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1. Introduction

We say a set of functions D from a Hilbert space H is a
dictionary if each g ∈ D has norm one (‖g‖ := ‖g‖H = 1)
and the closure of spanD coincides with H. We let Σm(D)
denote the collection of all functions (elements) in H which
can be expressed as a linear combination of at most m
elements of D. Thus each function s ∈ Σm(D) can be
written in the form

s =
∑

g∈Λ

cgg, Λ ⊂ D, #Λ ≤ m,

where the cg are real or complex numbers. For a function
f ∈ H we define its best m-term approximation error

σm(f) := σm(f,D) := inf
s∈Σm(D)

‖f − s‖.
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Pure Greedy Algorithm (PGA)

Pure Greedy Algorithm (PGA) We define f0 := f . Then for
each m ≥ 1, we inductively define:
(1) ϕm ∈ D is any satisfying (we assume existence)

〈fm−1, ϕm〉 = sup
g∈D

〈fm−1, g〉;

(2)
fm := fm−1 − 〈fm−1, ϕm〉ϕm;

(3)

Gm(f,D) :=

m∑

j=1

〈fj−1, ϕj〉ϕj .
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Orthogonal Greedy Algorithm (OGA)

If H0 is a finite dimensional subspace of H, we let PH0
be

the orthogonal projector from H onto H0. That is PH0
(f) is

the best approximation to f from H0.
Orthogonal Greedy Algorithm (OGA). We define f0 := f .
Then for each m ≥ 1 we inductively define:
(1) ϕm ∈ D is any element satisfying (we assume existence)

|〈fm−1, ϕm〉| = sup
g∈D

|〈fm−1, g〉|;

(2) Gm(f,D) := PHm
(f), where Hm := span(ϕ1, . . . , ϕm);

(3) fm := f −Gm(f,D).
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Taking care of existence

Let a weakness parameter t ∈ (0, 1] be given.
Weak Orthogonal Greedy Algorithm (WOGA). We define
fo,t
0 := f . Then for each m ≥ 1 we inductively define:

(1) ϕo,t
m ∈ D is any element satisfying

|〈fo,t
m−1, ϕ

o,t
m 〉| ≥ t sup

g∈D
|〈fo,t

m−1, g〉|.
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WOGA

(2) Let Ht
m := span(ϕo,t

1 , . . . , ϕo,t
m ) and let PHt

m
(f) denote an

operator of orthogonal projection onto Ht
m. Define

Go,t
m (f,D) := PHt

m
(f).

(3) Define the residual after mth iteration of the algorithm

fo,t
m := f −Go,t

m (f,D).

In the case t = 1, k = 1, 2, . . ., WOGA coincides with the Or-

thogonal Greedy Algorithm (OGA).
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Examples

It is clear that for an orthonormal basis B of a Hilbert space
H we have for each f for both PGA and OGA

‖f −Gm(f,B)‖ = σm(f,B).

There is a nontrivial classical example of a redundant
dictionary, having the same property: PGA and OGA realize
the best m-term approximation for each individual function.
We describe that dictionary now. Let Π be a set of functions
from L2([0, 1]2) of the form u(x1)v(x2) with the unit L2-norm.
Then for this dictionary and H = L2([0, 1]2) we have for each
f ∈ H

‖f −Gm(f,Π)‖ = σm(f,Π).
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The Lebesgue inequality

A. Lebesgue proved the following inequality: for any
2π-periodic continuous function f one has

‖f − Sn(f)‖∞ ≤ (4 +
4

π2
lnn)En(f)∞,

where Sn(f) is the nth partial sum of the Fourier series of f
and En(f)∞ is the error of the best approximation of f by
the trigonometric polynomials of order n in the uniform
norm ‖ · ‖∞.
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2. Incoherent dictionaries

We consider dictionaries that have become popular in
signal processing. Denote

M(D) := sup
g 6=h;g,h∈D

|〈g, h〉|

the coherence parameter of a dictionary D. For an
orthonormal basis B we have M(B) = 0. It is clear that the
smaller the M(D) the more the D resembles an
orthonormal basis. However, we should note that in the
case M(D) > 0 the D can be a redundant dictionary.
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First results

The first general Lebesgue type inequality for OGA for the
M -coherent dictionary has been obtained in [Gilbert,
Muthukrishnan, Strauss, 2003]. They proved that

‖fm‖ ≤ 8m1/2σm(f) for m < 1/(32M).

