Weighted ℓ_1 Minimization

Experimental Results 00000 Implications 000000000

Weighted ℓ_1 Minimization: Stability, robustness, and some implications

Hassan Mansour

University of British Columbia, Vancouver, Canada

Banff Workshop on Sparse and Low Rank Approximation - March 2011

Weighted ℓ_1 Minimization

Experimental Results 00000

Implications 000000000

Collaboration

Joint work with:

- Michael Friedlander
- Rayan Saab
- Özgür Yılmaz

Weighted ℓ_1 Minimization

Experimental Results 00000

Implications 00000000

Part 1: Introduction and Overview

Part 2: Stability and Robustness of Weighted ℓ_1 Minimization

Part 3: Experimental Results and Stylized Applications

Part 3: Some implications of the weighted ℓ_1 result

Weighted ℓ_1 Minimization

Experimental Results 00000 Implications 000000000

Motivation

- We want to recover a k-sparse signal $x \in \mathbb{R}^N$.
- Given $n \ll N$ linear and noisy measurements y = Ax + e.
- If A has the RIP with $\delta_{2k} < \sqrt{2} 1$ or $\delta_{(a+1)k} < rac{a-1}{a+1}, a > 1$,
- Suppose k, n and N are such that l₁-minimization fails to recover x, and we have prior information on the support of x.
- How do we incorporate this knowledge in the recovery algorithm while keeping the measurement process non-adaptive?

Neighted ℓ_1 Minimization

Experimental Results 00000 Implications 000000000

Motivation

- We want to recover a k-sparse signal $x \in \mathbb{R}^N$.
- Given $n \ll N$ linear and noisy measurements y = Ax + e.
- If A has the RIP with $\delta_{2k} < \sqrt{2}-1$ or $\delta_{(a+1)k} < \frac{a-1}{a+1}, a>1$,
- Suppose k, n and N are such that l₁-minimization fails to recover x, and we have prior information on the support of x.
- How do we incorporate this knowledge in the recovery algorithm while keeping the measurement process non-adaptive?

Definition: Restricted Isometry Property (RIP)

The RIP constant δ_k is defined as the smallest constant such that $orall x \in \Sigma_k^N$

$$(1 - \delta_k) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_k) \|x\|_2^2,$$

Weighted ℓ_1 Minimization

Experimental Results 00000 Implications 000000000

Motivation

- We want to recover a k-sparse signal $x \in \mathbb{R}^N$.
- Given $n \ll N$ linear and noisy measurements y = Ax + e.
- If A has the RIP with $\delta_{2k} < \sqrt{2} 1$ or $\delta_{(a+1)k} < \frac{a-1}{a+1}, a > 1$, then ℓ_1 -minimization recovers a stable and robust approximation x^* of x.
- Suppose k, n and N are such that l₁-minimization fails to recover x, and we have prior information on the support of x.
- How do we incorporate this knowledge in the recovery algorithm while keeping the measurement process non-adaptive?

Constrained ℓ_1 -minimization

• $\min_{u \in \mathbb{R}^N} \|u\|_1$ subject to $\|Au - y\|_2 \le \|e\|_2$, $k \lesssim n/\log(N/n)$

•
$$||x^* - x||_2 \le C_0 ||e||_2^2 + C_1 k^{-1/2} ||x - x_k||_1$$

Weighted ℓ_1 Minimization

Experimental Results 00000 Implications 000000000

Motivation

- We want to recover a k-sparse signal $x \in \mathbb{R}^N$.
- Given $n \ll N$ linear and noisy measurements y = Ax + e.
- If A has the RIP with $\delta_{2k} < \sqrt{2} 1$ or $\delta_{(a+1)k} < \frac{a-1}{a+1}, a > 1$, then ℓ_1 -minimization recovers a stable and robust approximation x^* of x.
- Suppose k,n and N are such that ℓ_1 -minimization fails to recover x,

and we have prior information on the support of x.

• How do we incorporate this knowledge in the recovery algorithm while keeping the measurement process non-adaptive?

Failed recovery and prior information

• Eg. when $k > \hat{k} \approx n/\log(N/n)$

• Eg. indices 1, 3, and 6 are non-zero.

Weighted ℓ_1 Minimization

Experimental Results 00000 Implications 000000000

Motivation

- We want to recover a k-sparse signal $x \in \mathbb{R}^N$.
- Given $n \ll N$ linear and noisy measurements y = Ax + e.
- If A has the RIP with $\delta_{2k} < \sqrt{2} 1$ or $\delta_{(a+1)k} < \frac{a-1}{a+1}, a > 1$, then ℓ_1 -minimization recovers a stable and robust approximation x^* of x.
- Suppose k, n and N are such that ℓ_1 -minimization fails to recover x, and we have prior information on the support of x.
- How do we incorporate this knowledge in the recovery algorithm while keeping the measurement process non-adaptive?

Failed recovery and prior information

- Eg. when $k > \hat{k} \approx n/\log(N/n)$
- Eg. indices 1, 3, and 6 are non-zero.

Weighted ℓ_1 Minimization

Experimental Results 00000 Implications 000000000

Motivation

- We want to recover a k-sparse signal $x \in \mathbb{R}^N$.
- Given $n \ll N$ linear and noisy measurements y = Ax + e.
- If A has the RIP with $\delta_{2k} < \sqrt{2} 1$ or $\delta_{(a+1)k} < \frac{a-1}{a+1}, a > 1$, then ℓ_1 -minimization recovers a stable and robust approximation x^* of x.
- Suppose k, n and N are such that l₁-minimization fails to recover x, and we have prior information on the support of x.
- How do we incorporate this knowledge in the recovery algorithm while keeping the measurement process non-adaptive?

Introd	uction
0	

Implications 000000000

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...

Implications 000000000

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...

Implications 000000000

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...

Implications 000000000

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...

Implications 000000000

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...

Implications 000000000

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...

Implications 000000000

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...

Implications 000000000

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...

Implications 000000000

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...

Implications 000000000

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...
- But

Implications 000000000

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...
- But, the ℓ_1 minimization formulation is non-adaptive, i.e., aside from sparsity, no prior information on x is used in the recovery.

