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Sinan Güntürk

Mark Lammers

Alex Powell
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Notation

ΣNk := {x ∈ RN : #supp(x) ≤ k}
the set of all “k-sparse” vectors in RN .

A ∈ Rn×N , n < N .
compressed sensing measurement matrix

b = Ax+ e, ‖e‖2 ≤ ε
vector of “noisy” compressed sensing measurements

∆1 : Rn 7→ RN
∆ε

1(b) := arg miny ‖y‖1 subject to ‖b−Ay‖2 ≤ ε.
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Introduction and Overview

MSQ quantization of CS measurements

Σ∆ quantization of CS measurements
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Quantization

In the context of signal acquisition, we must not only ”sample” (or
measure) the signal in such a way that we can accurately reconstruct it
later (standard compressed sensing results take care of that)

but we must also quantize the measurements so that we may
store/transmit them using digital devices.

Goal: replace the vector b by a vector whose elements are chosen from a
discrete set A, called the quantization alphabet.

For example,
A = dZ = {...,−2d,−d, 0, d, 2d, ...}.
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MSQ quantization for compressed sensing

Memoryless Scalar Quantization (MSQ): “Standard”, simple approach.

In MSQ, we replace each measurement b(`), ` ∈ {1, ..., n} by its nearest
neighbor qMSQ(`) ∈ A.

Preliminary analysis:

|b(`)− qMSQ(`)| ≤ d/2 =⇒ ‖b− qMSQ‖2 ≤
d

2
√
n.

‖b− qMSQ‖2 ≤
d

2
√
n

robustness========⇒
A∼N (0,1/n)

‖∆ε
1(qMSQ)− x‖2 ≤ Cd

√
n.

Issues:
1 The error bound increases as we take more measurements.
2 The normalization depends on the number of measurements.

It is more reasonable to use a different normalization.

‖b− qMSQ‖2 ≤
d

2
√
n

robustness=======⇒
A∼N (0,1)

‖∆ε
1(qMSQ)− x‖2 ≤ Cd.
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Limitations of MSQ quantization

Problem: the MSQ error (bound) does not decrease with n.
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Possible Remedy: use different decoders to reconstruct from MSQ
quantized measurements. However...
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Limitations of MSQ quantization

Theorem (Goyal et al.)

Let E be an n× k real matrix, and let K be a bounded set in Rk. For x ∈ K,
suppose we obtain qMSQ by quantizing the entries of b = Ex using MSQ with
alphabet A = dZ. Let ∆opt be an optimal decoder. Then,[

E ‖x−∆opt(qMSQ(x))‖22
]1/2

&
k

n
d

Above, the expectation is with respect to a probability measure on x that
is, for example, absolutely continuous.

=⇒ alternative reconstruction algorithms from MSQ-quantized
compressed sensing measurements offer limited improvement.
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Σ∆ quantization

Alternative quantization scheme.

Used, for example, in quantizing bandlimited signals.

Define Q(v) := arg min
q∈A
|v − q|.
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Σ∆ quantization

Alternative quantization scheme.

Used, for example, in quantizing bandlimited signals.

Define Q(v) := arg min
q∈A
|v − q|.

1st order Σ∆ scheme with alphabet A (greedy rule):

Initialize u0 = 0
for i = 1 to n do
qi = Q(ui−1 + bi)
ui = ui−1 + bi − qi.

end for

10 / 20



Introduction MSQ quantization of CS measurements Σ∆ quantization of CS measurements

Σ∆ quantization

Alternative quantization scheme.

Used, for example, in quantizing bandlimited signals.

Define Q(v) := arg min
q∈A
|v − q|.

1st order Σ∆ scheme with alphabet A (greedy rule):{
qi = Q(ui−1 + bi)
(∆u)i := ui − ui−1 = bi − qi

10 / 20



Introduction MSQ quantization of CS measurements Σ∆ quantization of CS measurements

Σ∆ quantization

Alternative quantization scheme.

Used, for example, in quantizing bandlimited signals.

Define Q(v) := arg min
q∈A
|v − q|.

