New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property

Felix Krahmer

Hausdorff Center for Mathematics, Universität Bonn

3/10/2011

Joint work with Rachel Ward (Courant Institute, NYU)

JL Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	000	000000	0

▶ Set up: We have many data vectors $\vec{x}_j \in \mathbb{R}^N$ for N large

JL Lemma	RIP	Main Results	Idea of proof	Discussion
•000000	000	000	000000	0

- ▶ Set up: We have many data vectors $\vec{x}_i \in \mathbb{R}^N$ for N large
- ▶ We would like a linear map $\Phi \in \mathbb{R}^{m \times N}$, with $m \ll N$, such that the geometry of the set $\{\vec{x}_j\}_{j=1}^p$ is preserved under the embedding $\vec{x}_i \mapsto \Phi \vec{x}_i$

JL Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	000	000000	0

- ▶ Set up: We have many data vectors $\vec{x}_j \in \mathbb{R}^N$ for N large
- ▶ We would like a linear map $\Phi \in \mathbb{R}^{m \times N}$, with $m \ll N$, such that the geometry of the set $\{\vec{x}_j\}_{j=1}^p$ is preserved under the embedding $\vec{x}_i \mapsto \Phi \vec{x}_i$

JL Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	000	000000	0

- ▶ Set up: We have many data vectors $\vec{x_j} \in \mathbb{R}^N$, and N is large
- ▶ We would like a linear map $\Phi \in \mathbb{R}^{m \times N}$, with $m \ll N$, such that the geometry of the set $\{\vec{x}_j\}_{j=1}^p$ is preserved under the embedding $\vec{x}_i \mapsto \Phi \vec{x}_i$

JL Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	000	000000	0

The Johnson-Lindenstrauss (JL) Lemma

Theorem (Johnson-Lindenstrauss (1984)) Let $\varepsilon \in (0, 1/2)$ and let $x_1, ..., x_p \in \mathbb{R}^N$ be arbitrary points. Let $m = O(\varepsilon^{-2} \log(p))$ be a natural number. Then there exists a Lipschitz map $f : \mathbb{R}^N \to \mathbb{R}^m$ such that

$$(1-\varepsilon)\|x_i - x_j\|_2^2 \le \|f(x_i) - f(x_j)\|_2^2 \le (1+\varepsilon)\|x_i - x_j\|_2^2$$
 (1)

for all $i, j \in \{1, 2, ..., p\}$.

Original proof: Random orthogonal projections

Felix Krahmer:

Hausdorff Center for Mathematics, Universität Bonn

New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property < 🗆 🕨 🖃 👘 🗧 🕨 🛸 🖹 🕨

JL Lemma	RIP	Main Results	Idea of proof	Discussion
0000000	000	000	000000	0

Applications

Dimension reduction for

- Computer science
- Numerical linear algebra
- Manifold Learning
- ▶ ...

JL Lemma	RIP	Main Results	Idea of proof	Discussion
0000000	000	000	000000	0

Applications

Dimension reduction for

- Computer science
- Numerical linear algebra
- Manifold Learning

▶ ...

To use JL Lemma in practice, f should

- be efficiently computable
- not involve too much randomness

Felix Krahmer:

Hausdorff Center for Mathematics, Universität Bonn

New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property 4 🗆 > 4 🗇 > 4 🗟 > 4 🗟 > 1

JL Lemma	RIP	Main Results	ldea of proof	Discussion
00000●0	000	000	000000	0

Linear JL embeddings

- ▶ In practice: Linear JL embeddings, represented by $\Phi \in \mathbb{R}^{m \times N}$.
- Consider set of differences. E = {x_i x_j}. Then Φ should satisfy:

$$(1-\varepsilon)\|y\|_2^2 \le \|\Phi y\|_2^2 \le (1+\varepsilon)\|y\|_2^2, \quad ext{for all } y \in E$$

For a random matrix Φ , we need for an arbitrary fixed $x \in \mathbb{R}^N$

$$\mathbb{P}\big((1-\varepsilon)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1+\varepsilon)\|x\|_2^2\big) \geq 1-2\exp(-c_0\varepsilon^2 m).$$

c₀ constant (possibly mildly dependent on N)

• Then Φ is a JL embedding with high probability (union bound).