Experimental Results 00000

Implications 000000000

Part 1: Introduction and Overview

Part 2: Stability and Robustness of Weighted ℓ_1 Minimization

Part 3: Experimental Results and Stylized Applications

Part 3: Some implications of the weighted ℓ_1 result

Experimental Results 00000 Implications 000000000

Problem Setup

• Suppose that x is a k-sparse signal supported on an unknown set T_0 .

- Let T be a known support estimate that is partially accurate.
- We want to:
 - \bigcirc Recover x by incorporating T in the recovery algorithm.
 - Obtain recovery guarantees based on the size and accuracy of T.
- Our approach: weighted ℓ_1 minimization.

Weighted ℓ_1 Minimization •00000000

Experimental Results 00000 Implications

Problem Setup

- Suppose that x is a k-sparse signal supported on an unknown set T_0 .
- Let \widetilde{T} be a known support estimate that is partially accurate.
- We want to:
 - \bigcirc Recover x by incorporating T in the recovery algorithm.
 - Obtain recovery guarantees based on the size and accuracy of T.
- Our approach: weighted ℓ_1 minimization.

Weighted ℓ_1 Minimization

Experimental Results 00000 Implications 000000000

Problem Setup

- Suppose that x is a k-sparse signal supported on an unknown set T_0 .
- Let \widetilde{T} be a known support estimate that is partially accurate.
- We want to:
 - **(**) Recover x by incorporating \widetilde{T} in the recovery algorithm.
 - **2** Obtain recovery guarantees based on the size and accuracy of T.

• Our approach: weighted ℓ_1 minimization.

Weighted ℓ_1 Minimization

Experimental Results 00000 Implications 000000000

Problem Setup

- Suppose that x is a k-sparse signal supported on an unknown set T_0 .
- Let \widetilde{T} be a known support estimate that is partially accurate.
- We want to:
 - **(**) Recover x by incorporating \widetilde{T} in the recovery algorithm.
 - 2 Obtain recovery guarantees based on the size and accuracy of \widetilde{T} .
- Our approach: weighted ℓ_1 minimization.

Weighted ℓ_1 Minimization 0 = 0 = 0 = 0 = 0

Experimental Results 00000

Implications 000000000

Weighted ℓ_1 Minimization

Given a set of measurements y, solve

$$\min_{x} \|x\|_{1,\mathbf{w}} \text{ subject to } \|Ax - y\|_{2} \le \epsilon \quad \text{with} \quad \mathbf{w}_{i} = \begin{cases} 1, & i \in \widetilde{T}^{c}, \\ \omega, & i \in \widetilde{T}. \end{cases}$$

where $0 \le \omega \le 1$ and $||x||_{1,w} := \sum_i w_i |x_i|$, $||e||_2^2 \le \epsilon$.

Weighted ℓ_1 Minimization 000000000

Experimental Results

Implications 000000000

- We adopt weighted ℓ_1 minimization and derive stability and robustness guarantees for the recovery of a signal x with partial support estimate \widetilde{T} .
- We show that if at least 50% of \widetilde{T} is accurate, then weighted ℓ_1 minimization guarantees recovery with
 - weaker RIP conditions
 - smaller recovery error bounds.
- We demonstrate through extensive experiments that assigning weights $0 < \omega < 1$ on \tilde{T} results in the best reconstruction performance, especially if x is compressible.

Weighted ℓ_1 Minimization 000000000

Experimental Results 00000 Implications 000000000

- We adopt weighted ℓ₁ minimization and derive stability and robustness guarantees for the recovery of a signal x with partial support estimate T̃.
- We show that if at least 50% of \widetilde{T} is accurate, then weighted ℓ_1 minimization guarantees recovery with
 - weaker RIP conditions
 - smaller recovery error bounds.
- We demonstrate through extensive experiments that assigning weights $0 < \omega < 1$ on \tilde{T} results in the best reconstruction performance, especially if x is compressible.

Weighted ℓ_1 Minimization 000000000

Experimental Results 00000 Implications 000000000

- We adopt weighted ℓ₁ minimization and derive stability and robustness guarantees for the recovery of a signal x with partial support estimate T̃.
- We show that if at least 50% of \widetilde{T} is accurate, then weighted ℓ_1 minimization guarantees recovery with
 - weaker RIP conditions
 - smaller recovery error bounds.
- We demonstrate through extensive experiments that assigning weights $0 < \omega < 1$ on \tilde{T} results in the best reconstruction performance, especially if x is compressible.

Weighted ℓ_1 Minimization 000000000

Experimental Results 00000 Implications 000000000

Contributions

- We adopt weighted ℓ₁ minimization and derive stability and robustness guarantees for the recovery of a signal x with partial support estimate T̃.
- We show that if at least 50% of \widetilde{T} is accurate, then weighted ℓ_1 minimization guarantees recovery with
 - weaker RIP conditions
 - smaller recovery error bounds.

• We demonstrate through extensive experiments that assigning weights $0 < \omega < 1$ on \widetilde{T} results in the best reconstruction performance, especially if x is compressible.

Weighted ℓ_1 Minimization 000000000

Experimental Results 00000 Implications 000000000

- We adopt weighted ℓ_1 minimization and derive stability and robustness guarantees for the recovery of a signal x with partial support estimate \widetilde{T} .
- We show that if at least 50% of \widetilde{T} is accurate, then weighted ℓ_1 minimization guarantees recovery with
 - weaker RIP conditions
 - smaller recovery error bounds.
- We demonstrate through extensive experiments that assigning weights $0 < \omega < 1$ on \widetilde{T} results in the best reconstruction performance, especially if x is compressible.

Weighted ℓ_1 Minimization 000000000

Experimental Results 00000 Implications 000000000

- Borries et al. '07: empirically demonstrate that x is recoverable with s fewer measurements by setting $\omega = 0$ on a known subset of the support of size s.
- Khajehnejad et al. '09: find a class of signals x, defined by a probabilistic model on sparsity and by the weight vector, that can be recovered with high probability using weighted ℓ_1 minimization.
- Vaswani et al. '10: propose weighted l_1 minimization with zero weights and find weaker sufficient recovery conditions in the noise-free case.
- L. Jacques '10: extended Vaswani et al.'s work to the noisy measurement vector case.

