
Introduction Weighted `1 Minimization Experimental Results Implications

Weighted `1 Minimization: Stability, robustness, and
some implications

Hassan Mansour

University of British Columbia, Vancouver, Canada

Banff Workshop on Sparse and Low Rank Approximation - March 2011

1 / 32



Introduction Weighted `1 Minimization Experimental Results Implications

Collaboration

Joint work with:
Michael Friedlander

Rayan Saab
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Introduction Weighted `1 Minimization Experimental Results Implications

Motivation

We want to recover a k-sparse signal x ∈ RN .

Given n� N linear and noisy measurements y = Ax+ e.

If A has the RIP with δ2k <
√

2− 1 or δ(a+1)k <
a−1
a+1 , a > 1,

Suppose k, n and N are such that `1-minimization fails to recover x,

and we have prior information on the support of x.

How do we incorporate this knowledge in the recovery algorithm while
keeping the measurement process non-adaptive?
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Definition: Restricted Isometry Property (RIP)
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a+1 , a > 1, then

`1-minimization recovers a stable and robust approximation x∗ of x.

Suppose k, n and N are such that `1-minimization fails to recover x,

and we have prior information on the support of x.

How do we incorporate this knowledge in the recovery algorithm while
keeping the measurement process non-adaptive?

Constrained `1-minimization

min
u∈RN

‖u‖1 subject to ‖Au− y‖2 ≤ ‖e‖2, k . n/ log(N/n)

‖x∗ − x‖2 ≤ C0‖e‖22 + C1k
−1/2‖x− xk‖1
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Suppose k, n and N are such that `1-minimization fails to recover x,

and we have prior information on the support of x.
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Failed recovery and prior information

Eg. when k > k̂ ≈ n/ log(N/n)

Eg. indices 1, 3, and 6 are non-zero.
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Signals with Prior Information

In many applications, it is possible to draw an estimate of the support of
the signal, for example:

Natural images have large DCT coefficients that are localized in the low
frequency subbands.
Video sequences are temporally correlated, resulting in a shared subset of
their support.
Other signals such as seismic data, . . .
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But
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Signals with Prior Information

In many applications, it is possible to draw an estimate of the support of
the signal, for example:

Natural images have large DCT coefficients that are localized in the low
frequency subbands.
Video sequences are temporally correlated, resulting in a shared subset of
their support.
Other signals such as seismic data, . . .

But, the `1 minimization formulation is non-adaptive, i.e., aside from
sparsity, no prior information on x is used in the recovery.
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Problem Setup

Suppose that x is a k-sparse signal supported on an unknown set T0.

Let T̃ be a known support estimate that is partially accurate.

We want to:
1 Recover x by incorporating T̃ in the recovery algorithm.
2 Obtain recovery guarantees based on the size and accuracy of T̃ .

Our approach: weighted `1 minimization.
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Weighted `1 Minimization

Given a set of measurements y, solve

min
x
‖x‖1,w subject to ‖Ax− y‖2 ≤ ε with wi =

{
1, i ∈ T̃ c,
ω, i ∈ T̃ .

where 0 ≤ ω ≤ 1 and ‖x‖1,w :=
∑
i wi|xi|, ‖e‖22 ≤ ε.
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Contributions

We adopt weighted `1 minimization and derive stability and robustness
guarantees for the recovery of a signal x with partial support estimate T̃ .

We show that if at least 50% of T̃ is accurate, then weighted `1
minimization guarantees recovery with

weaker RIP conditions
smaller recovery error bounds.

We demonstrate through extensive experiments that assigning weights
0 < ω < 1 on T̃ results in the best reconstruction performance, especially if
x is compressible.
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Related Work

Borries et al. ’07: empirically demonstrate that x is recoverable with s
fewer measurements by setting ω = 0 on a known subset of the support of
size s.

Khajehnejad et al. ’09: find a class of signals x, defined by a probabilistic
model on sparsity and by the weight vector, that can be recovered with
high probability using weighted `1 minimization.

Vaswani et al. ’10: propose weighted `1 minimization with zero weights
and find weaker sufficient recovery conditions in the noise-free case.

L. Jacques ’10: extended Vaswani et al.’s work to the noisy measurement
vector case.
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Weighted `1 Minimization

Find the vector x from a set of measurements y using the support estimate T̃
by solving

min
x
‖x‖1,w subject to ‖Ax− y‖2 ≤ ε with wi =

{
1, i ∈ T̃ c,
ω, i ∈ T̃ .
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Stability and Robustness

Let x be in RN and let xk be its best k-term approximation, supported on
T0.

Let |T̃ | = ρk and define α = |T̃∩T0|
|T̃ |

, and 0 ≤ ω ≤ 1.
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Stability and Robustness

Let x be in RN and let xk be its best k-term approximation, supported on
T0.