Felix Krahmer:

Hausdorff Center for Mathematics, Universität Bonn

New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property $\langle \Box
angle \ \langle \Box
angle \ \langle \Xi
angle \ \langle \Xi
angle$

JL Lemma	RIP	Main Results	Idea of proof	Discussion
000000	000	000	000000	0

Previous work

- ► [Ailon, Chazelle '06] "Fast Johnson-Lindenstrauss transform": $\Phi = \mathcal{P}W\mathcal{D}$ is fast if $p \le e^{N^{1/2}}$, slow if $e^{N^{1/2}} :$
 - ▶ $\mathcal{D} \in \mathbb{R}^{N \times N}$ is diagonal matrix of random signs,
 - $W \in \mathbb{R}^{N \times N}$ is discrete Fourier matrix,
 - $\mathcal{P} \in \mathbb{R}^{m \times N}$ is sparse Gaussian matrix.
- [Vybiral '10]: $\Phi = C_{part} D$; C_{part} is partial circulant matrix
 - ► Fast, but suboptimal embedding bound of $m = O(\varepsilon^{-2}\log^2(p))$.
- [Ailon, Liberty '10]: Random partial Fourier matrix $W_{rand}\mathcal{D}$:
 - Fast, but suboptimal embedding dimension m = O(e⁻⁴ log(p) log⁴(N)).

Felix Krahmer:

New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property $\langle \Box \rangle \wedge \langle \overline{\Box} \rangle \wedge \langle \overline{\Xi} \rangle \wedge \langle \overline{\Xi} \rangle$

JL Lemma	RIP	Main Results	Idea of proof	Discussion
0000000	•00	000	000000	0

The Restricted Isometry Property

Definition (Candès/Romberg/Tao (2006))

A matrix $\Phi \in \mathbb{R}^{m \times N}$ is said to have the Restricted Isometry Property of order k and level $\delta \in (0, 1)$ (equivalently, (k, δ) -RIP) if

$$(1-\delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1+\delta)\|x\|_2^2$$
 for all k-sparse $x \in \mathbb{R}^N$.

Usual context: If Φ satisfies $(2k, \delta)$ -RIP with $\delta \leq .46$, and if $y = \Phi x$ admits a *k*-sparse solution $x^{\#}$, then $x^{\#} = \underset{\Phi z = y}{\operatorname{argmin}} ||z||_{1}$.

Felix Krahmer:

Hausdorff Center for Mathematics, Universität Bonn

New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property < 🗆 > < 🗇 > < 🖹 > < 🖹 >

JL Lemma	RIP	Main Results	Idea of proof	Discussion
0000000	000	000	000000	0

Known RIP bounds

...

The following random matrices have RIP with high probability :

- Gaussian and Bernoulli matrices if $m \gtrsim \delta^{-2} k \log(N)$
- ▶ Partial Fourier/Hadamard if $m \ge \delta^{-2} k \log^4(N)$
- Partial Circulant Matrices (based on a Rademacher vector) if $m \geq max(\delta^{-2}k\log(N), \delta^{-1}k^{3/2}\log^{3/2}(N))$

Contributors: Baraniuk, Candès, Davenport, DeVore, Pfander, Rauhut, Romberg, Rudelson, Tao, Tropp, Vershynin, Wakin, Ward, ...

▶ The best known deterministic constructions require $m \ge k^{2-\mu}$ for some small μ (Bourgain et al. (2011)).

Felix Krahmer:

JL Lemma	RIP	Main Results	Idea of proof	Discussion
0000000	00•	000	000000	0

Proof of RIP through the JL Lemma

Recall the crucial concentration inequality for the JL Lemma:

$$\mathbb{P}\big((1-\varepsilon)\|x\|_2^2 \le \|\Phi x\|_2^2 \le (1+\varepsilon)\|x\|_2^2\big) \ge 1-2\exp(-c_0\varepsilon^2 m) \quad (2)$$

Baraniuk, Davenport, DeVore, Wakin (2008) establish a connection between this inequality and RIP:

Theorem (Baraniuk et al.)

Suppose that m, N, and $0 < \delta < 1$ are given. If the $m \times N$ random matrix Φ satisfies the concentration inequality (2) with $\varepsilon = \delta$ and absolute constant c_0 , then there exist constants c_1, c_2 such that with probability $\geq 1 - 2e^{-c_2\delta^2m}$, the (k, δ) -RIP holds for Φ with any $k \leq c_1\delta^2m/\log(N/k)$.

In this sense, the JL Lemma implies the RIP.

