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• Introduction
• Approximation of functions of many variables
• Non-tractability results
• Special structure, finite-order weights, ridge functions
• State of the art

• Algorithm
• Numerical evaluation of directional derivatives
• Points and directions chosen at random
• Active coordinates (. . . concentration of measure . . . )
• k = 1 (. . . compressed sensing . . . )
• General case (. . . stability of SVD . . . )
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Introduction

Let f : Ω ⊂ R
d → R be a function of many (d ≫ 1) variables

We want to approximate f uniformly using only (a small number
of) function values of f

The problem is known to be intractable (Novak & Woźniakowski,
2009) even for C∞ functions

The number of sampling points must grow exponentially in d . . .
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Fd := {f : [0, 1]d → R, ‖Dαf ‖∞ ≤ 1, α ∈ N

d
0}
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Sampling operator Sn = φ ◦ N
Information map N : Fd → R

n, N(f ) = (f (x1), . . . , f (xn)) ∈ R
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Continuous recovery map φ : Rn → L∞([0, 1]d )
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Let
Fd := {f : [0, 1]d → R, ‖Dαf ‖∞ ≤ 1, α ∈ N

d
0}

Sampling operator Sn = φ ◦ N
Information map N : Fd → R

n, N(f ) = (f (x1), . . . , f (xn)) ∈ R
n

Continuous recovery map φ : Rn → L∞([0, 1]d )
Approximation error

e(Sn) := sup
f ∈Fd
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e(n, d) := inf

Sn
e(Sn)
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Let
Fd := {f : [0, 1]d → R, ‖Dαf ‖∞ ≤ 1, α ∈ N

d
0}

Sampling operator Sn = φ ◦ N
Information map N : Fd → R

n, N(f ) = (f (x1), . . . , f (xn)) ∈ R
n

Continuous recovery map φ : Rn → L∞([0, 1]d )
Approximation error

e(Sn) := sup
f ∈Fd

‖f − Sn(f )‖∞

Sampling numbers
e(n, d) := inf

Sn
e(Sn)

Novak, Woźniakowski (2009): e(n, d) = 1 for all n ≤ 2⌊d/2⌋ − 1
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Conclusion: High smoothness does not help!

Way out: Inner structure of functions like

• finite order Sobolev spaces

• partially separable functions

• k-ridge functions

f (x) = g(Ax), g : Rk → R, A ∈ R
k×d , k ≪ d



Outline Introduction Active coordinates k = 1 k arbitrary

Special cases:

A is a projection, i.e.

f (x) = f (x1, . . . , xd ) = g(xi1 , . . . , xik )

The active coordinates i1, . . . , ik are unknown
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Special cases:

A is a projection, i.e.

f (x) = f (x1, . . . , xd ) = g(xi1 , . . . , xik )

The active coordinates i1, . . . , ik are unknown

k = 1
f (x) = g(a · x), a ∈ R

d
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Known results:

Unknown coordinates:

R. DeVore, G. Petrova, P. Wojtaszczyk: Approximation of

functions of few variables in high dimensions

P. Wojtaszczyk: Complexity of Approximation of Functions of Few

Variables in High Dimensions

Deterministic algorithms, C (k)(L + 1)k log d points (adaptively or
non-adaptively chosen), uniform approximation of the order 1/L
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Known results:

Unknown coordinates:

R. DeVore, G. Petrova, P. Wojtaszczyk: Approximation of

functions of few variables in high dimensions

P. Wojtaszczyk: Complexity of Approximation of Functions of Few

Variables in High Dimensions

Deterministic algorithms, C (k)(L + 1)k log d points (adaptively or
non-adaptively chosen), uniform approximation of the order 1/L
k = 1 :
A. Cohen, I. Daubechies, R. DeVore, G. Kerkyacharian, D. Picard,
Capturing ridge functions in high dimensions from point queries

g ∈ C s([0, 1]), 1 < s, ‖g‖C s ≤ M0, ‖a‖ℓdq ≤ M1

‖f − f̂ ‖C(Ω) ≤ CM0

{

L−s +M1

(

1 + log(d/L)

L

)1/q−1
}

using 3L+ 2 sampling points
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Active coordinates

We assume, that

A =







eTi1
...
eTik






,

i.e.
f (x) = f (x1, . . . , xd ) = g(xi1 , . . . , xik ),

where f : [0, 1]d → R and g : [0, 1]k → R

We want to identify the active coordinates i1, . . . , ik . Then one can
apply any usual k-dimensional approximation method...

