Learning Functions of Few Arbitrary Linear Parameters in High Dimensions

Jan Vybíral
Austrian Academy of Sciences RICAM, Linz, Austria

Banff, Canada, March 2011
joint work with Massimo Fornasier and Karin Schnass (RICAM)
supported by START-award of FWF, Austria:
"Sparse Approximation and Optimization in High Dimensions"

Outline

- Introduction
- Approximation of functions of many variables
- Non-tractability results
- Special structure, finite-order weights, ridge functions
- State of the art

Outline

- Introduction
- Approximation of functions of many variables
- Non-tractability results
- Special structure, finite-order weights, ridge functions
- State of the art
- Algorithm
- Numerical evaluation of directional derivatives
- Points and directions chosen at random
- Active coordinates (...concentration of measure ...)
- $k=1$ (\ldots compressed sensing ...)
- General case (...stability of SVD ...)

Introduction

Let $f: \Omega \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function of many $(d \gg 1)$ variables
We want to approximate f uniformly using only (a small number of) function values of f

Introduction

Let $f: \Omega \subset \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function of many $(d \gg 1)$ variables
We want to approximate f uniformly using only (a small number of) function values of f

The problem is known to be intractable (Novak \& Woźniakowski, 2009) even for C^{∞} functions

The number of sampling points must grow exponentially in $d \ldots$

Let

$$
\mathcal{F}_{d}:=\left\{f:[0,1]^{d} \rightarrow \mathbb{R},\left\|D^{\alpha} f\right\|_{\infty} \leq 1, \alpha \in \mathbb{N}_{0}^{d}\right\}
$$

Let

$$
\mathcal{F}_{d}:=\left\{f:[0,1]^{d} \rightarrow \mathbb{R},\left\|D^{\alpha} f\right\|_{\infty} \leq 1, \alpha \in \mathbb{N}_{0}^{d}\right\}
$$

Sampling operator $S_{n}=\phi \circ N$ Information map $N: \mathcal{F}_{d} \rightarrow \mathbb{R}^{n}, N(f)=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right) \in \mathbb{R}^{n}$ Continuous recovery map $\phi: \mathbb{R}^{n} \rightarrow L_{\infty}\left([0,1]^{d}\right)$

Let

$$
\mathcal{F}_{d}:=\left\{f:[0,1]^{d} \rightarrow \mathbb{R},\left\|D^{\alpha} f\right\|_{\infty} \leq 1, \alpha \in \mathbb{N}_{0}^{d}\right\}
$$

Sampling operator $S_{n}=\phi \circ N$
Information map $N: \mathcal{F}_{d} \rightarrow \mathbb{R}^{n}, N(f)=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right) \in \mathbb{R}^{n}$
Continuous recovery map $\phi: \mathbb{R}^{n} \rightarrow L_{\infty}\left([0,1]^{d}\right)$
Approximation error

$$
e\left(S_{n}\right):=\sup _{f \in \mathcal{F}_{d}}\left\|f-S_{n}(f)\right\|_{\infty}
$$

Sampling numbers

$$
e(n, d):=\inf _{S_{n}} e\left(S_{n}\right)
$$

Let

$$
\mathcal{F}_{d}:=\left\{f:[0,1]^{d} \rightarrow \mathbb{R},\left\|D^{\alpha} f\right\|_{\infty} \leq 1, \alpha \in \mathbb{N}_{0}^{d}\right\}
$$

Sampling operator $S_{n}=\phi \circ N$ Information map $N: \mathcal{F}_{d} \rightarrow \mathbb{R}^{n}, N(f)=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right) \in \mathbb{R}^{n}$
Continuous recovery map $\phi: \mathbb{R}^{n} \rightarrow L_{\infty}\left([0,1]^{d}\right)$ Approximation error

$$
e\left(S_{n}\right):=\sup _{f \in \mathcal{F}_{d}}\left\|f-S_{n}(f)\right\|_{\infty}
$$

Sampling numbers

$$
e(n, d):=\inf _{S_{n}} e\left(S_{n}\right)
$$

Novak, Woźniakowski (2009): $e(n, d)=1$ for all $n \leq 2^{\lfloor d / 2\rfloor}-1$

Conclusion: High smoothness does not help!

