The convex geometry of inverse problems

Benjamin Recht
Department of Computer Sciences University of Wisconsin-Madison

Joint work with
Venkat Chandrasekaran
Pablo Parrilo
Alan Willsky

The convex geometry of inverse problems

Benjamin Recht
Department of Computer Sciences University of Wisconsin-Madison

Joint work with
Venkat Chandrasekaran
Pablo Parrilo
Alan Willsky

Linear Inverse Problems

- Find me a solution of

$$
y=\Phi x
$$

- $\Phi \mathrm{m} \times \mathrm{n}, \mathrm{m}<\mathrm{n}$
- Of the infinite collection of solutions, which one should we pick?
- Leverage structure:
- How do we design algorithms to solve underdetermined systems problems with priors?

Sparsity

- 1-sparse vectors of Euclidean norm 1

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$

minimize $\quad\|x\|_{1}$
 subject to $\quad \Phi x=y$

Compressed Sensing: Candes, Romberg, Tao, Donoho, Tanner, Etc...

Rank

- 2×2 matrices
- plotted in 3d

$$
\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right]
$$

$$
\|X\|_{\star}=\sum_{i} \sigma_{i}(X)
$$

- $2 x 2$ matrices
- plotted in 3d

$$
\begin{aligned}
& \left\|\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right]\right\|_{*} \leq 1 \\
& \|X\|_{*}=\sum_{i} \sigma_{i}(X)
\end{aligned}
$$

Nuclear Norm Heuristic

R, Fazel, and Parrilo 2007
Rank Minimization/Matrix Completion

Integer Programming

- Integer solutions: all components of x are ± 1

$$
\|x\|_{\infty}=\max _{i}\left|x_{i}\right|
$$

minimize $\quad\|x\|_{\infty}$
 subject to $\Phi x=y$

Donoho and Tanner 2008 Mangasarian and Recht. 2009.

Parsimonious Models

- Search for best linear combination of fewest atoms
- "rank" = fewest atoms needed to describe the model

Union of Subspaces

- X has structured sparsity: linear combination of elements from a set of subspaces $\left\{U_{g}\right\}$.
- Atomic set: unit norm vectors living in one of the U_{g}

$$
\|x\|_{\mathcal{G}}=\inf \left\{\sum_{g \in G}\left\|w_{g}\right\|: x=\sum_{g \in G} w_{g}, w_{g} \in U_{g}\right\}
$$

- Proposed by Jacob, Obozinski and Vert (2009).

Permutation Matrices

- X a sum of a few permutation matrices
- Examples: Multiobject Tracking (Huang et al), Ranked elections (Jagabathula, Shah)
- Convex hull of the permutation matrices: Birkhoff Polytope of doubly stochastic matrices
- Permutahedra: convex hull of permutations of a fixed vector.

$$
[1,2,3,4]
$$

Moment Curve

- Curve of $\left[1, t, t^{2}, t^{3}, t^{4}, \ldots\right], \quad t \in T$, some basic set.
- System Identification, Image Processing, Numerical Integration, Statistical Inference...

$$
\begin{gathered}
\sum_{k=1}^{r} \alpha_{k}\left[\begin{array}{c}
1 \\
e^{\phi_{k} i} \\
e^{2 \phi_{k} i} \\
e^{3 \phi_{k} i}
\end{array}\right]\left[\begin{array}{c}
1 \\
e^{\phi_{k} i} \\
e^{2 \phi_{k} i} \\
e^{3 \phi_{k} i}
\end{array}\right]^{*} \\
\\
\mu_{t} \sim \mathbb{E}\left[e^{t \phi i}\right]
\end{gathered}
$$

- Convex hull is characterized by linear matrix inequalities (Toeplitz psd, Hankel psd, etc)

Cut Matrices

- Sums of rank-one sign matrices:

$$
X=\sum_{i} p_{i} X_{i} \quad X_{i}=x_{i} x_{i}^{*} \quad X_{i j}= \pm 1
$$

- Collaborative Filtering (Srebro et al), Clustering in Genetic Networks (Tanay et al), Combinatorial Approximation Algorithms (Frieze and Kannan)
- Convex hull is the cut polytope. Membership is NPhard to test
- Semidefinite approximations of this hull to within constant factors.

