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The Cosmic Microwave 
Background

• The Universe is filled with a blackbody radiation field at 
a temperature of 3K.

• Predicted by G. Gamow in 1948

• Observed for the first time by Penzias and Wilson (1965)

• Confirmed by COBE (1990)
•Spectacular measurement of anisotropies by WMAP

•WMAP observed the CMB since 2002. Fifth and Last 
data release in August 2011.

•PLANCK first cosmological results in January 2013.



WMAP:five frequency maps

23, 33, 41, 61 and 93 GHz



23 GHz

33 GHz

41 GHz

61 GHz

94 GHz
Synchrotron emission due to  cosmic rays electrons accelerated into galactic magnetic fields



CMB Thermal SZ Synchrotron Free-free Dust

Sky components

Observations
Linear combination + PSF + Noise



WMAP

The CMB exhibits Fluctuations

The Cosmic Microwave Background (CMB) is a relic radiation (with a temperature equals to 2.726 Kelvin) 
emitted 13 billion  years ago when the Universe was about 370000 years old. 

Cosmic Microwave Background (CMB)



        Power spectrum of WMAP



Healpix
K.M. Gorski et al., 1999, astro-ph/9812350, 

http://www.eso.org/science/healpix

• Pixel = Rhombus
• Same Surfaces  
• For a given latitude : 

regularly spaced  
• Number of pixels:
    12 x (Nsides)2

• Included in the software:
– Anafast
– Synfast



•Successor of WMAP (better resolution, better sensitivity, more channels)
•Launched on May 14, 2009
•Two instruments LFI and HFI
•Nine maps at  30,44,70,100,143,217,353,545,857 GHz
•Angular resolutions:  33’, 24’, 14’, 10’, 7.1’, 5’, 5’, 5’, 5’

Sparsity and PLANCK   



Many Cosmological Studies 

Power spectrum ==> Cosmological parameters

CMB map is contaminated by non-Gaussianities

  -  Lensing effect: (L. Perotto, J. Bobin, S. Plaszczynski, J.-L. Starck and A. Lavabre "Reconstruction of the CMB lensing for 
Planck" , A&A, 5109 A4, 2010.).

  -  Clusters of galaxies (SZ effect).
  - Integrated Sachs Wolfe (ISW) effect

         F.-X. Dupe, A. Rassat, J.-L. Starck, M. J. Fadili , “An Optimal Approach for Measuring the Integrated Sachs-Wolfe Effect”,  arXiv:1010.2192 

 - Any other non-Gaussianity (Cosmic String, topology of the universe, etc)

-  Is the CMB isotropic ?



Strong Constraint: Sparsity

DustDust

CMB CMB

• Components are sparse in a wavelet dictionary

Spatial Domain Wavelet Domain
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Isotropic Undecimated Wavelet on the Sphere
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j=1

j=2

j=3

j=4

     Undecimated
Wavelet Transform

Wavelets, Ridgelets and Curvelets on the Sphere, Astronomy & Astrophysics, 446, 1191-1204, 2006.



Ridgelets on the Sphere

Partitioning

2D Ridgelet 
transform

Face 1 Face 12



j=2

j=3

j=4

j=1

Pyramidal WT 
on the Sphere

Partitioning 2D Ridgelet transform

Face 1

Face 12

Ridgelet Transform on the Sphere (RTS)

RTS

RTS

RTS

Curvelets on the Sphere 



Example of curvelet functions on the sphere



17

  Dictionaries

Spherical Harmonics

Wavelets

Curvelets



Where M is the mask: M(i,j) = 0  ==> missing data
                                    M(i,j) = 1  ==> good data

Interpolation of Missing Data: Sparse Inpainting
•M. Elad, J.-L. Starck, D.L. Donoho, P. Querre, “Simultaneous Cartoon and Texture Image Inpainting using Morphological Component Analysis (MCA)", ACHA, Vol. 19, 
pp. 340-358,  2005.
• P. Abrial, Y. Moudden, J.L. Starck, M.J. Fadili, J. Delabrouille, and M. Nguyen, "CMB Data Analysis and Sparsity" , Statistical 
Methodology , Vol 5, No 4, pp 289-298, 2008.