Conclusion: High smoothness does not help!

Way out: Inner structure of functions like

- finite order Sobolev spaces
- partially separable functions
- k-ridge functions

$$
f(x)=g(A x), \quad g: \mathbb{R}^{k} \rightarrow \mathbb{R}, \quad A \in \mathbb{R}^{k \times d}, \quad k \ll d
$$

Special cases:
A is a projection, i.e.

$$
f(x)=f\left(x_{1}, \ldots, x_{d}\right)=g\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)
$$

The active coordinates i_{1}, \ldots, i_{k} are unknown

Special cases:
A is a projection, i.e.

$$
f(x)=f\left(x_{1}, \ldots, x_{d}\right)=g\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)
$$

The active coordinates i_{1}, \ldots, i_{k} are unknown
$k=1$

$$
f(x)=g(a \cdot x), \quad a \in \mathbb{R}^{d}
$$

Known results:

Unknown coordinates:
R. DeVore, G. Petrova, P. Wojtaszczyk: Approximation of functions of few variables in high dimensions
P. Wojtaszczyk: Complexity of Approximation of Functions of Few

Variables in High Dimensions
Deterministic algorithms, $C(k)(L+1)^{k} \log d$ points (adaptively or non-adaptively chosen), uniform approximation of the order $1 / L$

Known results:

Unknown coordinates:

R. DeVore, G. Petrova, P. Wojtaszczyk: Approximation of functions of few variables in high dimensions
P. Wojtaszczyk: Complexity of Approximation of Functions of Few Variables in High Dimensions
Deterministic algorithms, $C(k)(L+1)^{k} \log d$ points (adaptively or non-adaptively chosen), uniform approximation of the order $1 / L$ $\mathbf{k}=\mathbf{1}$:
A. Cohen, I. Daubechies, R. DeVore, G. Kerkyacharian, D. Picard, Capturing ridge functions in high dimensions from point queries $g \in C^{s}([0,1]), 1<s,\|g\|_{C^{s}} \leq M_{0},\|a\|_{\ell_{q}^{d}} \leq M_{1}$

$$
\|f-\hat{f}\|_{C(\Omega)} \leq C M_{0}\left\{L^{-s}+M_{1}\left(\frac{1+\log (d / L)}{L}\right)^{1 / q-1}\right\}
$$

using $3 L+2$ sampling points

Active coordinates

We assume, that

$$
A=\left(\begin{array}{c}
e_{i_{1}}^{T} \\
\vdots \\
e_{i_{k}}^{T}
\end{array}\right),
$$

i.e.

$$
f(x)=f\left(x_{1}, \ldots, x_{d}\right)=g\left(x_{i_{1}}, \ldots, x_{i_{k}}\right),
$$

where $f:[0,1]^{d} \rightarrow \mathbb{R}$ and $g:[0,1]^{k} \rightarrow \mathbb{R}$

We want to identify the active coordinates i_{1}, \ldots, i_{k}. Then one can apply any usual k-dimensional approximation method...

Our algorithm chooses the sampling points at random, due to the concentration of measure effects, we get the right result with overwhelming probability.

We rely on numerical approximation of $\frac{\partial f}{\partial \varphi}$

$$
\begin{align*}
\nabla g(A x)^{T} A \varphi & =\frac{\partial f}{\partial \varphi}(x) \tag{*}\\
& =\frac{f(x+\epsilon \varphi)-f(x)}{\epsilon}-\frac{\epsilon}{2}\left[\varphi^{T} \nabla^{2} f(\zeta) \varphi\right]
\end{align*}
$$

We rely on numerical approximation of $\frac{\partial f}{\partial \varphi}$

$$
\begin{align*}
\nabla g(A x)^{T} A \varphi & =\frac{\partial f}{\partial \varphi}(x) \tag{*}\\
& =\frac{f(x+\epsilon \varphi)-f(x)}{\epsilon}-\frac{\epsilon}{2}\left[\varphi^{T} \nabla^{2} f(\zeta) \varphi\right]
\end{align*}
$$