Atomic Norms

- Given a basic set of atoms, \mathcal{A}, define the function $\|x\|_{\mathcal{A}}=\inf \{t>0: x \in t \operatorname{conv}(\mathcal{A})\}$
- When \mathcal{A} is centrosymmetric, we get a norm

$$
\begin{aligned}
& \|x\|_{\mathcal{A}}=\inf \left\{\sum_{a \in \mathcal{A}}\left|c_{a}\right|: x=\sum_{a \in \mathcal{A}} c_{a} a\right\} \\
& \text { IDEA: } \begin{array}{l}
\text { minimize }\|z\|_{\mathcal{A}} \\
\text { subject to } \quad \Phi z=y
\end{array}
\end{aligned}
$$

- When does this work?
- How do we solve the optimization problem?

Atomic norms in sparse approximation

- Greedy approximations

$$
\left\|f-f_{n}\right\|_{\mathcal{L}_{2}} \leq \frac{c_{0}\|f\|_{\mathcal{A}}}{\sqrt{n}}
$$

- Best n term approximation to a function f in the convex hull of \mathscr{C}.
- Maurey, Jones, and Barron (1980s-90s)
- Devore and Temlyakov (1996)

Tangent Cones

- Set of directions that decrease the norm from x form a cone:

$$
\mathcal{T}_{\mathcal{A}}(x)=\left\{d:\|x+\alpha d\|_{\mathcal{A}} \leq\|x\|_{\mathcal{A}} \text { for some } \alpha>0\right\}
$$

- x is the unique minimizer if the intersection of this cone with the null space of Φ equals $\{0\}$

Gaussian Widths

- When does a random subspace, U, intersect a convex cone C at the origin?
- Gordon 88: with high probability if

$$
\operatorname{codim}(U) \geq w(C)^{2}
$$

Where $w(C)=\mathbb{E}\left[\max _{x \in C \cap \mathbb{S}^{n-1}}\langle x, g\rangle\right]$ is the
Gaussian width.

$$
g \sim \mathcal{N}\left(0, I_{n}\right)
$$

- Corollary: For inverse problems: if Φ is a random Gaussian matrix with m rows, need $m \geq w\left(\mathcal{T}_{\mathcal{A}}(x)\right)^{2}$ for recovery of x.

Robust Recovery

- Suppose we observe $y=\Phi x+w \quad\|w\|_{2} \leq \delta$

$$
\begin{array}{ll}
\operatorname{minimize} & \|z\|_{\mathcal{A}} \\
\text { subject to } & \|\Phi z-y\| \leq \delta
\end{array}
$$

- If \hat{x} is an optimal solution, then $\|x-\hat{x}\| \leq \frac{2 \delta}{\epsilon}$
provided that

$$
m \geq \frac{c_{0} w\left(\mathcal{T}_{\mathcal{A}}(x)\right)^{2}}{(1-\epsilon)^{2}}
$$

What can we do with Gaussian widths?

- Used by Rudelson \& Vershynin for analyzing sharp bounds on the RIP for special case of sparse vector recovery using I_{1}.
- For a k-dim subspace $S, w(S)^{2}=k$.
- Computing width of a cone C not easy in general
- Main property we exploit: symmetry and duality (inspired by Stojnic 09)