Theoretical justification through the sampling theory of Compressed Sensing ? 
Rauhut and Ward, “Sparse Legendre expansion via l1 minimization”, Constructive Approximation journal, submitted.

Sparse-Inpainting preserves the ISW and the weak lensing signal.
L. Perotto, J. Bobin, S. Plaszczynski,  J.-L. Starck, and A. Lavabre, "Reconstruction of the CMB lensing for Planck",  A&A, 2010.

 F.-X. Dupe, A. Rassat, J.-L. Starck, M. J. Fadili , “An Optimal Approach for Measuring the Integrated Sachs-Wolfe Effect”,  arXiv:1010.2192 
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ISW Detection
F.-X. Dupe, A. Rassat, J.-L. Starck, M. J. Fadili , “An Optimal Approach for Measuring the Integrated Sachs-Wolfe Effect”,  arXiv:1010.2192 
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PLANCK POLARIZED DATA: T, Q, U
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OrientationMagnitude



2-

E/B Mode Decomposition
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E and B mode are closely related to the curl-free and div-free components of the vector field



2-

Orthogonal Q-U Polarized Wavelet on the Sphere

22

Face 12

Face 1 Face 12

Face 1

Q

U



2-

Q,U Orthogonal Wavelet Decomposition
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Q-wavelet coefficient backprojection

U-wavelet coefficient backprojection



J.-L. Starck,  Y. Moudden and J. Bobin, "Polarized Wavelets and Curvelets on the Sphere", Astronomy and Astrophysics,  497,  3, pp 931--943, 2009.

Wavelet Transform of E and B are obtained by:

Furthermore, if we use the spherical isotropic wavelet construction of (starck et al, 2006), we have

E/B Undecimated Wavelet Transform for Polarized Data 
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 Wavelet and E/B Mode Decomposition
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2-

 Polarized Dictionary:  E/B Polarized Wavelet   
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j=4

J.-L. Starck,  Y. Moudden and J. Bobin, "Polarized Wavelets and Curvelets on the Sphere", Astronomy and Astrophysics,  497,  3, pp 931--943, 2009.



2-

 Curvelet and E/B Mode Decomposition
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2-

 Curvelet and E/B Mode Decomposition
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As we have:

Then

and

E/B Undecimated Wavelet Reconstuction



Polarized Data Denoising 

Where 

Hard thresholding corresponds to the following non linear operation:



Polarized Data Denoising 



1. Wavelet  transforms 
• Continuous Wavelet Transform (Mexican Hat)
• Orthogonal Wavelets
• Undecimated isotropic wavelet transform (Spline, Meyer and Needlet filters).
• Pyramidal  wavelet transform

2. Ridgelet and Curvelet Transforms
3. Denoising using Wavelets and Curvelets
4. Gaussianity tests: Skewness, Kurtosis, Moment of order 5 and 6, Max, Higher Criticism
5. Astrophysical Component Separation (ICA on the Sphere):  JADE, Fast ICA, GMCA.
6. Sparse Inpainting.

MRS Version V2.0  available since June 2010
Wavelet, Ridgelet and Curvelet on the Sphere :
        Software available at: http://jstarck.free.fr/mrs.html

J.-L. Starck, P. Abrial, Y. Moudden and M. Nguyen, Wavelets, Ridgelets and Curvelets on the Sphere, Astronomy & Astrophysics, 446, 1191-1204, 2006.

Polarized Spherical Wavelets and Curvelets: SparsePol/Version 1.0

        Software available at: http://jstarck.free.fr/mrsp.html
J.-L. Starck,  Y. Moudden and J. Bobin, "Polarized Wavelets and Curvelets on the Sphere", Astronomy and Astrophysics,  497,  3, pp 931--943, 2009.



