

Let

f =

N−1∑

n=0

εnfn(x,X) +RN .

The equation for RN is essentially the linearized S-H equation +
inhomogeneous terms coming from the truncation.

(
1 + ∂2

x

)2
RN+4ε2

(
1 + ∂2

x

)
RNxX+2ε4

(
1 + 3∂2

x

)
RNXX+4ε6RNxXXX

+ ε8RNXXXX + 3ε2(f2
0 + · · · )RN + ε4RN + 6εEM (f0 + εf1 + · · · )RN

∼ εN
(
1 + ∂2

x

)2
fN + εN+2(−6fN−2xxXX − 4fN−4xXXX − fN−6XXXX

−2fN−2XX )+εN+4 (−4fN−2xXXX − fN−4XXXX )+εN+6 (−fN−2XXXX )+· · ·
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Calculation in 1D

For large n, one finds that

εnfn ∼ εn
einπ/4Γ(n/2 + α)

(iπ −X)n/2+α

(
F0(X) + F2(X)e2ix̃

)
+c.c. (...plus other terms)

when n is odd, where α is determined by an analysis in the vicinity of
X = iπ.

Fourier components at nth order.

The spectrum of the
late-terms is thus essentially
non resonant but...
at some places, the
denominator above oscillates
violently.
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Calculation in 1D

1) Stirling formula:

Γ(n/2 + α) ∼
√

2πn(n/2)n/2+αe−n/2

2) Just below the singularity, let
X = iπ − ir + ξ, with ξ � r.
Then

iπ−X = −ir(1 + iξ/r) ∼ −ireiξ/r+ 1
2 (ξ/r)2 .

Thus

εn
einπ/4Γ(n/2 + α)

(iπ −X)n/2+α
∼
√

2πn
( n

2r

)α(ε2n
2r

)n/2
e−niξ/(2r)−n(ξ/2r)2e−n.

Optimal truncation: n ∼ 2r/ε2.

→ εnfn ∼
√

2πn
( n

2r

)α
e−π/ε

2 (
F0(X)e−ix̃ + F2(X)eix̃

)
eiϕe−ξ

2/2rε2 .
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Calculation in 1D

We found that, in the region of the complex plane described by
X = iπ − ir + ξ, ξ � r,

εnfn ∼
√

2πn
( n

2r

)α
e−π/ε

2 (
F0(X)e−ix̃ + F2(X)eix̃

)
eiϕe−ξ

2/2rε2 +c.c..

Hence, over a distance ξ = O(
√

2rε), the late terms of the asymptotic
series

∑
εnfn become resonant.
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Calculation in 1D

This is what generate a remainder

RN (ϕ) ∝ e−π/ε2ε−6 cos(ϕ+ . . .)eX(eix̃ + c.c.), as X →∞,

eventually yielding

δE ∝ ε−4e−π/ε
2

cos(ϕ+ . . .).

(full story in Physica D 2009)
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1D lessons

1 The physics of pinning is ”beyond all orders”.

2 One must look at singularities of the front.

3 The two nearest singularities, ±iπ, are joined by a Stokes line.

4 This is where the slow and fast scale interact and produce RN (ϕ).

5 RN (ϕ) compensates deviation δE from Maxwell to give finite
pinning range.

6 RN (ϕ) also allows the pattern to accommodate distant boundary
conditions in large but finite domains (not shown here, see PRL
2009.)

7 Not limited to SH. See numerous hydrodynamical studies and a
recent study of the Lugiato-Lefever model in optics (to appear in
PRA.)
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Hexagons

Let us now consider hexagonal patterns. We thus study

(
1 +∇2

)2
f + ε2f + 3Eεf2 + ε2f3 = 0.