Duality

Dual Widths

$$
x=\Pi_{C}(x)+\Pi_{C^{*}}(x)
$$

$$
\left\langle\Pi_{C}(x), \Pi_{C^{*}}(x)\right\rangle=0
$$

Proposition: $w(C)^{2}+w\left(C^{*}\right)^{2} \leq n$

$$
\begin{aligned}
w(C)^{2} \leq \mathbb{E}_{g}\left[\operatorname{dist}\left(g, C^{*}\right)^{2}\right] & =\mathbb{E}_{g}\left[\left\|\Pi_{C}(g)\right\|^{2}\right] \\
& =\mathbb{E}_{g}\left[\|g\|^{2}-\left\|\Pi_{C^{*}}(g)\right\|^{2}\right] \\
& =n-\mathbb{E}_{g}\left[\left\|\Pi_{C^{*}}(g)\right\|^{2}\right] \\
& =n-\mathbb{E}_{g}\left[\operatorname{dist}(g, C)^{2}\right] \leq n-w\left(C^{*}\right)^{2}
\end{aligned}
$$

Symmetry I - self duality

- Self dual cones - orthant, positive semidefinite cone, second order cone
- Gaussian width = half the dimension of the cone

$$
\begin{gathered}
w(C)=w\left(C^{*}\right) \\
\mathbf{+} \\
w(C)^{2}+w\left(C^{*}\right)^{2} \leq n \\
+ \\
w(C)^{2} \leq n / 2
\end{gathered}
$$

Spectral Norm Ball

- How many measurements to recover a unitary matrix?

$$
\mathcal{T}_{\mathcal{A}}(U)=S-P
$$

- Tangent cone is skew-symmetric matrices minus the positive semidefinite cone.
- These two sets are orthogonal, thus

$$
w\left(\mathcal{T}_{\mathcal{A}}(U)\right)^{2} \leq\binom{ n-1}{2}+\frac{1}{2}\binom{n}{2}=\frac{3 n^{2}-n}{4}
$$

Re-derivations

- Hypercube:

$$
m \geq n / 2
$$

- Sparse Vectors, n vector, sparsity $\mathrm{s}<0.25 \mathrm{n}$

$$
m \geq 2 s\left(\log \left(\frac{n-s}{s}\right)+1\right)
$$

- Block sparse, M groups (possibly overlapping), maximum group size B, k active groups

$$
m \geq 2 k(\log (M-k)+B)+k
$$

- Low-rank matrices: $n_{1} \times n_{2},\left(n_{1}<n_{2}\right)$, rank r

$$
m \geq 3 r\left(n_{1}+n_{2}-r\right)
$$

$$
\mathcal{T}_{\mathcal{A}}(x)=\left\{z \in \mathbb{R}^{n}:\left\langle\sigma_{T}, z_{T}\right\rangle \leq\left\|z_{T^{c}}\right\|_{1}\right\}
$$

$$
\begin{aligned}
& x \in \mathbb{R}^{n} \quad T=\operatorname{supp}(x) \subseteq\{1, \ldots, n\}
\end{aligned}
$$

$\mathcal{N}_{\mathcal{A}}(x)=\left\{u \in \mathbb{R}^{n}: u_{T}=t \sigma_{T},\left\|u_{T^{c}}\right\|_{\infty} \leq t\right.$ for some $\left.t \geq 0\right\}$
Given: $g \sim \mathcal{N}\left(0, I_{n}\right) \quad$ Find a nearby: $u(g) \in \mathcal{N}_{\mathcal{A}}(x)$

$$
u_{i}(g)= \begin{cases}g_{i} & i \in T^{c} \\ \sigma_{i}\left\|g_{T_{c}}\right\|_{\infty} & i \in T\end{cases}
$$

$$
\begin{aligned}
w\left(\mathcal{T}_{\mathcal{A}}(x)\right)^{2} \leq \mathbb{E}\left[\|u(g)-g\|^{2}\right] & =\mathbb{E}\left[\left\|u_{T}(g)-g_{T}\right\|^{2}\right] \\
& =\mathbb{E}\left[\left\|u_{T}(g)\right\|^{2}\right]+\mathbb{E}\left[\left\|g_{T}\right\|^{2}\right] \\
& =s \mathbb{E}\left[\left\|g_{T^{c}}\right\|_{\infty}^{2}\right]+s \\
& \leq 2 s \log (n-s)+2 s
\end{aligned}
$$