Morpho-Spectral Diversity

Spatial Dictionary with 
Spectral Dictionary

€ 

S = s1,...,sn[ ]Source: Data: 

€ 

X = x1,...,xm[ ] = AS

€ 

xl = ai,l
i=1

n

∑ si
€ 

X = x1,...,xm[ ]



==> GMCA searches a  sparse solution X  in the dictionary           subject to the constraint 
that  the norm                         is  minimal.

€ 

φ
� Y −AX �2

Sparse   Component Separation Method:  

Generalized Morphological Analysis Methodv(GMCA)

We define a dictionary 

Source: Data: 

€ 

φ

GMCA + sky model :  we can easily introduce in the component separation  a priori 
knowledge in order to improve the separation.

•J. Bobin, Y. Moudden,J.-L. Starck, M.J. Fadili, and N. Aghanim,  "SZ and CMB reconstruction using GMCA", Statistical Methodology, astro-ph/0712.0588, 2008.

•J. Bobin, J.-L. Starck, M.J. Fadili, and Y. Moudden,  "Sparsity, Morphological Diversity and Blind Source 
Separation", IEEE Trans. on Image Processing,  Vol 16, No 11, pp 2662 - 2674, 2007.
•.J. Bobin, J.-L. Starck, M.J. Fadili, and Y. Moudden, "Blind Source Separation: The Sparsity Revolution", 
Advances in Imaging and Electron Physics , Vol 152, pp 221 -- 306, 2008.

•CMB, SZ: The spectrum is known
•Free-Free: The spectrum is know up to a scale factor.

We have nine channels and we search for nine sources: 

3 sources are modeled (CMB,SZ, Free-Free) and 6 are not modeled.

X = [x1, xn] Y = [y1, ..., yn] = AX +N



PLANCK Simulated Data



Planck - WG2 - Challenge 2  

Input simulated CMB map (mK)

  Estimated map with GMCA
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Planck - WG2 - Challenger 2 comparaisons - power spectrum
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GMCA has the lowest spectral residuals at  low l.
Plot shows C_l of (reconstructed CMB – input CMB) evaluated at high galactic latitudes.

Sam Leach (SISSA), June 19, 2008, WG2 meeting, Munich
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Limitations  

- Limitation of GMCA: 
✴    One matrix to describe the whole sky (i.e. the simplest model !)

✴    PSF were not taken into account properly 
 

✴    Non stationary noise.

Y = A X + N

But three main problems: 
i)  A is spatially variant.
ii) This model does not take into account the beam.
iii) Noise is not homogeneous.

GMCA Model: 
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Non stationary noise problem
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Non stationary noise problem

The sparse inpainted solution was obtained by minimizing:

min
α

1
2σ2

�Y −AΦα�2 s.t. α is sparse

A sparse inpainted and denoised solution can be obtained by minimizing:

min
α

1

2
�Y −AΦα�2Σ + λ �α�2 s.t. α is sparse

The notation �.�2Σ stands for the Frobenius norm ofY in the noise covariance
metric : �Y �2Σ = Trace

�
YTΣ−1Y

�
.

α(n+1) = proxµnF1

�
α(n) − µn∇F2(α(n))

�

minα F1(α) + F2(α)Forward-Backward Splitting Algorithm
Forward-backward  splitting is a generalization of the classical gradient projection method for constrained convex 
optimization: 

P. L. Combettes and V. R. Wajs, "Signal recovery by proximal forward-backward splitting", Multiscale Modeling and Simulation, vol. 4, no. 4, pp. 
1168-1200, November 2005
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WG2 - Challenge 2



The BEAM problem

1- Work in the spherical harmonic domain (SMICA)
2- Perform the component separation several times: 

. one with all channels up to l=300, 

. Repeat with less channels up to  500, 800, 1200, 3000.