Our algorithm chooses the sampling points at random, due to the
concentration of measure effects, we get the right result with
overwhelming probability.
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We rely on numerical approximation of ∂f
∂ϕ

∇g(Ax)TAϕ =
∂f

∂ϕ
(x) (∗)

=
f (x + ǫϕ)− f (x)

ǫ
− ǫ

2
[ϕT∇2f (ζ)ϕ]
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We rely on numerical approximation of ∂f
∂ϕ

∇g(Ax)TAϕ =
∂f

∂ϕ
(x) (∗)

=
f (x + ǫϕ)− f (x)

ǫ
− ǫ

2
[ϕT∇2f (ζ)ϕ]

X = {x j ∈ [0, 1]d : j = 1, . . . ,mX} drawn uniformly at random
with respect to the Lebesgue measure

Φ = {ϕj ∈ R
d , j = 1, . . . ,mΦ}, where

ϕj
ℓ =

{

1/
√
mΦ with prob. 1/2,

−1/
√
mΦ with prob. 1/2

for every j ∈ {1, . . . ,mΦ} and every ℓ ∈ {1, . . . , d}



Outline Introduction Active coordinates k = 1 k arbitrary

Φ . . .mΦ × d matrix, X . . . d ×mX matrix with i -th row

X i :=

(

∂g

∂zi
(Ax1), . . . ,

∂g

∂zi
(AxmX )

)

for i ∈ I and all other rows equal to zero
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Φ . . .mΦ × d matrix, X . . . d ×mX matrix with i -th row

X i :=

(

∂g

∂zi
(Ax1), . . . ,

∂g

∂zi
(AxmX )

)

for i ∈ I and all other rows equal to zero
The mX ×mΦ instances of (∗) in matrix notation as

ΦX = Y + E (∗∗)

Y and E are mΦ ×mX matrices defined by

yij =
f (x j + ǫϕi )− f (x j )

ǫ
,

εij = − ǫ

2
[(ϕi )T∇2f (ζij)ϕ

i ],
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The algorithm is based on the identity

ΦTΦX = ΦTY +ΦTE
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The algorithm is based on the identity

ΦTΦX = ΦTY +ΦTE

In expectation:
ΦTΦ ≈ Id : Rd → R

d

ΦTΦX ≈ X and
ΦTE is small =⇒ ΦTY ≈ X
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The algorithm is based on the identity

ΦTΦX = ΦTY +ΦTE

In expectation:
ΦTΦ ≈ Id : Rd → R

d

ΦTΦX ≈ X and
ΦTE is small =⇒ ΦTY ≈ X

We select the k largest rows of ΦTY and estimate the probability,
that their indices coincide with the indices of the non-zero rows of
X .
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Theorem
Let f : Rd → R be a function of k active coordinates that is

defined and twice continuously differentiable on a small

neighbourhood of [0, 1]d . For L ≤ d, a positive real number, the

randomized algorithm described above recovers the k unknown

active coordinates of f with probability at least 1− 6 exp(−L)
using only

O(k(L+ log k)(L+ log d))

samples of f .

The constants involved in the O notation depend on smoothness
properties of g , namely on

maxj=1,...,k ‖∂ij g‖∞
minj=1,...,k ‖∂ijg‖1
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d = 1000
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k = 1

Let f (x) = g(a · x), f : BRd → R, where a ∈ R
d

‖a‖2 = 1 and ‖a‖q ≤ C1, 0 < q ≤ 1, max0≤α≤2 ‖Dαg‖∞ ≤ C2

α =

∫

Sd−1

‖∇f (x)‖2
ℓd2
dµSd−1(x) =

∫

Sd−1

|g ′(a · x)|2dµSd−1(x) > 0,
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k = 1

Let f (x) = g(a · x), f : BRd → R, where a ∈ R
d

‖a‖2 = 1 and ‖a‖q ≤ C1, 0 < q ≤ 1, max0≤α≤2 ‖Dαg‖∞ ≤ C2

α =

∫

Sd−1

‖∇f (x)‖2
ℓd2
dµSd−1(x) =

∫

Sd−1

|g ′(a · x)|2dµSd−1(x) > 0,

We consider again the Taylor expansion (*)

We choose the points X = {x j ∈ [0, 1]d : j = 1, . . . ,mX }
generated at random on S

d−1 with respect to µSd−1

The matrix Φ is generated as before and we obtain (**) again.
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X = aTGT , where G = (g ′(a · x1), . . . , g ′(a · xmX ))T

X and ΦX are rank one matrices
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X = aTGT , where G = (g ′(a · x1), . . . , g ′(a · xmX ))T

X and ΦX are rank one matrices

Hoeffding’s inequality:
∃j ∈ {1, . . . ,mX } : |g ′(a · x j )| ≥

√

α(1 − s), 0 < s < 1
with high probability (depending on mX , s, α and C2).
Xj - the j-th column of X - is equal to g ′(a · x j )aT
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X = aTGT , where G = (g ′(a · x1), . . . , g ′(a · xmX ))T

X and ΦX are rank one matrices

Hoeffding’s inequality:
∃j ∈ {1, . . . ,mX } : |g ′(a · x j )| ≥

√

α(1 − s), 0 < s < 1
with high probability (depending on mX , s, α and C2).
Xj - the j-th column of X - is equal to g ′(a · x j )aT

Due to the construction of Φ, compressed sensing gives the
approximation X̂j

‖Xj − X̂j‖ℓd2 .