The constants in this inequality were improved in [Tropp,
2004] (see also [Donoho, Elad, Temlyakov, 2004]):

‖fm‖ ≤ (1 + 6m)1/2σm(f) for m < 1/(3M).
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Further results

The following results have been obtained in [Donoho, Elad,
Temlyakov, 2006]:
Theorem 2.1. Let a dictionary D have the mutual coherence
M = M(D). Assume m ≤ 0.05M−2/3. Then for l ≥ 1

satisfying 2l ≤ logm we have

‖fm(2l−1)‖ ≤ 6m2−l

σm(f).

Corollary 2.1. Let a dictionary D have the mutual coherence
M = M(D). Assume m ≤ 0.05M−2/3. Then we have

‖f[m log m]‖ ≤ 24σm(f).

. – p.11



Further results

Theorem 2.2. Let a dictionary D have the mutual coherence
M = M(D). Then for any S ≤ 1/(2M) we have the following
inequalities for OGA

‖fS‖2 ≤ 2‖fk‖(σS−k(fk) + 3MS‖fk‖), 0 ≤ k ≤ S,

and the following inequalities for PGA

‖fS‖2 ≤ 2‖f‖(σS(f) + 5MS‖f‖).
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New results

These inequalities were improved in [Temlyakov and
Zheltov, 2010].
Theorem 2.3. Let a dictionary D have the mutual coherence
M = M(D). Then for any S ≤ 1/(2M) we have the following
inequalities for OGA

‖fo
S‖2 ≤ σS−k(f

o
k )2 + 5MS‖fo

k‖2, 0 ≤ k ≤ S. (2.1)

and the following inequalities for PGA

‖fS‖2 ≤ σS(f)2 + 7MS‖f‖2. (2.2)
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New results

It was pointed out in [Donoho, Elad, T., 2006] that the in-

equality ‖f[m log m]‖ ≤ 24σm(f) for OGA from the above Corol-

lary is almost (up to a logm factor) perfect Lebesgue in-

equality. However, we are paying a big price for it in the

sense of a strong assumption on m. It was mentioned in

[Donoho, Elad, T., 2006] that it was not known if the assump-

tion m ≤ 0.05M−2/3 can be substantially weakened. It was

shown in [T. and Zheltov, 2010] that it can be substantially

weakened.

. – p.14



New results

Theorem 2.4. Let a dictionary D have the mutual coherence
M = M(D). For any δ ∈ (0, 1/4] set L(δ) := [1/δ] + 1.
Assume m is such that 20Mm1+δ2L(δ) ≤ 1. Then we have

‖fo
m(2L(δ)+1−1)‖ ≤

√
3σm(f).

Very recently Livshitz, 2010 improved the above
Lebesgue-type inequality. He proved that

‖fo
2m‖ ≤ 3σm(f)

for m ≤ (20M)−1. His proof is different from the proof of

Theorem 2.4. It is much more technically involved.
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New results

We now demonstrate the use of the inequality (2.2). The
following result on PGA from [Temlyakov and Zheltov, 2010]
is a corollary of (2.2).
Theorem 2.5. Let a dictionary D have the mutual coherence
M = M(D). For any r > 0 and δ ∈ (0, 1] set
L(r, δ) := [r/δ] + 1. Let f be such that

σm(f) ≤ m−r‖f‖, m ≤ 2−L(r,δ)(14M)−1/(1+δ).