Weighted ℓ_1 Minimization 000000000

Experimental Results 00000 Implications 000000000

- Borries et al. '07: empirically demonstrate that x is recoverable with s fewer measurements by setting $\omega = 0$ on a known subset of the support of size s.
- Khajehnejad et al. '09: find a class of signals x, defined by a probabilistic model on sparsity and by the weight vector, that can be recovered with high probability using weighted ℓ_1 minimization.
- Vaswani et al. '10: propose weighted l_1 minimization with zero weights and find weaker sufficient recovery conditions in the noise-free case.
- L. Jacques '10: extended Vaswani et al.'s work to the noisy measurement vector case.

Weighted ℓ_1 Minimization 000000000

Experimental Results 00000 Implications 000000000

- Borries et al. '07: empirically demonstrate that x is recoverable with s fewer measurements by setting $\omega = 0$ on a known subset of the support of size s.
- Khajehnejad et al. '09: find a class of signals x, defined by a probabilistic model on sparsity and by the weight vector, that can be recovered with high probability using weighted ℓ_1 minimization.
- Vaswani et al. '10: propose weighted ℓ_1 minimization with zero weights and find weaker sufficient recovery conditions in the noise-free case.
- L. Jacques '10: extended Vaswani et al.'s work to the noisy measurement vector case.

Weighted ℓ_1 Minimization 000000000

Experimental Results 00000 Implications 000000000

- Borries et al. '07: empirically demonstrate that x is recoverable with s fewer measurements by setting $\omega = 0$ on a known subset of the support of size s.
- Khajehnejad et al. '09: find a class of signals x, defined by a probabilistic model on sparsity and by the weight vector, that can be recovered with high probability using weighted ℓ_1 minimization.
- Vaswani et al. '10: propose weighted ℓ_1 minimization with zero weights and find weaker sufficient recovery conditions in the noise-free case.
- L. Jacques '10: extended Vaswani et al.'s work to the noisy measurement vector case.

Weighted ℓ_1 Minimization $\bigcirc \bigcirc \bigcirc \bigcirc \bullet \bigcirc \bigcirc \bigcirc \bigcirc$

Experimental Results 00000

Implications 000000000

Weighted ℓ_1 Minimization

Find the vector x from a set of measurements y using the support estimate \widetilde{T} by solving

$$\min_{x} \|x\|_{1,\mathrm{w}} \text{ subject to } \|Ax - y\|_{2} \leq \epsilon \quad \text{with} \quad \mathrm{w}_{i} = \begin{cases} 1, & i \in \widetilde{T}^{c}, \\ \omega, & i \in \widetilde{T}. \end{cases}$$

where $0 \le \omega \le 1$ and $||x||_{1,w} := \sum_i w_i |x_i|$.
Experimental Results 00000

Implications 000000000

Stability and Robustness

- Let x be in \mathbb{R}^N and let x_k be its best k-term approximation, supported on T_0 .
- Let $|\widetilde{T}| = \rho k$ and define $\alpha = \frac{|\widetilde{T} \cap T_0|}{|\widetilde{T}|}$, and $0 \le \omega \le 1$.

Experimental Results 00000 Implications

Stability and Robustness

- Let x be in \mathbb{R}^N and let x_k be its best k-term approximation, supported on T_0 .
- Let $|\widetilde{T}| = \rho k$ and define $\alpha = \frac{|\widetilde{T} \cap T_0|}{|\widetilde{T}|}$, and $0 \le \omega \le 1$.

Experimental Results 00000 Implications 000000000

Stability and Robustness

- Let x be in \mathbb{R}^N and let x_k be its best k-term approximation, supported on T_0 .
- Let $|\widetilde{T}| = \rho k$ and define $\alpha = \frac{|\widetilde{T} \cap T_0|}{|\widetilde{T}|}$, and $0 \le \omega \le 1$.

Theorem (Main Result)

Suppose there exists an $a \in \frac{1}{k}\mathbb{Z}$, with $a \ge (1-\alpha)\rho$, a > 1, and that A satisfies

$$\delta_{ak} + a\gamma \delta_{(a+1)k} < a\gamma - 1.$$

Then the solution x^* to the weighted ℓ_1 problem obeys

$$\|x^* - x\|_2 \le C_0' \epsilon + C_1' k^{-1/2} \left(\omega \|x_{T_0^c}\|_1 + (1 - \omega) \|x_{\widetilde{T}^c \cap T_0^c}\|_1 \right).$$

•
$$\gamma = \frac{1}{\left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)^2}$$

Experimental Results 00000 Implications 000000000

Sufficient Recovery Condition

It is sufficient to have:

•
$$\delta_{(a+1)k} < \hat{\delta}^{(\omega)} := \frac{a - \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)^2}{a + \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)^2}$$

•
$$\delta_{(a+1)k} < \hat{\delta}^{(1)} := \frac{a-1}{a+1}$$

Experimental Results 00000 Implications 000000000

Sufficient Recovery Condition

It is sufficient to have:

•
$$\delta_{(a+1)k} < \hat{\delta}^{(\omega)} := \frac{a - \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)^2}{a + \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)^2}$$

•
$$\delta_{(a+1)k} < \hat{\delta}^{(1)} := \frac{a-1}{a+1}$$

Experimental Results 00000

Implications

Sufficient Recovery Condition

It is sufficient to have:

•
$$\delta_{(a+1)k} < \hat{\delta}^{(\omega)} := \frac{a - \left(\omega + (1-\omega)\sqrt{1+\rho-2\alpha\rho}\right)^2}{a + \left(\omega + (1-\omega)\sqrt{1+\rho-2\alpha\rho}\right)^2}$$

•
$$\delta_{(a+1)k} < \hat{\delta}^{(1)} := \frac{a-1}{a+1}$$

Experimental Results 00000 Implications

Sufficient Recovery Condition

It is sufficient to have:

•
$$\delta_{(a+1)k} < \hat{\delta}^{(\omega)} := \frac{a - \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)^2}{a + \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)^2}$$

•
$$\delta_{(a+1)k} < \hat{\delta}^{(1)} := \frac{a-1}{a+1}$$

• Take for example: $\hat{\delta}^{(1)}=0.6667,$ and $\omega=0.5,~\rho=1,$

• if
$$\alpha = 0.7$$
, then $\hat{\delta}^{(\omega)} = 0.7279$.