Let |T̃ | = ρk and define α = |T̃∩T0|
|T̃ |

, and 0 ≤ ω ≤ 1.

Theorem (Main Result)

Suppose there exists an a ∈ 1
kZ, with a ≥ (1− α)ρ, a > 1, and that A satisfies

δak + aγδ(a+1)k < aγ − 1.

Then the solution x∗ to the weighted `1 problem obeys

‖x∗ − x‖2 ≤ C ′0ε+ C ′1k
−1/2

(
ω‖xT c

0
‖1 + (1− ω)‖xT̃ c∩T c

0
‖1
)
.

γ = 1

(ω+(1−ω)
√

1+ρ−2αρ)
2
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Sufficient Recovery Condition

It is sufficient to have:

δ(a+1)k < δ̂(ω) :=
a−(ω+(1−ω)

√
1+ρ−2αρ)

2

a+(ω+(1−ω)
√

1+ρ−2αρ)
2

δ(a+1)k < δ̂(1) := a−1
a+1
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√
1+ρ−2αρ)

2

a+(ω+(1−ω)
√

1+ρ−2αρ)
2

δ(a+1)k < δ̂(1) := a−1
a+1

Take for example: δ̂(1) = 0.6667, and ω = 0.5, ρ = 1,

if α = 0.7, then δ̂(ω) = 0.7279.
if α = 0.3, then δ̂(ω) = 0.6151.
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Error Bound Constants

Measurement noise constant C ′0:

C ′0 =
2
(
1 +

(
ω + (1− ω)

√
1 + ρ− 2αρ

)
/
√
a
)√

1− δ(a+1)k − ω+(1−ω)
√

1+ρ−2αρ√
a

√
1 + δak

C0 =
2 (1 + 1/

√
a)√

1− δ(a+1)k − 1√
a

√
1 + δak

14 / 32



Introduction Weighted `1 Minimization Experimental Results Implications

Error Bound Constants

Measurement noise constant C ′0:

C ′0 =
2
(
1 +

(
ω + (1− ω)

√
1 + ρ− 2αρ

)
/
√
a
)√

1− δ(a+1)k − ω+(1−ω)
√

1+ρ−2αρ√
a

√
1 + δak

C0 =
2 (1 + 1/

√
a)√

1− δ(a+1)k − 1√
a

√
1 + δak

14 / 32



Introduction Weighted `1 Minimization Experimental Results Implications

Error Bound Constants

Measurement noise constant C ′0:

C ′0 =
2
(
1 +

(
ω + (1− ω)

√
1 + ρ− 2αρ

)
/
√
a
)√

1− δ(a+1)k − ω+(1−ω)
√

1+ρ−2αρ√
a

√
1 + δak

C0 =
2 (1 + 1/

√
a)√

1− δ(a+1)k − 1√
a

√
1 + δak

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

4

5

6

7

8

9

Weights (ω)

E
rr

or
 b

ou
nd

 n
oi

se
 c

on
st

an
t (

C
0)

 

 
α = 0.1
α = 0.3
α = 0.5
α = 0.7
α = 0.9

14 / 32



Introduction Weighted `1 Minimization Experimental Results Implications

Error Bound Constants

Measurement noise constant C ′0:

C ′0 =
2
(
1 +

(
ω + (1− ω)

√
1 + ρ− 2αρ

)
/
√
a
)√

1− δ(a+1)k − ω+(1−ω)
√

1+ρ−2αρ√
a

√
1 + δak

C0 =
2 (1 + 1/

√
a)√

1− δ(a+1)k − 1√
a

√
1 + δak

Take for example: C0 = 5.6048, and ω = 0.5, ρ = 1,

if α = 0.7, then C′
0 = 4.9178.

if α = 0.3, then C′
0 = 6.2734.
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Error Bound Constants

Signal compressibility constant C ′1:

C ′1 =
2a−1/2

(√
1− δ(a+1)k +

√
1 + δak

)√
1− δ(a+1)k − ω+(1−ω)

√
1+ρ−2αρ√
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√
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Recovery of Sparse Signals

SNR averaged over 20 experiments for k-sparse signals x with k = 40, and
N = 500.
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Discussion

Intermediate values of the weight ω ≈ 0.5 result in the highest SNR even
when α < 0.5.

Recall the recovery error bound

‖x∗ − x‖2 ≤ C ′0(ω)ε+ C ′1(ω)k−1/2
(
ω‖xT c

0
‖1 + (1− ω)‖xT̃ c∩T c

0
‖1
)
.