$\mathcal{X}=\left\{x^{j} \in[0,1]^{d}: j=1, \ldots, m_{X}\right\}$ drawn uniformly at random with respect to the Lebesgue measure $\Phi=\left\{\varphi^{j} \in \mathbb{R}^{d}, j=1, \ldots, m_{\Phi}\right\}$, where

$$
\varphi_{\ell}^{j}=\left\{\begin{array}{lll}
1 / \sqrt{m_{\Phi}} & \text { with prob. } & 1 / 2 \\
-1 / \sqrt{m_{\Phi}} & \text { with prob. } & 1 / 2
\end{array}\right.
$$

for every $j \in\left\{1, \ldots, m_{\Phi}\right\}$ and every $\ell \in\{1, \ldots, d\}$
$\Phi \ldots m_{\Phi} \times d$ matrix, $X \ldots d \times m_{X}$ matrix with i-th row

$$
X^{i}:=\left(\frac{\partial g}{\partial z_{i}}\left(A x^{1}\right), \ldots, \frac{\partial g}{\partial z_{i}}\left(A x^{m_{X}}\right)\right)
$$

for $i \in I$ and all other rows equal to zero
$\Phi \ldots m_{\Phi} \times d$ matrix, $X \ldots d \times m_{X}$ matrix with i-th row

$$
X^{i}:=\left(\frac{\partial g}{\partial z_{i}}\left(A x^{1}\right), \ldots, \frac{\partial g}{\partial z_{i}}\left(A x^{m_{X}}\right)\right)
$$

for $i \in I$ and all other rows equal to zero The $m_{X} \times m_{\Phi}$ instances of $(*)$ in matrix notation as

$$
\Phi X=Y+\mathcal{E} \quad(* *)
$$

Y and \mathcal{E} are $m_{\Phi} \times m_{X}$ matrices defined by

$$
\begin{aligned}
& y_{i j}=\frac{f\left(x^{j}+\epsilon \varphi^{i}\right)-f\left(x^{j}\right)}{\epsilon} \\
& \varepsilon_{i j}=-\frac{\epsilon}{2}\left[\left(\varphi^{i}\right)^{T} \nabla^{2} f\left(\zeta_{i j}\right) \varphi^{i}\right]
\end{aligned}
$$

The algorithm is based on the identity

$$
\Phi^{T} \Phi X=\Phi^{T} Y+\Phi^{T} \mathcal{E}
$$

The algorithm is based on the identity

$$
\Phi^{T} \Phi X=\Phi^{T} Y+\Phi^{T} \mathcal{E}
$$

In expectation:
$\phi^{T} \Phi \approx I_{d}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$
$\Phi^{\top} \Phi X \approx X$ and
$\Phi^{T} \mathcal{E}$ is small $\Longrightarrow \Phi^{T} Y \approx X$

The algorithm is based on the identity

$$
\Phi^{T} \Phi X=\Phi^{T} Y+\Phi^{T} \mathcal{E}
$$

In expectation:
$\Phi^{T} \Phi \approx I_{d}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$
$\Phi^{\top} \Phi X \approx X$ and
$\Phi^{\top} \mathcal{E}$ is small $\Longrightarrow \Phi^{T} Y \approx X$

We select the k largest rows of $\Phi^{T} Y$ and estimate the probability, that their indices coincide with the indices of the non-zero rows of X.

Theorem

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function of k active coordinates that is defined and twice continuously differentiable on a small neighbourhood of $[0,1]^{d}$. For $L \leq d$, a positive real number, the randomized algorithm described above recovers the k unknown active coordinates of f with probability at least $1-6 \exp (-L)$ using only

$$
\mathcal{O}(k(L+\log k)(L+\log d))
$$

samples of f.
The constants involved in the \mathcal{O} notation depend on smoothness properties of g, namely on

$$
\frac{\max _{j=1, \ldots, k}\left\|\partial_{i_{j}} g\right\|_{\infty}}{\min _{j=1, \ldots, k}\left\|\partial_{i_{j}} g\right\|_{1}}
$$