• if $\alpha = 0.3$, then $\delta^{(\omega)} = 0.6151$.

Experimental Results 00000 Implications 000000000

Sufficient Recovery Condition

It is sufficient to have:

•
$$\delta_{(a+1)k} < \hat{\delta}^{(\omega)} := \frac{a - \left(\omega + (1-\omega)\sqrt{1+\rho-2\alpha\rho}\right)^2}{a + \left(\omega + (1-\omega)\sqrt{1+\rho-2\alpha\rho}\right)^2}$$

•
$$\delta_{(a+1)k} < \hat{\delta}^{(1)} := \frac{a-1}{a+1}$$

• Take for example: $\hat{\delta}^{(1)}=0.6667\text{, and }\omega=0.5\text{, }\rho=1\text{,}$

• if
$$\alpha = 0.7$$
, then $\hat{\delta}^{(\omega)} = 0.7279$.

• if
$$\alpha = 0.3$$
, then $\delta^{(\omega)} = 0.6151$.

Experimental Results 00000

Implications 000000000

Error Bound Constants

•
$$C'_{0} = \frac{2\left(1 + \left(\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho}\right)/\sqrt{a}\right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho}}{\sqrt{a}}\sqrt{1 + \delta_{ak}}}$$

•
$$C_0 = \frac{1}{\sqrt{1 - \delta_{(a+1)k}} - \frac{1}{\sqrt{a}}\sqrt{1 + \delta_{ak}}}$$

Experimental Results 00000 Implications 000000000

Error Bound Constants

•
$$C'_0 = \frac{2\left(1 + \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)/\sqrt{a}\right)}{\sqrt{1-\delta_{(a+1)k}} - \frac{\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}}{\sqrt{a}}\sqrt{1+\delta_{ak}}}$$

•
$$C_0 = \frac{2(1+1/\sqrt{a})}{\sqrt{1-\delta_{(a+1)k}} - \frac{1}{\sqrt{a}}\sqrt{1+\delta_{ak}}}$$

Experimental Results 00000

Implications

Error Bound Constants

•
$$C'_0 = \frac{2\left(1 + \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)/\sqrt{a}\right)}{\sqrt{1-\delta_{(a+1)k}} - \frac{\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}}{\sqrt{a}}\sqrt{1+\delta_{ak}}}$$

•
$$C_0 = \frac{2(1+1/\sqrt{a})}{\sqrt{1-\delta_{(a+1)k}} - \frac{1}{\sqrt{a}}\sqrt{1+\delta_{ak}}}$$

Experimental Results 00000 Implications

Error Bound Constants

•
$$C'_0 = \frac{2\left(1 + \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)/\sqrt{a}\right)}{\sqrt{1-\delta_{(a+1)k}} - \frac{\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}}{\sqrt{a}}\sqrt{1+\delta_{ak}}}$$

•
$$C_0 = \frac{2(1+1/\sqrt{a})}{\sqrt{1-\delta_{(a+1)k}} - \frac{1}{\sqrt{a}}\sqrt{1+\delta_{ak}}}$$

- Take for example: $C_0=5.6048$, and $\omega=0.5$, $\rho=1$,
 - if $\alpha = 0.7$, then $C'_0 = 4.9178$.
 - if $\alpha = 0.3$, then $C'_0 = 6.2734$.

Experimental Results 00000 Implications

Error Bound Constants

Measurement noise constant C'_0 :

•
$$C'_0 = \frac{2\left(1 + \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)/\sqrt{a}\right)}{\sqrt{1-\delta_{(a+1)k}} - \frac{\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}}{\sqrt{a}}\sqrt{1+\delta_{ak}}}$$

•
$$C_0 = \frac{2(1+1/\sqrt{a})}{\sqrt{1-\delta_{(a+1)k}} - \frac{1}{\sqrt{a}}\sqrt{1+\delta_{ak}}}$$

• Take for example: $C_0 = 5.6048$, and $\omega = 0.5$, $\rho = 1$,

• if
$$\alpha = 0.7$$
, then $C'_0 = 4.9178$

• if
$$\alpha = 0.3$$
, then $C'_0 = 6.2734$.

Implications 000000000

Error Bound Constants

Signal compressibility constant C'_1 :

•
$$C_1' = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}}\right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho}}{\sqrt{a}}\sqrt{1 + \delta_{ak}}}$$

• $C_1 = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}}\right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{1}{\sqrt{a}}\sqrt{1 + \delta_{ak}}}$

Implications 000000000

Error Bound Constants

Signal compressibility constant C'_1 :

•
$$C_1' = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}}\right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho}}{\sqrt{a}}\sqrt{1 + \delta_{ak}}}$$

• $C_1 = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}}\right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{1}{\sqrt{a}}\sqrt{1 + \delta_{ak}}}$

Implications 000000000

Error Bound Constants

Signal compressibility constant C'_1 :

•
$$C_1' = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}}\right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho}}{\sqrt{a}}\sqrt{1 + \delta_{ak}}}$$

•
$$C_1 = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}}\right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{1}{\sqrt{a}}\sqrt{1 + \delta_{ak}}}$$

Implications

Error Bound Constants

Signal compressibility constant C'_1 :

•
$$C_1' = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}}\right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho}}{\sqrt{a}}\sqrt{1 + \delta_{ak}}}$$

• $C_1 = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}}\right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{1}{\sqrt{a}}\sqrt{1 + \delta_{ak}}}$

• Take for example: $C_1=3.4629\text{, and }\omega=0.5\text{, }\rho=1\text{,}$

- if $\alpha = 0.7$, then $C'_1 = 3.1480$.
- if $\alpha = 0.3$, then $C'_1 = 3.7693$.

Implications

Error Bound Constants

Signal compressibility constant C'_1 :

•
$$C_1' = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}}\right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho}}{\sqrt{a}}\sqrt{1 + \delta_{ak}}}$$

• $C_1 = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}}\right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{1}{\sqrt{a}}\sqrt{1 + \delta_{ak}}}$

• Take for example: $C_1=3.4629\text{, and }\omega=0.5\text{, }\rho=1\text{,}$

• if
$$\alpha = 0.7$$
, then $C'_1 = 3.1480$.