As ω goes to zero,

the constant C′
1(ω) increases

the term ω‖xTc
0
‖1 + (1− ω)‖xT̃c∩Tc

0
‖1 decreases

There exists 0 < ω < 1 that minimizes their product.
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Video Compressed Sensing Example

A video sequence is a collection of images acquired at periodic instances in
time.

For each video frame j, collect nj CCD readings sampled randomly from
the CCD array.

Use weighted `1 minimization to recover xj with T̃j = Vj−1 ∪ Vj−2.
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Video Compressed Sensing Results

n0 = N/2, nj = N/2.2 for j = 1, 2, . . .
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Some Implications

Weighted `1 minimization can recover less sparse signals than standard `1
when enough prior information is available.

We showed that the recovery is stable and robust.

We also showed that if at least 50% of the support estimate is accurate,
then the recovery is guaranteed with weaker RIP conditions and
smaller error bounds.

Some questions:

How/when can we find the support estimate T̃?
Can we draw a more accurate T̃ after solving the weighted `1 minimization
problem?
How would an iterative weighted `1 algorithm with fixed weights perform?
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Work in Progress - Partial Support Recovery (1)

Let x ∈ RN be k-sparse and suppose the measurement matrix A is such that `1
minimization cannot recover x.

If for some k0 < k, A has δ(a+1)k0 <
a−1
a+1

And if x decays such that there exists an s0 ≤ k0 where

|x(s0)| ≥ (η0 + 1)‖xT c
0
‖1, T0 = supp(x|k0)

Then
supp(x|s0) ⊆ supp(x∗0|k0),

where x∗0 is the solution to the `1 minimization problem.
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Work in Progress - Partial Support Recovery (2)

Let x ∈ RN be k-sparse and suppose the measurement matrix A is such that `1
minimization cannot recover x.

For some k0 ≤ k1 < k, denote by T1 = supp(x|k1) and T̃1 = supp(x∗0|k1)

If A has

δ(a+1)k1 <
a− (ω + (1− ω)

√
1 + ρ− 2αρ)

a+ (ω + (1− ω)
√

1 + ρ− 2αρ)
,

where 0 < ω < 1, α = |T̃1∩T1|
|T̃1|

, and ρ = |T̃1|

And if x decays such that there exists an s1 ≤ k1 where

|x(s1)| ≥ η1(ω‖xT c
1
‖1 + (1− ω)‖xT c

1∩T̃ c
1
‖1) + ‖xT c

1
‖

Then
supp(x|s1) ⊆ supp(x∗1|k1),

where x∗1 is the solution to the weighted `1 minimization problem with
support estimate T̃1.
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Work in Progress - Partial Support Recovery (3)

Let x ∈ RN be k-sparse and suppose the measurement matrix A is such that `1
minimization cannot recover x.

If α > 0.5 and ω < 1, then s1 ≥ s0.

Assuming x decays according to weak `p, the above condition requires
p ≥ 3!

More conditions on signal decay are required to ensure s1 > s0.

The derived conditions are very pessimistic compared to the experimental
results!

But what if we keep iterating?
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Iterative weighted `1 algorithm (work in progress)
1 Solve an initial `1 minimization problem to obtain a support estimate.

2 Solve weighted `1 minimization with weight equal to 0.5 on the previous
support estimate.

3 Obtain a new support estimate.
4 Solve weighted `1 minimization with

weight equal to 0 on the intersection of the two support estimates
weight equal to 0.5 on the new support estimate.

5 Iterate until convergence.
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Iterative weighted `1 algorithm (work in progress)

1: Input b = Ax
2: Output x(t)

3: Initialize p̂ = 0.99, k̂ = n log(N/n)/2, ω1 = 0.5, ω2 = 0,
T1 = ∅, T2 = ∅, Ω = ∅,
l = 0, t = 0, s(0) = 0, x(0) = 0

4: while ‖x(t) − x(t−1)‖2 ≤ Tol‖xt−1‖2 do
5: t = t+ 1
6: W = 1
7: Ω = supp(x(t−1)|s(t−1))
8: T2 = T1 ∩ Ω
9: WT1

= ω1, WT2
= ω2

10: x(t) = arg min
u
‖u‖1,W s.t. Au = b

11: l = min
Λ
|Λ| s.t. ‖x(t)

Λ ‖2 ≥ p̂‖x(t)‖2
12: s(t) = min{l, k̂}
13: T1 = supp(x(t)|s(t))
14: end while
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Iterative weighted `1 algorithm (work in progress)

N = 1000
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Iterative weighted `1 algorithm (work in progress)

N = 2000
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Conclusion

It is not necessary to apply weights inversely proportional to the coefficient
magnitude of the signal.

Signal classes are very strict, experiments indicate more general classes are
available.

Consider compressible signals and noisy measurements.
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Thank you!

Partial funding provided by NSERC DNOISE II CRD.
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