An extended pattern is given by f ∼∑3
i=1Aie

iki·x̃ + c.c. +O(ε), where
x̃ = x− ϕx̂ and ϕ is an arbitrary phase.
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Hexagons - coupled Ginzburg-Landau’s

Consider a straight front perpendicular to the x-direction. With the slow
scale X = εx, the multiple-scale analysis yields E = εE1 and

4k2
1,x

d2A1

dX2
= A1

(
1 + 3A2

1 + 6A2
2 + 6A2

3

)
+ 6E1A2A3,

4k2
2,x

d2A2

dX2
= A2

(
1 + 3A2

2 + 6A2
3 + 6A2

1

)
+ 6E1A3A1,

4k2
3,x

d2A3

dX2
= A3

(
1 + 3A2

3 + 6A2
1 + 6A2

2

)
+ 6E1A1A2.

where we used the fact that Ai can be taken real and positive for
hexagons.

No front solution between a hexagonal pattern and an homogenous
solution is documented.
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Hexagons - a front solution

One case is doable: k3x = 0, i.e. the front is aligned with one of the ki.
This corresponds to one of the principal growth direction in Lloyd et al.
2008 paper. By symmetry, A1 = A2. We have

3
d2A1

dX2
= A1

(
1 + 9A2

1 + 6A2
3

)
+ 6E1A1A3,

0 = A3

(
1 + 3A2

3 + 12A2
1

)
+ 6E1A

2
1.

k1k2

k3

x

By eliminating A3 from the second equation, we get

d2A1

dX2
+
∂V (A1, E1)

∂A1
= 0,

where V is nasty but OK. The
Maxwell point is E1 = −

√
15/8.
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Hexagons - a front solution

A front solution is then obtained implicitly by

X(A1) = X(S)+

∫ A1

S

1√
−2V (A′)

dA′.
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Hexagons - a front solution

To locate the singularity, let A1 tend to infinity through real values. A
complex jump takes place at A∗ =

√
2/15, where V vanishes:

X0 = lim
ε→0

X(S)

+

∫ A∗−ε

S

dA1√
−2V (A1)

+
iπ√

−V ′′(A∗)

−
∫ ∞

A∗+ε

dA1√
−2V (A1)

.

A*A*- A*+ s

A1- plane:

X(S)

X0
+i / -V''(A*)

X-plane:
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Hexagons - a front solution

Hence

Im(X0) =
±π√
−V ′′(A∗)

= ±
√

57

26
π (k3x = 0)

only depends on the quadratic part of V near the constant amplitude
A∗ =

√
2/15. In other words,

Im(X0) =
±π
λ
,

where λ is an eigenvalue of the linearized dynamics around A∗:
A1 = A∗ + δA1e

±λX .

This observation can be applied to other front orientations, for which an
effective 1D potential cannot be found. In particular, for a front normal
to k3, we find in this way that

Im(X0) =
±π
λ

=
±π
√

40√
67−

√
2409

, (k3x = 1).
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Hexagons - near the singularity

As X → X0, we may assume that

A1 ∼
B0,1,0

X −X0
, A2 ∼

B0,0,−1

X −X0
, A3 ∼

B0,−1,−1

X −X0
,

where Bn,m1,m2
refers to nth order of the asymptotic expansion and to

wave vector q = m1k1 +m2k2. Substituting into the Ginzburg Landau
equations, we find that

B0,1,0 = B0,0,1 =
√

2/3, B0,−1,−1 = 0.
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Hexagons - near the singularity

We may pursue the investigation to higher orders. With
Bn,m1,m2

= Bn,q, q =
√
q · q,

(
1− q2

)2
Bn,q−4inqx

(
1− q2

)
Bn−1,q+2n (n− 1)

(
1− q2 − 2q2

x

)
Bn−2,q

− 4in (n− 1) (n− 2) qxBn−3,q + n (n− 1) (n− 2) (n− 3)Bn−4,q

+

n−2∑

j=0

n−2−j∑

m=0

∑

q′

∑

q′′

Bj,q′Bm,q′′Bn−2−j−m,q−q′−q′′ = 0.

At every order, new wave vectors are excited by the nonlinearity. The
recurrence relation invites us to look for solutions of the form

Bn,q ∼ κnΓ(n+ αq)bq

for large n. Through the offset αq, some wave vectors dominates the
others.