Then for all n such that n ≤ (14M)−1/(1+δ) we have

‖fn‖ ≤ C(r, δ)n−r‖f‖.
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Exact recovery by WOGA

We proceed to exact recovery of sparse signals by the
WOGA(t). We present a result in a general setting where
we do not assume that the dictionary D is finite.
Theorem 2.6 Let D be an M -coherent dictionary. The
WOGA(t) recovers exactly any f ∈ Σm(D) with
m < t

1+t(1 +M−1).
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3. Banach spaces

We present here a generalization of the concept of
M -coherent dictionary to the case of Banach spaces.
Let D be a dictionary in a Banach space X. We define the
coherence parameter of this dictionary in the following way

M(D) := sup
g 6=h;g,h∈D

sup
Fg

|Fg(h)|.

where Fg is the norming (peak) functional of g: Fg(g) = ‖g‖X ,

‖Fg‖X ′ = 1. We note that, in general, a norming functional

Fg is not unique. This is why we take supFg
over all norming

functionals of g in the definition of M(D).
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Dual dictionary

We do not need supFg
in the definition of M(D) if for each

g ∈ D there is a unique norming functional Fg ∈ X ′. Then
we define D′ := {Fg, g ∈ D} and call D′ a dual dictionary to
a dictionary D. It is known that the uniqueness of the
norming functional Fg is equivalent to the property that g is
a point of Gateaux smoothness:

lim
u→0

(‖g + uy‖ + ‖g − uy‖ − 2‖g‖)/u = 0

for any y ∈ X. In particular, if X is uniformly smooth then Ff

is unique for any f 6= 0.
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Quasi-Orthogonal Greedy Algorithm

We considered in [T, 2006] the following greedy algorithm.
Weak Quasi-Orthogonal Greedy Algorithm (WQOGA). Let
t ∈ (0, 1]. Denote f0 := f q,t

0 := f (here and below index q
stands for quasi-orthogonal) and find ϕ1 := ϕq,t

1 ∈ D such
that

|Fϕ1(f0)| ≥ t sup
g∈D

|Fg(f0)|.

Next, we find c1 satisfying

Fϕ1(f − c1ϕ1) = 0.

Denote f1 := f q,t
1 := f − c1ϕ1.
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Quasi-Orthogonal Greedy Algorithm

We continue this construction in an inductive way. Assume
that we have already constructed residuals f0, f1, . . . , fm−1

and dictionary elements ϕ1, . . . , ϕm−1. Now, we pick an
element ϕm := ϕq,t

m ∈ D such that

|Fϕm
(fm−1)| ≥ t sup

g∈D
|Fg(fm−1)|.
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Quasi-Orthogonal Greedy Algorithm

Next, we look for cm1 , . . . , c
m
m satisfying

Fϕj
(f −

m∑

i=1

cmi ϕi) = 0, j = 1, . . . ,m. (3.1)

If there is no solution to (3.1) then we stop, otherwise we

denote fm := f q,t
m := f −

∑m
i=1 c

m
i ϕi with cm1 , . . . , c

m
m satisfying

(3.1).
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Running WQOGA

Remark 3.1. We note that (3.1) has a unique solution if

det ||Fϕj
(ϕi)||mi,j=1 6= 0. We apply WQOGA in the case of

a dictionary with the coherence parameter M := M(D).

Then by a simple well known argument on the linear inde-

pendence of the rows of the matrix ||Fϕj
(ϕi)||mi,j=1 we con-

clude that (3.1) has a unique solution for any m < 1 + 1/M .

Thus, in the case of an M -coherent dictionary D, we can run

WQOGA for at least [1/M ] iterations.
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Exact recovery by WQOGA

The following result was obtained in [T, 2006].
Theorem 3.1 Let t ∈ (0, 1]. Assume that D has coherence
parameter M . Let S < t

1+t(1 + 1/M). Then for any f of the
form

f =

S∑

i=1

aiψi,

where ψi are distinct elements of D, we have that f q,t
S = 0.
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Generalization of dual dictionary

We will discuss a more general setting. Instead of a pair
(D,D′) of a dictionary D and its dual dictionary D′ we now
consider a pair (D,W) of a dictionary D and a set W of
normalized elements w indexed by elements from D. We
define

W := {wg ∈ X ′, ‖wg‖X ′ = 1, g ∈ D}
and define the coherence parameter of the pair (D,W) in
the following way

M(D,W) := sup
g 6=h;g,h∈D

|wg(h)|.
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Incoherent pairs

We assume that the pair (D,W) satisfies the condition

wg(g) ≥ 1 − δ, g ∈ D, (3.2)

with some δ ∈ [0, 1). If δ = 0 then wg is a norming functional
of g.