Weighted ℓ_1 Minimization

Experimental Results

Implications 000000000

Part 1: Introduction and Overview

Part 2: Stability and Robustness of Weighted ℓ_1 Minimization

Part 3: Experimental Results and Stylized Applications

Part 3: Some implications of the weighted ℓ_1 result

Neighted ℓ_1 Minimization

Experimental Results

Implications 000000000

Recovery of Sparse Signals

• SNR averaged over 20 experiments for k-sparse signals x with k = 40, and N = 500.

Neighted ℓ₁ Minimization

Experimental Results

Implications 000000000

Recovery of Sparse Signals

- SNR averaged over 20 experiments for k-sparse signals x with k = 40, and N = 500.
- The noise free case:

Weighted ℓ_1 Minimization 000000000

Experimental Results

Implications 000000000

Recovery of Sparse Signals

- SNR averaged over 20 experiments for k-sparse signals x with k = 40, and N = 500.
- The noisy measurement vector case

Weighted ℓ_1 Minimization 000000000

Experimental Results

Implications 000000000

Recovery of Compressible Signals

• SNR averaged over 10 experiments for signals x whose coefficients decay like j^{-p} where $j \in \{1, ..., N\}$ and p = 1.5. We take n = 100 and N = 500.

Weighted ℓ_1 Minimization

Experimental Results

Implications

Recovery of Compressible Signals

- SNR averaged over 10 experiments for signals x whose coefficients decay like j^{-p} where $j \in \{1, ..., N\}$ and p = 1.5. We take n = 100 and N = 500.
- The noise free case:

Weighted ℓ_1 Minimization

Experimental Results

Implications

Recovery of Compressible Signals

- SNR averaged over 10 experiments for signals x whose coefficients decay like j^{-p} where $j \in \{1, ..., N\}$ and p = 1.5. We take n = 100 and N = 500.
- The noisy measurement vector case

Weighted ℓ_1 Minimization

Experimental Results

Implications 000000000

Discussion

- Intermediate values of the weight $\omega\approx 0.5$ result in the highest SNR even when $\alpha<0.5.$
- Recall the recovery error bound

$$\|x^* - x\|_2 \le C_0'(\omega)\epsilon + C_1'(\omega)k^{-1/2} \left(\omega\|x_{T_0^c}\|_1 + (1-\omega)\|x_{\widetilde{T}^c \cap T_0^c}\|_1\right).$$

- As ω goes to zero,
 - the constant $C'_1(\omega)$ increases
 - \circ the term $\omega \|x_{T_0^c}\|_1 + (1-\omega) \|x_{\widetilde{T}^c\cap T_0^c}\|_1$ decreases
- There exists $0 < \omega < 1$ that minimizes their product.

Weighted ℓ_1 Minimization 000000000

Experimental Results

Implications 000000000

Discussion

- Intermediate values of the weight $\omega\approx 0.5$ result in the highest SNR even when $\alpha<0.5.$
- Recall the recovery error bound

$$\|x^* - x\|_2 \le C_0'(\omega)\epsilon + C_1'(\omega)k^{-1/2} \left(\omega \|x_{T_0^c}\|_1 + (1-\omega) \|x_{\widetilde{T}^c \cap T_0^c}\|_1\right).$$

- As ω goes to zero,
 - the constant $C'_1(\omega)$ increases
 - \circ the term $\omega \|x_{T_0^c}\|_1 + (1-\omega) \|x_{\overline{T}^c \cap T^c}\|_1$ decreases
- There exists $0 < \omega < 1$ that minimizes their product.

Weighted ℓ_1 Minimization

Experimental Results

Implications 000000000

Discussion

- Intermediate values of the weight $\omega\approx 0.5$ result in the highest SNR even when $\alpha<0.5.$
- Recall the recovery error bound

$$\|x^* - x\|_2 \le C_0'(\omega)\epsilon + C_1'(\omega)k^{-1/2} \left(\omega \|x_{T_0^c}\|_1 + (1-\omega) \|x_{\widetilde{T}^c \cap T_0^c}\|_1\right).$$

- As ω goes to zero,
 - the constant $C'_1(\omega)$ increases
 - the term $\omega \|x_{T_0^c}\|_1 + (1-\omega) \|x_{\widetilde{T}^c \cap T_0^c}\|_1$ decreases
- There exists $0 < \omega < 1$ that minimizes their product.

Implications 000000000

Video Compressed Sensing Example

- A video sequence is a collection of images acquired at periodic instances in time.
- For each video frame j, collect n_j CCD readings sampled randomly from the CCD array.
- ullet Use weighted ℓ_1 minimization to recover x_j with $\widetilde{T}_j = V_{j-1} \cup V_{j-2}$.

Weighted ℓ_1 Minimization

Experimental Results

Implications 000000000

Video Compressed Sensing Example

- A video sequence is a collection of images acquired at periodic instances in time.
- For each video frame j, collect n_j CCD readings sampled randomly from the CCD array.
- Use weighted ℓ_1 minimization to recover x_j with $T_j = V_{j-1} \cup V_{j-2}$.

Implications 000000000

Video Compressed Sensing Example

- A video sequence is a collection of images acquired at periodic instances in time.
- For each video frame j, collect n_j CCD readings sampled randomly from the CCD array.
- Use weighted ℓ_1 minimization to recover x_j with $\widetilde{T}_j = V_{j-1} \cup V_{j-2}$.

Weighted ℓ_1 Minimization 000000000

Experimental Results

Implications 000000000

Video Compressed Sensing Results

•
$$n_0 = N/2$$
, $n_j = N/2.2$ for $j = 1, 2, ...$

Weighted ℓ_1 Minimization

Experimental Results 00000 Implications

Part 1: Introduction and Overview

Part 2: Stability and Robustness of Weighted ℓ_1 Minimization

Part 3: Experimental Results and Stylized Applications

Part 3: Some implications of the weighted ℓ_1 result

Weighted ℓ_1 Minimization

Experimental Results 00000 Implications

Some Implications

- Weighted ℓ_1 minimization can recover less sparse signals than standard ℓ_1 when enough prior information is available.
- We showed that the recovery is stable and robust.
- We also showed that if at least 50% of the support estimate is accurate, then the recovery is guaranteed with <u>weaker RIP</u> conditions and <u>smaller error</u> bounds.
- Some questions:
 - How/when can we find the support estimate \overline{TT}
 - Can we draw a more accurate \mathcal{T}_{i} after solving the weighted \mathcal{L}_{i} minimization problem?
 - . How would an iterative weighted /: algorithm with fired weights perform?