$d=1000$

$$
\begin{aligned}
& \max \left(1-5 \sqrt{\left(x_{3}-1 / 2\right)^{2}+\left(x_{4}-1 / 2\right)^{2}}, 0\right)^{3} \\
& \sin \left(6 \pi \sum_{i=21}^{40} x_{i}\right)+\sum_{i=21}^{40} \sin \left(6 \pi x_{i}\right)+5\left(x_{i}-1 / 2\right)^{2}
\end{aligned}
$$

$$
k=1
$$

Let $f(x)=g(a \cdot x), f: B_{\mathbb{R}^{d}} \rightarrow \mathbb{R}$, where $a \in \mathbb{R}^{d}$
$\|a\|_{2}=1$ and $\|a\|_{q} \leq C_{1}, 0<q \leq 1, \max _{0 \leq \alpha \leq 2}\left\|D^{\alpha} g\right\|_{\infty} \leq C_{2}$

$$
\alpha=\int_{\mathbb{S}^{d-1}}\|\nabla f(x)\|_{\ell_{2}^{d}}^{2} d \mu_{\mathbb{S}^{d}-1}(x)=\int_{\mathbb{S}^{d}-1}\left|g^{\prime}(a \cdot x)\right|^{2} d \mu_{\mathbb{S}^{d}-1}(x)>0
$$

$$
k=1
$$

$$
\begin{aligned}
& \text { Let } f(x)=g(a \cdot x), f: B_{\mathbb{R}^{d}} \rightarrow \mathbb{R}, \text { where } a \in \mathbb{R}^{d} \\
& \|a\|_{2}=1 \text { and }\|a\|_{q} \leq C_{1}, 0<q \leq 1, \max _{0 \leq \alpha \leq 2}\left\|D^{\alpha} g\right\|_{\infty} \leq C_{2} \\
& \alpha=\int_{\mathbb{S}^{d-1}}\|\nabla f(x)\|_{\ell_{2}^{d}}^{2} d \mu_{\mathbb{S}^{d-1}}(x)=\int_{\mathbb{S}^{d-1}}\left|g^{\prime}(a \cdot x)\right|^{2} d \mu_{\mathbb{S}^{d-1}}(x)>0
\end{aligned}
$$

We consider again the Taylor expansion (*)
We choose the points $\mathcal{X}=\left\{x^{j} \in[0,1]^{d}: j=1, \ldots, m_{\mathcal{X}}\right\}$ generated at random on \mathbb{S}^{d-1} with respect to $\mu_{\mathbb{S}^{d-1}}$

The matrix Φ is generated as before and we obtain $\left({ }^{* *}\right)$ again.
$X=a^{T} \mathcal{G}^{T}$, where $\mathcal{G}=\left(g^{\prime}\left(a \cdot x^{1}\right), \ldots, g^{\prime}\left(a \cdot x^{m_{\mathcal{X}}}\right)\right)^{T}$
X and ΦX are rank one matrices

$$
X=a^{T} \mathcal{G}^{T}, \text { where } \mathcal{G}=\left(g^{\prime}\left(a \cdot x^{1}\right), \ldots, g^{\prime}\left(a \cdot x^{m_{\mathcal{X}}}\right)\right)^{T}
$$

X and ΦX are rank one matrices
Hoeffding's inequality:
$\exists j \in\left\{1, \ldots, m_{\mathcal{X}}\right\}:\left|g^{\prime}\left(a \cdot x^{j}\right)\right| \geq \sqrt{\alpha(1-s)}, 0<s<1$ with high probability (depending on $m_{\mathcal{X}}, s, \alpha$ and C_{2}). X_{j} - the j-th column of X - is equal to $g^{\prime}\left(a \cdot x^{j}\right) a^{T}$
$X=a^{T} \mathcal{G}^{T}$, where $\mathcal{G}=\left(g^{\prime}\left(a \cdot x^{1}\right), \ldots, g^{\prime}\left(a \cdot x^{m_{\mathcal{X}}}\right)\right)^{T}$
X and ΦX are rank one matrices
Hoeffding's inequality:
$\exists j \in\left\{1, \ldots, m_{\mathcal{X}}\right\}:\left|g^{\prime}\left(a \cdot x^{j}\right)\right| \geq \sqrt{\alpha(1-s)}, 0<s<1$
with high probability (depending on $m_{\mathcal{X}}, s, \alpha$ and C_{2}). X_{j} - the j-th column of X - is equal to $g^{\prime}\left(a \cdot x^{j}\right) a^{T}$