2nd order Σ∆ scheme with alphabet A (greedy rule):

Initialize u
(1)
0 = 0, u(2)

0 = 0
for i = 1 to n do

qi = Q

(
2∑
j=1

u
(j)
i−1 + bi

)
u

(1)
i = u

(1)
i−1 + bi − qi.

u
(2)
i = u

(2)
i−1 + u

(1)
i .

end for
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Σ∆ quantization

Alternative quantization scheme.

Used, for example, in quantizing bandlimited signals.

Define Q(v) := arg min
q∈A
|v − q|.

2nd order Σ∆ scheme with alphabet A (greedy rule):

Define u := u(2), then
{
qi = Q (2ui−1 − ui−2 + bi)
(∆2u)i = bi − qi
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Σ∆ quantization

Alternative quantization scheme.

Used, for example, in quantizing bandlimited signals.

Define Q(v) := arg min
q∈A
|v − q|.

rth order Σ∆ scheme with alphabet A (greedy rule): qi = Q

(
r∑
j=1

(−1)j−1
(
r
j

)
ui−j + bi

)
(∆ru)i = bi − qi
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Numerical experiments:
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Compressed sensing: Undersampled or oversampled?

Consider

26664
∗
∗
∗
∗
∗

37775
| {z }

b

=

2666664
− −

3z}|{
•

4z}|{
• −

6z}|{
• − −

− − • • − • − −
− − • • − • − −
− − • • − • − −
− − • • − • − −

3777775
| {z }

A

26666666664

0
0
•
•
0
•
0
0

37777777775
| {z }
xIf (once) the support T = {3, 4, 6} is known (recovered)

26664
∗
∗
∗
∗
∗

37775
| {z }

b

=

26664
• • •
• • •
• • •
• • •
• • •

37775
| {z }

AT

24 ••
•

35
| {z }
xT

Rows of AT are a frame for Rk with n > k vectors.

Measurements bj are associated frame coefficients.

When the support is known, this is a redundant frame quantization problem!
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Σ∆ for finite frame expansions

For the moment we will assume that the support of the signal is known and
rely on frame quantization.

So, we can work with: x ∈ Rk, E ∈ Rn×k(with n > k), and F ∈ Rk×n
with FE = I (for now, F is any left-inverse of E).

Now, suppose b = Ex and quantize b using an rth order Σ∆ scheme to
obtain qΣ∆. How well can we do?

In particular, lets estimate x from qΣ∆ via x̂ = FqΣ∆ using some carefully
chosen left-inverse F .
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Σ∆ for finite frame expansions

Recall that b− qΣ∆ = Dru, where

D :=


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0

. . .
. . .

. . .

0 · · · 0 −1 1


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Consequently,
x− x̂ = FDru

and
‖x− x̂‖2 ≤ ‖FDr‖2‖u‖∞

√
n.

The greedy Σ∆ scheme guarantees that ‖u‖∞ is bounded nicely (by Crd),

so we are left with controlling ‖FDr‖2: From among all left inverses of E,
choose F to minimize ‖FDr‖2! =⇒ Sobolev duals!

The Sobolev dual is given by the expression F := (D−rE)†D−r.

Results from frame theory (Blum, Lammers, Powell, Yılmaz) show that if
E obeys a “smoothness” condition, then reconstruction via Sobolev duals
yields favorable error guarantees:

‖x− x̂‖2 .
(n
k

)−r
d.

Gaussian frames are not smooth! Nevertheless...
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Sobolev duals of Gaussian frames
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Sobolev duals of Gaussian frames
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Sobolev duals of Gaussian frames
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Sobolev duals of Gaussian frames
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Σ∆ quantization and random frame expansions

Theorem (Theorem 1)

Let E be an n× k random matrix whose entries are i.i.d. N (0, 1). For any
α ∈ (0, 1), if λ ≥ c(log n)1/(1−α), then with probability at least
1− exp(−c′n1−αkα),

σmin(D−rE) &r (n/k)α(r− 1
2 )
√
n, (1)

which yields the reconstruction error bound

‖x− x̂Σ∆‖2 .r

(n
k

)−α(r− 1
2 )

d.
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Proof of Theorem 1
proof outline:

‖x− x̂‖2 ≤ ‖FDr‖‖u‖2 = ‖(D−rE)†‖‖u‖2 = ‖u‖2
σmin(D−rE)

σmin(D−rE) = σmin(UΣV ∗E)
Weyl’s inequality for the singular value estimates, in particular to estimate
the singular values of D−r (from the singular values of D−1).