Felix Krahmer:

- 3

New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property < 🗆 > < 🗇 > < 🖹 > < 🖹 >

JL Lemma	RIP	Main Results	Idea of proof	Discussion
0000000	000	•00	000000	0

RIP implies the JL Lemma

Theorem (K., Ward (2010)) Fix $\eta > 0$ and $\varepsilon > 0$, let $E \subset \mathbb{R}^N$ with |E| = p. Set $k \ge 40 \log \frac{4p}{\eta}$, and suppose that $\Phi \in \mathbb{R}^{m \times N}$ has the (k, δ) -RIP with $\delta \le \frac{\varepsilon}{4}$. Let $\xi \in \mathbb{R}^N$ be a Rademacher sequence. Then with probability $\ge 1 - \eta$,

$$(1 - \varepsilon) \|x\|_2^2 \le \|\Phi D_{\xi} x\|_2^2 \le (1 + \varepsilon) \|x\|_2^2$$

uniformly for all $x \in E$.

- ▶ Rademacher sequence: Uniformly distributed on $\{-1,1\}^N$
- Notation: D_{ξ} = diagonal matrix with ξ on the diagonal.

Felix Krahmer:

New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property < 🗆 🕨 🖃 👘 🗧 🕨 🛸 🖹 🕨

JL Lemma	RIP	Main Results	Idea of proof	Discussion
0000000	000	000	000000	0

A converse to the result by Baraniuk et al.

Proposition (K., Ward (2010))

Fix $\varepsilon > 0$, and suppose that for some c_3 and all pairs (k, m) with $k \le c_3 \delta^2 m / \log(N/k)$, $\Phi = \Phi(m) \in \mathbb{R}^{m \times N}$ has the (k, δ) -RIP with $\delta \le \frac{\varepsilon}{4}$. Fix $x \in \mathbb{R}^N$ and let $\xi \in \mathbb{R}^N$ be a Rademacher sequence. Then there exists a constant c_4 such that for all m, ΦD_{ξ} satisfies the concentration inequality (2) for $c_0 = c_4 \log^{-1}(\frac{N}{k})$.

• This converse is optimal up to a factor of log(N)

Felix Krahmer:

New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property < 🗆 > < 🗇 > < 🖹 > < 🖹 >

JL Lemma	RIP	Main Results	Idea of proof	Discussion
0000000	000	00•	000000	0

	RIP bounds	Previous JL Bound	JL Bound from our result
Partial Fourier	$\delta^{-2}k\log^3(k)\log(N) [1,2]$	$\varepsilon^{-4} \log(\frac{p}{\eta}) \log^3(\log(\frac{p}{\eta})) \log(N)$ [3]	$\varepsilon^{-2}\log(\frac{p}{\eta})\log^3(\log(\frac{p}{\eta}))\log(N)$
Partial Circulant	$\max\left(\delta^{-1}k^{\frac{3}{2}}\log^{\frac{3}{2}}(N), \\ \delta^{-2}k\log^{2}(k)\log^{2}(N)\right) $ [4]	$\varepsilon^{-2}\log^2\left(\frac{p}{\eta}\right)$ [5]	$\max\left(\varepsilon^{-1}\log^{\frac{3}{2}}(\frac{p}{\eta})\log^{\frac{3}{2}}(N),\\\varepsilon^{-2}\log(\frac{p}{\eta})\log^{2}(\log(\frac{p}{\eta}))\log^{2}(N)\right)$
Deterministic (DeVore, Iwen)	$\delta^{-2}k^2\log^2(N) \ [6,7]$		$arepsilon^{-2}\log^2{(rac{p}{\eta})\log^2(N)}$

References

 [1] Candès/Tao (2006)
 [4] Rauhut/Romberg/Tropp (2010)
 [7] Iwen (2010)

 [2] Rudelson/Vershynin (2008)
 [5] Vybíral (2010)
 [6] DeVore (2007)

Felix Krahmer:

Hausdorff Center for Mathematics, Universität Bonn

New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property 4 🗆 > 4 🗇 > 4 🗟 > 4 🗟 > 1 🗟

JL Lemma 0000000	RIP 000	Main Results	ldea of proof ●00000	Discussion 0

Idea of Proof:

- Assume w.l.o.g. x is in decreasing arrangement.
- Partition x in $R = \frac{2N}{k}$ blocks of length $s = \frac{k}{2}$:

$$x = (x_1, \ldots, x_N) = (x_{(1)}, x_{(2)}, \ldots, x_{(R)}) = (x_{(1)}, x_{(\flat)})$$

Need to bound

$$\begin{split} \|\Phi D_{\xi} x\|_{2}^{2} &= \|\Phi D_{x} \xi\|_{2}^{2} \\ &= \sum_{J=1}^{R} \|\Phi_{(J)} D_{x_{(J)}} \xi_{(J)}\|_{2}^{2} + 2\xi_{(1)}^{*} D_{x_{(1)}} \Phi_{(1)}^{*} \Phi_{(b)} D_{x_{(b)}} \xi_{(b)} + \sum_{\substack{J,L=2\\ J \neq L}}^{R} \left\langle \Phi_{(J)} D_{x_{(J)}} \xi_{(J)}, \Phi_{(L)} D_{x_{(L)}} \xi_{(L)} \right\rangle \end{split}$$

Estimate each term separately.