. – p.26



Generalization of WQOGA

For a pair (D,W) we define an analog of WQOGA in the
following way.
Weak Projective Greedy Algorithm (WPGA) Let t ∈ (0, 1].
Denote f0 := fp,t

0 := f (here and below index p stands for
projective) and find ϕ1 := ϕp,t

1 ∈ D such that

|wϕ1(f0)| ≥ t sup
g∈D

|wg(f0)|.
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Generalization of WQOGA

Next, we find c1 satisfying

wϕ1(f − c1ϕ1) = 0.

Denote f1 := fp,t
1 := f − c1ϕ1.

We continue this construction in an inductive way. Assume

that we have already constructed residuals f0, f1, . . . , fm−1

and dictionary elements ϕ1, . . . , ϕm−1.
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Generalization of WQOGA

Now, we pick an element ϕm := ϕp,t
m ∈ D such that

|wϕm
(fm−1)| ≥ t sup

g∈D
|wg(fm−1)|.

Next, we look for cm1 , . . . , c
m
m satisfying

wϕj
(f −

m∑

i=1

cmi ϕi) = 0, j = 1, . . . ,m. (3.3)

If there is no solution to (3.1) then we stop, otherwise we

denote fm := fp,t
m := f −

∑m
i=1 c

m
i ϕi with cm1 , . . . , c

m
m satisfying

(3.1).
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Running WPGA

The following remark is an analog of Remark 3.1.

Remark 3.2. The system (3.3) has a unique solution if

det ||wϕj
(ϕi)||mi,j=1 6= 0. We apply WPGA in the case of a pair

(D,W) with the coherence parameter M := M(D,W). Then

by a simple well known argument on the linear indepen-

dence of the rows of the matrix ||wϕj
(ϕi)||mi,j=1 we conclude

that (3.3) has a unique solution for any m < 1+ (1− δ)/M . In

this case we can run WPGA for at least [(1−δ)/M ] iterations.
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Property of WPGA

We begin with an auxiliary statement.
Lemma 3.1 Let t ∈ (0, 1]. Assume that the pair (D,W) has
coherence parameter M := M(D,W) and satisfies (3.2).
Let S < t

1+t(1 + (1 − δ)/M). Then for any f of the form

f =

S∑

i=1

aiψi,

where ψi are distinct elements of D, we have that ϕp,t
1 = ψj

with some j ∈ [1, S].
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Exact recovery by WPGA

Theorem 3.2. Let t ∈ (0, 1]. Assume that the pair (D,W) has
coherence parameter M := M(D,W) and satisfies (3.2).
Let S < t

1+t(1 + (1 − δ)/M). Then for any f of the form

f =
S∑

i=1

aiψi,

where ψi are distinct elements of D, we have that fp,t
S = 0.
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Projection

As an analog of best m-term approximation consider the
following projective best m-term approximation. For a set
Dm = {gi}m

i=1 of any m distinct elements of D we define
projection PDm

(f) as follows:

PDm
(f) =

m∑

i=1

cigi

with ci satisfying

Fgi
(f − PDm

(f)) = 0, i = 1, 2, . . . ,m.
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Projective best m-term approximation

In the case of incoherent dictionary such projection always
exists and it is unique provided m < 1 + 1/M(D). Define
projective best m-term approximation as follows:

σq
m(f) := inf

Dm

‖f − PDm
(f)‖.

It is clear that for any norm ‖ · ‖Y one has

σm(f)Y ≤ σq
m(f)Y .
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Lebesgue-type inequality

Introduce the following norm induced by the dictionary D:
for f ∈ X

‖f‖D := sup
g∈D

|Fg(f)|.

The following Lebesgue-type inequality was obtained in
[Savu, 2009]. For QOGA

‖f q
m‖D ≤ 4.5σq

m(f)D, m < 1/(3M(D)). (3.4)
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Lebesgue-type inequality

It was proved in [Savu, 2009] that (3.4) implies the following
Lebesgue-type inequality in the X-norm.

‖f q
m‖X ≤ Cmσq

m(f)X , m < 1/(4M(D)).

In the case of Hilbert space it was proved in [Savu, 2009]
that (3.4) implies for OGA

‖fm‖ ≤ 9m1/2σm(f).
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