Unitary invariance of the i.i.d. Gaussian measure: Reduces the problem to
estimating σmin(ΣE) where Σ is diagonal with Σii are estimated as
described above.

Concentration of measure for ΣE: estimate (for a fixed x)

P{γ‖x‖2 ≤ ‖ΣEx‖2 ≤ θ‖x‖2}.

Pass to the singular values of ΣE by using a standard net argument.
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Σ∆ quantization for compressed sensing: recovery
guarantees

The previous theorem states that if the support T of a k-sparse signal is known,
the Sobolev dual of AT can be used in the reconstruction.

If ∀j ∈ T , |xj | > Cd, then using a robust decoder, support recovery is
guaranteed.

Proposition

Let ‖x− x#‖2 ≤ η, T = supp(x) and k = |T |. For any k′ ∈ {k, ..., N − 1}, let
T ′ be the support of the k′ largest entries of x#. If |xj | > γη for all j ∈ T ,

where γ :=
(

1 + 1
k′−k+1

)1/2

, then T ′ ⊃ T .
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Σ∆ quantization for compressed sensing: recovery
guarantees

In light of this we propose the following two-stage algorithm:

1 Coarse recovery: any robust decoder applied to qΣ∆ yields an initial,
“coarse” approximation x# of x, and in particular, the exact (or
approximate) support T of x.

2 Fine recovery: The rth order Sobolev dual of the frame AT applied
to qΣ∆ yields a finer approximation x̂Σ∆ of x.
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Σ∆ quantization for compressed sensing: recovery
guarantees

Theorem (Theorem 2)

A: n×N matrix whose entries are i.i.d. according to N (0, 1).
n ≥ ck(logN)1/(1−α) where α ∈ (0, 1) and c = c(r, α).
x ∈ ΣNk , minj∈supp(x) |xj | ≥ Cd

Then with probability at least 1− exp(−c′n1−αkα) on the draw of A:

‖x− x̂Σ∆‖2 .r

(n
k

)−α(r− 1
2 )

d.

Here, c′ and C depend only on r.
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Σ∆ quantization for compressed sensing

Pros
1 More accurate than any known quantization scheme in this setting (even

when sophisticated recovery algorithms are employed).

2 Modular: If the fine recovery stage is not available or impractical, then the
standard (coarse) recovery procedure is applicable as is.

3 Progressive: If new measurements arrive (in any given order), noise
shaping can be continued on these measurements as long as the state of
the system (r real values for an rth order scheme) has been stored.

4 Universal: It uses no information about the measurement matrix or the
signal.

“Cons”
More computation at the decoder. Extensions to handle non-quantization
noise and compressible signals (in progress).
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Numerical experiments

20 40 60 80 100 120 140 160 180 200

10
−8

10
−6

10
−4

10
−2

10
0

performance of various quantization/decoding schemes, k = 5
m

ea
n 

l 2−
no

rm
 o

f t
he

 e
rr

or

λ

PCM → l
1

PCM → l
1
 → F

can

Σ∆ (r=1) → l
1
 → F

sob,1

Σ∆ (r=2) → l
1
 → F

sob,2

cλ
−r, r=0.5,1,2

Figure: The average performance of the proposed Σ∆ quantization and
reconstruction schemes for k = 5. For this experiment the non-zero entries of x are
i.i.d. N (0, 1), N = 2000 and d = 10−4.
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Numerical experiments
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Figure: The average performance of the proposed Σ∆ quantization and
reconstruction schemes for k = 40. For this experiment the non-zero entries of x are
i.i.d. N (0, 1), N = 2000 and d = 10−4.
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Numerical experiments
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Figure: (Work in progress) The average performance of the proposed Σ∆
quantization and reconstruction scheme for a compressible signal in the presence of
non-quantization noise.

20 / 20



Introduction MSQ quantization of CS measurements Σ∆ quantization of CS measurements

Numerical experiments
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Figure: (Work in progress) The average performance of the proposed Σ∆ quantization
and reconstruction schemes for compressible signals (no noise).
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