(

mΦ

log(d/mΦ) + 1

)−
(

1
q
− 1

2

)

+
ǫ√
mΦ

(♣)

. . . transfers into the estimate of ‖a − â‖ℓd2 for â = X̂j/‖X̂j‖ℓd2 , i.e.
â is a good approximation of a.
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Theorem
Let us fix 0 < s < 1, 0 < q ≤ 1, mX ≥ 1 and 1 ≤ mΦ ≤ d. Under

the assumptions and notations fixed above, with high probability

there exists a vector X̂j obtained by ℓ1 minimization, such that for

â = X̂j/‖X̂j‖ℓd2 the function

f̂ (x) = ĝ(â · x), (1)

defined by means of

ĝ(y) := f (âT y), y ∈ (−(1 + ǭ), 1 + ǭ), (2)

has the approximation property

‖f − f̂ ‖∞ ≤ 2C2(1 + ǭ)
ε̂

√

α(1 − s)− ε̂
. (3)

where ε̂ is the right hand side of (♣).
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Key role is played by

α =

∫

Sd−1

|g ′(a · x)|2dµSd−1(x)

Due to symmetry . . . independent on a

Push-forward measure µ1 on [−1, 1]

α =

∫ 1

−1
|g ′(y)|2dµ1(y)

=
Γ(d/2)

π1/2Γ((d − 1)/2)

∫ 1

−1
|g ′(y)|2(1− y2)

d−3
2 dy

µ1 concentrates around zero exponentially fast as d → ∞
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Proposition

Let us fix M ∈ N and assume that g : [−1, 1] → R is

CM+2-differentiable in an open neighbourhood U of 0 and
dℓ

dxℓ
g(0) = 0 for ℓ = 1, . . . ,M. Then

α(d) = O(d−M), for d → ∞.
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k ≫ 1

f (x) = g(Ax), A is a k × d matrix
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k ≫ 1

f (x) = g(Ax), A is a k × d matrix

Rows of A are compressible: maxi ‖ai‖q ≤ C1

AAT is the identity operator on R
k

The regularity condition: sup
|α|≤2

‖Dαg‖∞ ≤ C2
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k ≫ 1

f (x) = g(Ax), A is a k × d matrix

Rows of A are compressible: maxi ‖ai‖q ≤ C1

AAT is the identity operator on R
k

The regularity condition: sup
|α|≤2

‖Dαg‖∞ ≤ C2

The matrix H f :=

∫

Sd−1

∇f (x)∇f (x)TdµSd−1(x) is a positive

semi-definite k-rank matrix

We assume, that the singular values of the matrix H f satisfy

σ1(H
f ) ≥ · · · ≥ σk(H

f ) ≥ α > 0.
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X = ATGT , where G = (∇g(Ax1)
T | . . . |∇g(AxmX

)T )T
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X = ATGT , where G = (∇g(Ax1)
T | . . . |∇g(AxmX

)T )T

Compressed sensing applied to each column Xj of X separately:

‖X − X̂‖F .
√
mX ε̂,

where

ε̂ = k

(

mΦ

log(d/mΦ) + 1

)−
(

1
q
− 1

2

)

+
k2ǫ√
mΦ

and ‖ · ‖F is the Frobenius norm of a matrix.
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Theorem
Let 0 < s < 1, 0 < q ≤ 1, mX ≥ 1 and 1 ≤ mΦ ≤ d.

Under the notations fixed above, let X̂ be the d ×mX matrix

whose columns are the vectors X̂j obtained by ℓ1 minimization and

write the singular value decomposition of its transpose X̂T as

X̂T =
(

Û1 Û2

)

(

Σ̂1 0

0 Σ̂2

)(

V̂ T
1

V̂ T
2

)

,

where Σ̂1 contains the largest k singular values. Then with high

probability the matrix Â = V̂ T
1 satisfies that the function

f̂ (x) = ĝ(Âx) defined by means of

ĝ(y) := f (ÂT y), y ∈ BRk (1 + ǭ),

has the approximation property

‖f − f̂ ‖∞ ≤ 2C2

√
k(1 + ǭ)

ε̂
√

α(1− s)− ε̂
.
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