General Cones

- Theorem: Let C be a nonempty cone with polar cone C^{*}. Suppose C^{*} subtends normalized solid angle μ. Then

$$
w(C) \leq 3 \sqrt{\log \left(\frac{4}{\mu}\right)}
$$

- Proof Idea: The expected distance to C^{*} can be bounded by the expected distance to a spherical cap
- Isoperimetry: Out of all subsets of the sphere with the same measure, the one with the smallest neighborhood is the spherical cap
- The rest is just integrals...

Symmetry II - Polytopes

- Corollary: For a vertex-transitive (i.e., "symmetric") polytope with p vertices, $\mathrm{O}(\log p)$ Gaussian measurements are sufficient to recover a vertex via convex optimization.
- For $n \times n$ permutation matrix: $m=O(n \log n)$
- For $n \times n$ cut matrix: $m=O(n)$
- (Semidefinite relaxation also gives $m=O(n)$)

Algorithms

$$
\operatorname{minimize}_{z} \quad\|\Phi z-y\|_{2}^{2}+\mu\|z\|_{\mathcal{A}}
$$

- Naturally amenable to projected gradient algorithm:

$$
z_{k+1}=\Pi_{\eta \mu}\left(z_{k}-\eta \Phi^{*} r_{k}\right)
$$

residual

$$
\begin{aligned}
r_{k} & =\Phi z_{k}-y \\
\Pi_{\tau}(z) & =\arg \min _{u} \frac{1}{2}\|z-u\|^{2}+\tau\|u\|_{\mathcal{A}}
\end{aligned}
$$

- Similar algorithm for atomic norm constraint
- Same basic ingredients for ALM, ADM, Bregman, Mirror Prox, etc... how to compute the shrinkage?

Relaxations

$$
\|v\|_{\mathcal{A}}^{*}=\max _{a \in \mathcal{A}}\langle v, a\rangle
$$

- Dual norm is efficiently computable if the set of atoms is polyhedral or semidefinite representable
$\mathcal{A}_{1} \subset \mathcal{A}_{2} \Longrightarrow\|x\|_{\mathcal{A}_{1}}^{*} \leq\|x\|_{\mathcal{A}_{2}}^{*}$ and $\|x\|_{\mathcal{A}_{2}} \leq\|x\|_{\mathcal{A}_{1}}$
- Convex relaxations of atoms yield approximations to the norm

NB! tangent cone gets wider

- Hierarchy of relaxations based on θ-Bodies yield progressively tighter bounds on the atomic norm

Theta Bodies

- Suppose \mathcal{A} is an algebraic variety

$$
\mathcal{A}=\{x: f(x)=0 \forall f \in I\}
$$

$$
\|v\|_{\mathcal{A}}^{*}=\max _{a \in \mathcal{A}}\langle v, a\rangle \leq \tau
$$

positive everywhere
vanishes on atoms

- Relaxation: restrict h to be sum of squares.
- Gives a lower bound on atomic norm
- Solvable by semidefinite programming (Gouveia, Parrilo, and Thomas, 2010)

Scaling up

- Exploiting geometric structure in multicore data analysis
- Clever parallelization of incremental gradient algorithms, cache alignment, etc.
- Submitted to VLDB11 with Christopher Ré

Atomic Norm Decompositions

- Propose a natural convex heuristic for enforcing prior information in inverse problems
- Bounds for the linear case: heuristic succeeds for most sufficiently large sets of measurements
- Stability without restricted isometries
- Standard program for computing these bounds: distance to normal cones
- Algorithms and approximation schemes for computationally difficult priors

Extensions...

- Width Calculations for more general structures
- Recovery bounds for structured measurement matrices (application specific)
- Incorporating stochastic noise models
- Understanding of the loss due to convex relaxation and norm approximation
- Scaling generalized shrinkage algorithms to massive data sets