Due to the construction of Φ, compressed sensing gives the approximation \hat{X}_{j}

$$
\left\|X_{j}-\hat{X}_{j}\right\|_{\ell_{2}^{d}} \lesssim\left(\frac{m_{\Phi}}{\log \left(d / m_{\Phi}\right)+1}\right)^{-\left(\frac{1}{q}-\frac{1}{2}\right)}+\frac{\epsilon}{\sqrt{m_{\Phi}}}
$$

\ldots transfers into the estimate of $\|a-\hat{a}\|_{\ell_{2}^{d}}$ for $\hat{a}=\hat{X}_{j} /\left\|\hat{X}_{j}\right\|_{\ell_{2}^{d}}$, i.e. \hat{a} is a good approximation of a.

Theorem
Let us fix $0<s<1,0<q \leq 1, m_{\mathcal{X}} \geq 1$ and $1 \leq m_{\Phi} \leq d$. Under the assumptions and notations fixed above, with high probability there exists a vector \hat{X}_{j} obtained by ℓ_{1} minimization, such that for $\hat{a}=\hat{X}_{j} /\left\|\hat{X}_{j}\right\|_{\ell_{2}^{d}}$ the function

$$
\begin{equation*}
\hat{f}(x)=\hat{g}(\hat{a} \cdot x) \tag{1}
\end{equation*}
$$

defined by means of

$$
\begin{equation*}
\hat{g}(y):=f\left(\hat{a}^{T} y\right), \quad y \in(-(1+\bar{\epsilon}), 1+\bar{\epsilon}) \tag{2}
\end{equation*}
$$

has the approximation property

$$
\begin{equation*}
\|f-\hat{f}\|_{\infty} \leq 2 C_{2}(1+\bar{\epsilon}) \frac{\hat{\varepsilon}}{\sqrt{\alpha(1-s)}-\hat{\varepsilon}} \tag{3}
\end{equation*}
$$

where $\hat{\varepsilon}$ is the right hand side of (\%).

Key role is played by

$$
\alpha=\int_{\mathbb{S}^{d-1}}\left|g^{\prime}(a \cdot x)\right|^{2} d \mu_{\mathbb{S}^{d-1}}(x)
$$

Due to symmetry ... independent on a
Push-forward measure μ_{1} on $[-1,1]$

$$
\begin{aligned}
\alpha & =\int_{-1}^{1}\left|g^{\prime}(y)\right|^{2} d \mu_{1}(y) \\
& =\frac{\Gamma(d / 2)}{\pi^{1 / 2} \Gamma((d-1) / 2)} \int_{-1}^{1}\left|g^{\prime}(y)\right|^{2}\left(1-y^{2}\right)^{\frac{d-3}{2}} d y
\end{aligned}
$$

μ_{1} concentrates around zero exponentially fast as $d \rightarrow \infty$

Proposition

Let us fix $M \in \mathbb{N}$ and assume that $g:[-1,1] \rightarrow \mathbb{R}$ is C^{M+2}-differentiable in an open neighbourhood \mathcal{U} of 0 and $\frac{d^{\ell}}{d x^{\ell}} g(0)=0$ for $\ell=1, \ldots, M$. Then

$$
\alpha(d)=\mathcal{O}\left(d^{-M}\right), \text { for } d \rightarrow \infty
$$

$k \gg 1$

$$
f(x)=g(A x), A \text { is a } k \times d \text { matrix }
$$

$k>1$

$f(x)=g(A x), A$ is a $k \times d$ matrix
Rows of A are compressible: $\max _{i}\left\|a_{i}\right\|_{q} \leq C_{1}$ $A A^{T}$ is the identity operator on \mathbb{R}^{k}