. Merge all results

The second approach could be done in much more elegant 
way using the Wavelet-Vaguelette Decomposition (Donoho, 
1995, Abramovich, 1998).



Wavelet-Vaguelette GMCA Decomposition

f =
�

j

�

k

�Kf,Ψj,k�ψj , k
WVD

f̃ =
�

j

�

k

∆(�y, Ψj,k�)ψj , k

Yi =
�

j Ki(AjX)i + Ni

y = Kf + n with K∗Ψj,k = ψj,k

Inverse problem

Multi-channel WVD

GHz

X̃s =




�

j

�

k

Ã+
j

�
Yi,Ψ

(i)
j,k

�
ψj,k





s

with K∗
i Ψ(i)

j,k = ψj,k=βj,k =
�
Yi,Ψ

(i)
j,k

�
Aj αj,k = �Xs, ψj,k�

min
αj ,Aj

�

j

1
2σ2

�βj −Ajαj�2 s.t. α is sparse
The sparse GMCA solution is obtained by minimizing:



j=1

j=2

j=3

j=4

Global 

12 Blocks

12*4 Blocks

12*16 Blocks

12*32 Blocks

Undecimated Isotropic Wavelet Transform + Block Partitioning

LOCAL GMCA



Channel 1 Channel 9Channel 2

GMCA



GMCA - Global vs Patch v1









Quadratic Error per Latitude Band





Spectrum Error



iC(s) =
�

0 if s ∈ C
+∞ if s /∈ C

• Convex function to minimize:

 F.X. Dupe, M.J. Fadili,  J.-L. Starck,  " A proximal iteration for deconvolving Poisson noisy images using sparse representations”, IEEE Transactions 
on Image Processing, Vol. 18, No. 2
. C. Chaux, J.-C.Pesquet, N. Pustelnik, "Nested iterative algorithms for convex constrained image recovery problems", SIAM Journal on Imaging 
Sciences, Vol. 2, No. 2, Jun. 2009, pp. 730-762

to enforce constraints (positivity, bounds, support...)

P. L. Combettes and V. R. Wajs, "Signal recovery by proximal forward-backward splitting", Multiscale Modeling and Simulation, vol. 4, no. 4, pp. 
1168-1200, November 2005

PSM Sparse Reconstruction
Flexible Framework in Convex Optimization

F. Sureau, O. Fourt, and J.L Starck, ADA 6, may 2010.

• Flexible Framework developed in Convex Optimization

minimize
x∈Rn

f1(x) + ... + fm(x)

α̂(n)
c = arg minαc ||Y −AΦαc||2Σ� �� �

f1

+ λ||αc||1 + iC(Φαc)� �� �
f2



Toy Model Experiment
• Toy model to evaluate if this approach is robust to

error in A

• Linear Model based on maps from the Planck Sky Model
(CMB, Free/Free, Synchrotron, Spinning and Thermal Dust)

• No spatial variance of spectral indices

• Gaussian Beam and i.i.d noise according to Planck
specifications

• Approximate mixing matrix by uniform error of 5% on A
except for CMB (known)

• Sparsity constraint (Wavelets)

• Bounds on min/max values for each component, map Nside=512

• Constraints in image space and wavelet space.



Results
Pseudoinverse Constrained restoration

Residual Pseudoinverse Residual Constrained Rest.

Model: Y = L X+N, and we have an approximation of L 
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Conclusions

•We have investigated another approach (i.e. sparsity) for 
PLANCK data analysis.
•Software available for sparse representation for both 
temperature and polarized maps.
•GMCA, the sparse component separation method, gives very 
interesting results a low l, with a simple model (a single matrix).

•We expect a strong improvement by using a more complex 
model (i.e. local GMCA, waguelet-GMCA decomposition).
•We need to extend it to take into account the polarization.
•We need to exploit better our knowledge of the galactic 
emission ==> MISTIC project.

Perspectives