κ is an eigenvalue of the recurrence relation.
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The idea behind all this

From what precedes, we expect that, for large n,

εnfn ∼ const× εnκnΓ(n+ α)

(X −X0)
n+α e

iq·x̃,

for some dominating wave vector q, with x̃ = x− ϕx̂. Following the
same reasoning as in 1D, the factorial over power will turns this into

eiq·x̃−ix/|κ|+iX0/(ε|κ|)− 1
2 ξ

2/(rε|κ|).

Hence, the dominating wave vector q can be brought onto some vectors
of the basic triad ±ki, i = 1, 2, 3 if the right eigenvalue κ is excited:

q− 1

κ
x̂ = ±ki
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The idea behind all this

When k3x = 0, one expected
eigenvalue is −i/

√
3 and the

corresponding set of
dominating wave vectors are
2k1 − k2, k1 − 2k2, k1,
−k2, 2k1, and −2k2.

The complementary
singularity X̄0 will ”activate”
the wave vectors 2k2 − k1,
k2 − 2k1, k2, −k1, 2k2, and
−2k1
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Outer analysis, with k3x = 0

Indeed, we found that, among others, fn contains the terms

Γ(n+ 4)

(X −X0)
n+1

( −i√
3

)n
B
(
ei(2k1−k2)·x̃ + eik1·x̃ + e−ik2·x̃ + ei(k1−2k2)·x̃

)

for n� 1 as X → X0.
Away from X = X0, we are able to match this with the outer expansion

Γ(n+ 4)

(X −X0)
n+4

( −i√
3

)n [
F (X)

(
ei(2k1−k2)·x̃ + eik1·x̃ + e−ik2·x̃ + ei(k1−2k2)·x̃

)

+φ(X)
(
e2ik1·x̃ + e−2ik2·x̃)] ,

where F (X) and φ(X) satisfies the linearized amplitude equations:

d2F

dX2
+
∂2V (A1, EM )

∂A2
1

F (X) = 0, (F (X) ∼ eλX , X →∞.)
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Outer analysis, with k3x = 0

As in the 1D problem, the late terms of the multiple-scale expansion will
thus switch on an exponentially small hexagon amplitude in the
remainder RN (ϕ).

R
(S)
N ∼ −36iπε−4ei(X0/ε−ϕ)/|κ| [F (X)

(
eik1·x̃ + e−ik1·x̃ + eik2·x̃ + e−ik2·x̃)

+φ(X)
(
eik3·x̃ + e−ik3·x̃)]+ c.c.

This amplitude grows with X and can compensate for a deviation δE
from the Maxwell point E = εEM . At the end of the day, we obtain

δE =
36πΛε−3e−

Im(X0)

ε|κ|

0.0164 . . .
sin

(
ϕ− Re(X0)/ε

|κ| − χ
)
.
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Discussion

In

δE ∝ ε−3e−
Im(X0)

ε|κ| sin

(
ϕ− Re(X0)/ε

|κ| − χ
)
,

κ = −i/
√

3 is the eigenvalue of the recurrence relation, which is
associated to a shift in the lattice of wave vectors in the x-direction.
More precisely, |κ|−1 = ∆k. On the other hand, Im(X0) was found to
correspond to the rate at which the front tends to the constant
amplitude

√
2/15. Hence, the exponential factor above can be written as

exp

(−π∆k

ελ

)
.

It is thus controlled by the ratio of the actual periodic scale and
relaxation scale in the direction normal to the front.
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Discussion

By the same token, if we consider a front oriented so that k3x = 1, we
expect κ = −i
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Discussion

The same formula is expected for the pinning range as with k3x = 0 but
this time with X0 and κ corresponding to different direction. In general,
we expect the pinning range to scale as

ε−3 exp

(−π∆k(θ)

ελ(θ)

)
.

k1k2

k3

x

In particular, ∆k(0)
λ(0) < ∆k(π/2)

λ(π/2) , and therefore the pinning range and

snaking is wider when θ = 0 (as in Lloyd 2008) . Due to ∆k(θ), the
pinning range is expected to be much smaller for directions different from
θ = 0, π/2 or equivalent.
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