The regularity condition: $\sup \left\|D^{\alpha} g\right\|_{\infty} \leq C_{2}$

$$
|\alpha| \leq 2
$$

$f(x)=g(A x), A$ is a $k \times d$ matrix
Rows of A are compressible: $\max _{i}\left\|a_{i}\right\|_{q} \leq C_{1}$
$A A^{T}$ is the identity operator on \mathbb{R}^{k}
The regularity condition: sup $\left\|D^{\alpha} g\right\|_{\infty} \leq C_{2}$

$$
|\alpha| \leq 2
$$

The matrix $H^{f}:=\int_{\mathbb{S}^{d-1}} \nabla f(x) \nabla f(x)^{T} d \mu_{\mathbb{S}^{d-1}}(x)$ is a positive semi-definite k-rank matrix

We assume, that the singular values of the matrix H^{f} satisfy

$$
\sigma_{1}\left(H^{f}\right) \geq \cdots \geq \sigma_{k}\left(H^{f}\right) \geq \alpha>0
$$

$$
X=A^{T} \mathcal{G}^{T}, \text { where } \mathcal{G}=\left(\nabla g\left(A x_{1}\right)^{T}|\ldots| \nabla g\left(A x_{m_{\mathcal{X}}}\right)^{T}\right)^{T}
$$

$X=A^{T} \mathcal{G}^{T}$, where $\mathcal{G}=\left(\nabla g\left(A x_{1}\right)^{T}|\ldots| \nabla g\left(A x_{m_{\mathcal{X}}}\right)^{T}\right)^{T}$
Compressed sensing applied to each column X_{j} of X separately:

$$
\|X-\hat{X}\|_{F} \lesssim \sqrt{m_{\mathcal{X}}} \hat{\varepsilon}
$$

where

$$
\hat{\varepsilon}=k\left(\frac{m_{\Phi}}{\log \left(d / m_{\Phi}\right)+1}\right)^{-\left(\frac{1}{q}-\frac{1}{2}\right)}+\frac{k^{2} \epsilon}{\sqrt{m_{\Phi}}}
$$

and $\|\cdot\|_{F}$ is the Frobenius norm of a matrix.

Theorem

Let $0<s<1,0<q \leq 1, m_{\mathcal{X}} \geq 1$ and $1 \leq m_{\Phi} \leq d$.
Under the notations fixed above, let \hat{X} be the $d \times m_{\mathcal{X}}$ matrix whose columns are the vectors \hat{X}_{j} obtained by ℓ_{1} minimization and write the singular value decomposition of its transpose \hat{X}^{\top} as

$$
\hat{X}^{T}=\left(\begin{array}{ll}
\hat{U}_{1} & \hat{U}_{2}
\end{array}\right)\left(\begin{array}{cc}
\hat{\Sigma}_{1} & 0 \\
0 & \hat{\Sigma}_{2}
\end{array}\right)\binom{\hat{V}_{1}^{T}}{\hat{V}_{2}^{T}},
$$

where $\hat{\Sigma}_{1}$ contains the largest k singular values. Then with high probability the matrix $\hat{A}=\hat{V}_{1}^{T}$ satisfies that the function $\hat{f}(x)=\hat{g}(\hat{A} x)$ defined by means of

$$
\hat{g}(y):=f\left(\hat{A}^{T} y\right), \quad y \in B_{\mathbb{R}^{k}}(1+\bar{\epsilon})
$$

has the approximation property

$$
\|f-\hat{f}\|_{\infty} \leq 2 C_{2} \sqrt{k}(1+\bar{\epsilon}) \frac{\hat{\varepsilon}}{\sqrt{\alpha(1-s)}-\hat{\varepsilon}}
$$

References:

M. Fornasier, K. Schnass and J. Vybíral, Learning functions of few arbitrary linear parameters in high dimensions, submitted
K. Schnass and J. Vybíral, Compressed Learning of High-Dimensional Sparse Functions, to appear in Proc. ICASSP 2011
http://people.ricam.oeaw.ac.at/j.vybiral/