Weighted ℓ_1 Minimization

Experimental Results 00000 Implications

Some Implications

- Weighted l₁ minimization can recover less sparse signals than standard l₁ when enough prior information is available.
- We showed that the recovery is stable and robust.
- We also showed that if at least 50% of the support estimate is accurate, then the recovery is guaranteed with <u>weaker RIP</u> conditions and <u>smaller error</u> bounds.
- Some questions:
 - How/when can we find the support estimate $ilde{T}$?
 - Can we draw a more accurate (Cafter solving the weighted () minimization problem?
 - A How would an iterative weighted & algorithm with fixed weights perform?

Weighted ℓ_1 Minimization

Experimental Results 00000 Implications

Some Implications

- Weighted l₁ minimization can recover less sparse signals than standard l₁ when enough prior information is available.
- We showed that the recovery is stable and robust.
- We also showed that if at least 50% of the support estimate is accurate, then the recovery is guaranteed with <u>weaker RIP</u> conditions and <u>smaller error</u> bounds.
- Some questions:
 - How/when can we find the support estimate $ilde{T}?$
 - * Can we draw a more accurate T after solving the weighted ℓ_1 minimization problem?
 - a How would an iterative weighted & algorithm with fixed weights perform?
Weighted ℓ_1 Minimization

Experimental Results 00000 Implications

Some Implications

- Weighted l₁ minimization can recover less sparse signals than standard l₁ when enough prior information is available.
- We showed that the recovery is stable and robust.
- We also showed that if at least 50% of the support estimate is accurate, then the recovery is guaranteed with <u>weaker RIP</u> conditions and <u>smaller error</u> bounds.
- Some questions:
 - How/when can we find the support estimate $ilde{T}$?
 - Can we draw a more accurate \hat{T} after solving the weighted ℓ_1 minimization problem?
 - How would an iterative weighted ℓ_1 algorithm with <u>fixed</u> weights perform?

Weighted ℓ_1 Minimization

Experimental Results 00000 Implications

Some Implications

- Weighted l₁ minimization can recover less sparse signals than standard l₁ when enough prior information is available.
- We showed that the recovery is stable and robust.
- We also showed that if at least 50% of the support estimate is accurate, then the recovery is guaranteed with <u>weaker RIP</u> conditions and <u>smaller error</u> bounds.
- Some questions:
 - How/when can we find the support estimate $ilde{T}$?
 - Can we draw a more accurate \tilde{T} after solving the weighted ℓ_1 minimization problem?
 - How would an iterative weighted ℓ_1 algorithm with <u>fixed</u> weights perform?

Weighted ℓ_1 Minimization

Experimental Results 00000 Implications

Some Implications

- Weighted l₁ minimization can recover less sparse signals than standard l₁ when enough prior information is available.
- We showed that the recovery is stable and robust.
- We also showed that if at least 50% of the support estimate is accurate, then the recovery is guaranteed with <u>weaker RIP</u> conditions and <u>smaller error</u> bounds.
- Some questions:
 - How/when can we find the support estimate $ilde{T}$?
 - Can we draw a more accurate \tilde{T} after solving the weighted ℓ_1 minimization problem?
 - How would an iterative weighted ℓ_1 algorithm with <u>fixed</u> weights perform?

Implications

Work in Progress - Partial Support Recovery (1)

Let $x \in \mathbb{R}^N$ be k-sparse and suppose the measurement matrix A is such that ℓ_1 minimization cannot recover x.

- If for some $k_0 < k$, A has $\delta_{(a+1)k_0} < \frac{a-1}{a+1}$
- And if x decays such that there exists an $s_0 \leq k_0$ where

 $|x(s_0)| \ge (\eta_0 + 1) ||x_{T_0^c}||_1, \quad T_0 = \operatorname{supp}(x|_{k_0})$

• Then

 $\operatorname{supp}(x|_{s_0}) \subseteq \operatorname{supp}(x_0^*|_{k_0}),$

Weighted ℓ_1 Minimization 000000000

Experimental Results 00000 Implications

Work in Progress - Partial Support Recovery (1)

Let $x \in \mathbb{R}^N$ be k-sparse and suppose the measurement matrix A is such that ℓ_1 minimization cannot recover x.

- If for some $k_0 < k$, A has $\delta_{(a+1)k_0} < \frac{a-1}{a+1}$
- And if x decays such that there exists an $s_0 \leq k_0$ where

 $|x(s_0)| \ge (\eta_0 + 1) ||x_{T_0^c}||_1, \quad T_0 = \operatorname{supp}(x|_{k_0})$

• Then

 $\operatorname{supp}(x|_{s_0}) \subseteq \operatorname{supp}(x_0^*|_{k_0}),$

Implications

Work in Progress - Partial Support Recovery (1)

Let $x \in \mathbb{R}^N$ be k-sparse and suppose the measurement matrix A is such that ℓ_1 minimization cannot recover x.

- If for some $k_0 < k$, A has $\delta_{(a+1)k_0} < \frac{a-1}{a+1}$
- And if x decays such that there exists an $s_0 \leq k_0$ where

 $|x(s_0)| \ge (\eta_0 + 1) ||x_{T_0^c}||_1, \quad T_0 = \operatorname{supp}(x|_{k_0})$

• Then

 $\operatorname{supp}(x|_{s_0}) \subseteq \operatorname{supp}(x_0^*|_{k_0}),$

Implications

Work in Progress - Partial Support Recovery (1)

Let $x \in \mathbb{R}^N$ be k-sparse and suppose the measurement matrix A is such that ℓ_1 minimization cannot recover x.

- If for some $k_0 < k$, A has $\delta_{(a+1)k_0} < \frac{a-1}{a+1}$
- And if x decays such that there exists an $s_0 \leq k_0$ where

$$|x(s_0)| \ge (\eta_0 + 1) ||x_{T_0^c}||_1, \quad T_0 = \operatorname{supp}(x|_{k_0})$$

• Then

$$\operatorname{supp}(x|_{s_0}) \subseteq \operatorname{supp}(x_0^*|_{k_0}),$$

Weighted ℓ_1 Minimization

Experimental Results 00000

Implications

Work in Progress - Partial Support Recovery (2)

Let $x \in \mathbb{R}^N$ be k-sparse and suppose the measurement matrix A is such that ℓ_1 minimization cannot recover x.

• For some $k_0 \leq k_1 < k$, denote by $T_1 = \operatorname{supp}(x|_{k_1})$ and $\tilde{T}_1 = \operatorname{supp}(x_0^*|_{k_1})$

• If A has

$$\delta_{(a+1)k_1} < \frac{a - (\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho})}{a + (\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho})}$$

where $0<\omega<1$, $lpha=rac{| ilde{T}_1\cap T_1|}{| ilde{T}_1|}$, and $ho=| ilde{T}_1|$

• And if x decays such that there exists an $s_1 \leq k_1$ where

$$|x(s_1)| \ge \eta_1(\omega ||x_{T_1^c}||_1 + (1-\omega) ||x_{T_1^c \cap \tilde{T}_1^c}||_1) + ||x_{T_1^c}||_1$$

• Then

$$\operatorname{supp}(x|_{s_1}) \subseteq \operatorname{supp}(x_1^*|_{k_1}),$$

where x_1^* is the solution to the weighted ℓ_1 minimization problem with support estimate $\tilde{T}_1.$

Weighted ℓ_1 Minimization 000000000

Experimental Results 00000

Implications

Work in Progress - Partial Support Recovery (2)

Let $x \in \mathbb{R}^N$ be k-sparse and suppose the measurement matrix A is such that ℓ_1 minimization cannot recover x.

- For some $k_0 \le k_1 < k$, denote by $T_1 = \operatorname{supp}(x|_{k_1})$ and $\tilde{T}_1 = \operatorname{supp}(x_0^*|_{k_1})$
- If A has

$$\delta_{(a+1)k_1} < \frac{a - (\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho})}{a + (\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho})},$$

where $0 < \omega < 1$, $\alpha = \frac{|\tilde{T}_1 \cap T_1|}{|\tilde{T}_1|}$, and $\rho = |\tilde{T}_1|$

• And if x decays such that there exists an $s_1 \leq k_1$ where

$$|x(s_1)| \ge \eta_1(\omega ||x_{T_1^c}||_1 + (1-\omega) ||x_{T_1^c \cap \tilde{T}_1^c}||_1) + ||x_{T_1^c}||_1$$

• Then

$$\operatorname{supp}(x|_{s_1}) \subseteq \operatorname{supp}(x_1^*|_{k_1}),$$

where x_1^* is the solution to the weighted ℓ_1 minimization problem with support estimate $ilde{T}_1.$

Weighted ℓ_1 Minimization 000000000

Experimental Results 00000 Implications

Work in Progress - Partial Support Recovery (2)

Let $x \in \mathbb{R}^N$ be k-sparse and suppose the measurement matrix A is such that ℓ_1 minimization cannot recover x.

- For some $k_0 \le k_1 < k$, denote by $T_1 = \operatorname{supp}(x|_{k_1})$ and $\tilde{T}_1 = \operatorname{supp}(x_0^*|_{k_1})$
- If A has

$$\delta_{(a+1)k_1} < \frac{a - (\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho})}{a + (\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho})},$$

where $0 < \omega < 1$, $\alpha = \frac{|\tilde{T}_1 \cap T_1|}{|\tilde{T}_1|}$, and $\rho = |\tilde{T}_1|$

• And if x decays such that there exists an $s_1 \leq k_1$ where

$$|x(s_1)| \ge \eta_1(\omega ||x_{T_1^c}||_1 + (1-\omega) ||x_{T_1^c \cap \tilde{T}_1^c}||_1) + ||x_{T_1^c}||_1$$

Then

$$\operatorname{supp}(x|_{s_1}) \subseteq \operatorname{supp}(x_1^*|_{k_1}),$$

where x_1^* is the solution to the weighted ℓ_1 minimization problem with support estimate $ilde{T}_1.$

Weighted ℓ_1 Minimization 000000000

Experimental Results 00000

Implications

Work in Progress - Partial Support Recovery (2)

Let $x \in \mathbb{R}^N$ be k-sparse and suppose the measurement matrix A is such that ℓ_1 minimization cannot recover x.

- For some $k_0 \leq k_1 < k$, denote by $T_1 = \operatorname{supp}(x|_{k_1})$ and $\tilde{T}_1 = \operatorname{supp}(x_0^*|_{k_1})$
- If A has

$$\delta_{(a+1)k_1} < \frac{a - (\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho})}{a + (\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho})},$$

where $0 < \omega < 1$, $\alpha = \frac{|\tilde{T}_1 \cap T_1|}{|\tilde{T}_1|}$, and $\rho = |\tilde{T}_1|$

• And if x decays such that there exists an $s_1 \leq k_1$ where

$$|x(s_1)| \ge \eta_1(\omega ||x_{T_1^c}||_1 + (1-\omega) ||x_{T_1^c \cap \tilde{T}_1^c}||_1) + ||x_{T_1^c}||_1$$

• Then

$$\operatorname{supp}(x|_{s_1}) \subseteq \operatorname{supp}(x_1^*|_{k_1}),$$

where x_1^* is the solution to the weighted ℓ_1 minimization problem with support estimate \tilde{T}_1 .

Implications

Work in Progress - Partial Support Recovery (3)

- If $\alpha > 0.5$ and $\omega < 1$, then $s_1 \ge s_0$.
- Assuming x decays according to weak $\ell_p,$ the above condition requires $p\geq 3!$
- More conditions on signal decay are required to ensure $s_1 > s_0$.
- The derived conditions are very pessimistic compared to the experimental results!
- But what if we keep iterating?

Implications

Work in Progress - Partial Support Recovery (3)

- If $\alpha > 0.5$ and $\omega < 1$, then $s_1 \ge s_0$.
- Assuming x decays according to weak $\ell_p,$ the above condition requires $p\geq 3!$
- More conditions on signal decay are required to ensure $s_1 > s_0$.
- The derived conditions are very pessimistic compared to the experimental results!
- But what if we keep iterating?

Implications

Work in Progress - Partial Support Recovery (3)

- If $\alpha > 0.5$ and $\omega < 1$, then $s_1 \ge s_0$.
- Assuming x decays according to weak $\ell_p,$ the above condition requires $p\geq 3!$
- More conditions on signal decay are required to ensure $s_1 > s_0$.
- The derived conditions are very pessimistic compared to the experimental results!
- But what if we keep iterating?

Implications

Work in Progress - Partial Support Recovery (3)

- If $\alpha > 0.5$ and $\omega < 1$, then $s_1 \ge s_0$.
- Assuming x decays according to weak $\ell_p,$ the above condition requires $p\geq 3!$
- More conditions on signal decay are required to ensure $s_1 > s_0$.
- The derived conditions are very pessimistic compared to the experimental results!
- But what if we keep iterating?

Implications

Work in Progress - Partial Support Recovery (3)

- If $\alpha > 0.5$ and $\omega < 1$, then $s_1 \ge s_0$.
- Assuming x decays according to weak $\ell_p,$ the above condition requires $p\geq 3!$
- More conditions on signal decay are required to ensure $s_1 > s_0$.
- The derived conditions are very pessimistic compared to the experimental results!
- But what if we keep iterating?

- **(**) Solve an initial ℓ_1 minimization problem to obtain a support estimate.
- Solve weighted l₁ minimization with weight equal to 0.5 on the previous support estimate.
- Obtain a new support estimate.
- Solve weighted ℓ_1 minimization with
 - weight equal to 0 on the intersection of the two support estimates
 - \bullet weight equal to 0.5 on the new support estimate.
- Iterate until convergence.

Implications

Iterative weighted ℓ_1 algorithm (work in progress)

- **(**) Solve an initial ℓ_1 minimization problem to obtain a support estimate.
- **②** Solve weighted ℓ_1 minimization with weight equal to 0.5 on the previous support estimate.
- Obtain a new support estimate.
- Solve weighted ℓ_1 minimization with
 - weight equal to 0 on the intersection of the two support estimates
 - weight equal to 0.5 on the new support estimate.
- Iterate until convergence.

- **(**) Solve an initial ℓ_1 minimization problem to obtain a support estimate.
- **②** Solve weighted ℓ_1 minimization with weight equal to 0.5 on the previous support estimate.
- Obtain a new support estimate.

Solve weighted ℓ_1 minimization with

- weight equal to 0 on the intersection of the two support estimates
- weight equal to 0.5 on the new support estimate.
- Iterate until convergence.

- **(**) Solve an initial ℓ_1 minimization problem to obtain a support estimate.
- **②** Solve weighted ℓ_1 minimization with weight equal to 0.5 on the previous support estimate.
- Obtain a new support estimate.
- Solve weighted ℓ_1 minimization with
 - weight equal to 0 on the intersection of the two support estimates
 - weight equal to 0.5 on the new support estimate.

Iterate until convergence.

- **(**) Solve an initial ℓ_1 minimization problem to obtain a support estimate.
- **②** Solve weighted ℓ_1 minimization with weight equal to 0.5 on the previous support estimate.
- Obtain a new support estimate.
- Solve weighted ℓ_1 minimization with
 - weight equal to 0 on the intersection of the two support estimates
 - weight equal to 0.5 on the new support estimate.
- Iterate until convergence.

Implications

Iterative weighted ℓ_1 algorithm (work in progress)

1: Input
$$b = Ax$$

2: Output $x^{(t)}$
3: Initialize $\hat{p} = 0.99$, $\hat{k} = n \log(N/n)/2$, $\omega_1 = 0.5$, $\omega_2 = 0$,
 $T_1 = \emptyset$, $T_2 = \emptyset$, $\Omega = \emptyset$,
 $l = 0, t = 0, s^{(0)} = 0, x^{(0)} = 0$
4: while $||x^{(t)} - x^{(t-1)}||_2 \le \text{Tol}||x^{t-1}||_2$ do
5: $t = t + 1$
6: $W = 1$
7: $\Omega = \text{supp}(x^{(t-1)}|_{s^{(t-1)}})$
8: $T_2 = T_1 \cap \Omega$
9: $W_{T_1} = \omega_1, W_{T_2} = \omega_2$
10: $x^{(t)} = \arg\min_u ||u||_{1,W}$ s.t. $Au = b$
11: $l = \min_u |\Lambda| \text{ s.t. } ||x_{\Lambda}^{(t)}||_2 \ge \hat{p}||x^{(t)}||_2$
12: $s^{(t)} = \min\{l, \hat{k}\}$
13: $T_1 = \text{supp}(x^{(t)}|_{s^{(t)}})$
14: end while

Weighted ℓ_1 Minimization 000000000

Experimental Results 00000 Implications

Iterative weighted ℓ_1 algorithm (work in progress)

N = 1000

Weighted ℓ_1 Minimization 000000000

Experimental Results 00000 Implications

Iterative weighted ℓ_1 algorithm (work in progress)

N = 2000

Weighted ℓ_1 Minimization

Experimental Results 00000

Implications

Conclusion

- It is not necessary to apply weights inversely proportional to the coefficient magnitude of the signal.
- Signal classes are very strict, experiments indicate more general classes are available.
- Consider compressible signals and noisy measurements.

Weighted ℓ_1 Minimization

Experimental Results 00000

Implications

Conclusion

- It is not necessary to apply weights inversely proportional to the coefficient magnitude of the signal.
- Signal classes are very strict, experiments indicate more general classes are available.
- Consider compressible signals and noisy measurements.

Weighted ℓ_1 Minimization

Experimental Results 00000

Implications

Conclusion

- It is not necessary to apply weights inversely proportional to the coefficient magnitude of the signal.
- Signal classes are very strict, experiments indicate more general classes are available.
- Consider compressible signals and noisy measurements.

Weighted ℓ_1 Minimization

Experimental Results 00000

Implications

Thank you!

Partial funding provided by NSERC DNOISE II CRD.