Union bound over x.

Felix Krahmer:

Hausdorff Center for Mathematics, Universität Bonn

New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property $4 \square > 4 \nexists > 4 \equiv > 4 \equiv > 2$

JL Lemma	RIP	Main Results	ldea of proof	Discussion
0000000	000		○●○○○○	0

First term

- ▶ Φ has (k, δ)-RIP, hence also has (s, δ)-RIP, and each Φ_(J) is almost an isometry.
- ► Noting that $\|D_{x_{(J)}}\xi_{(J)}\|_2 = \|D_{\xi_{(J)}}x_{(J)}\|_2 = \|x_{(J)}\|_2$, we estimate

$$(1-\delta)\|x\|_{2}^{2} \leq \sum_{J=1}^{R} \|\Phi_{(J)}D_{x_{(J)}}\xi_{(J)}\|_{2}^{2} \leq (1+\delta)\|x\|_{2}^{2}$$

• Conclude with $\delta \leq \frac{\varepsilon}{4}$ that

$$\left(1-\frac{\varepsilon}{4}\right)\|x\|_{2}^{2} \leq \sum_{J=1}^{R} \|\Phi_{(J)}D_{x_{(J)}}\xi_{(J)}\|_{2}^{2} \leq \left(1+\frac{\varepsilon}{4}\right)\|x\|_{2}^{2}.$$

Felix Krahmer:

Hausdorff Center for Mathematics, Universität Bonn

- 2

New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property < 🗆 🕨 📢 🗄 🕨 < 🖹 🕨

JL Lemma	RIP	Main Results	Idea of proof	Discussion
0000000	000	000		0

Second term

• Keep $\xi_{(1)} = b$ fixed, then use Hoeffding's inequality.

Proposition (Hoeffding (1963)) Let $x \in \mathbb{R}^N$, and let $\xi = (\xi_j)_{j=1}^N$ be a Rademacher sequence. Then, for any t > 0,

$$\mathbb{P}\Big(|\sum_{j}\xi_{j}v_{j}|>t\Big)\leq 2\exp\Big(-\frac{t^{2}}{2\|v\|_{2}^{2}}\Big).$$

• Need to estimate $||v||_2$ for $v = D_{x_{(b)}} \Phi^*_{(b)} \Phi_{(1)} D_{x_{(1)}} b$.

Felix Krahmer:

Hausdorff Center for Mathematics, Universität Bonn

New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property $\langle \Box \rangle \land \langle \Box \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle$

JL Lemma	RIP	Main Results	Idea of proof	Discussion
0000000	000	000	000000	0

Estimate of $||v||_2$

Proposition

Let $R = \lceil N/s \rceil$. Let $\Phi = (\Phi_j) = (\Phi_{(1)}, \Phi_{(b)}) \in \mathbb{R}^{m \times N}$ have the $(2s, \delta)$ -RIP, let $x = (x_{(1)}, x_{(b)}) \in \mathbb{R}^N$ be in decreasing arrangement with $||x||_2 \leq 1$, fix $b \in \{-1, 1\}^s$, and consider the vector

$$v\in\mathbb{R}^N,\quad v=D_{\mathsf{x}_{(\flat)}}\Phi^*_{(\flat)}\Phi_{(1)}D_{\mathsf{x}_{(1)}}b.$$

Then $\|v\|_2 \leq \frac{\delta}{\sqrt{s}}$.

Felix Krahmer:

Hausdorff Center for Mathematics, Universität Bonn

New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property 4 🗆 🕨 4 🖻 🕨 4 🖹 🕨 4 🖹

0000000 000 000 00000 0	JL Lemma	RIP	Main Results	Idea of proof	Discussion
	000000	000	000	000000	0

Key ingredients for the proof of the proposition

- $\|x_{(J)}\|_{\infty} \leq \frac{1}{\sqrt{k}} \|x_{(J-1)}\|_2$ for J > 1 (decreasing arrangement).
- ▶ Off-diagonal RIP estimate: $\|\Phi_{(J)}^*\Phi_{(L)}\| \leq \delta$ for $J \neq L$.

JL Lemma	RIP	Main Results	ldea of proof	Discussion
0000000	000	000	00000●	0

Third term

Use concentration inequality for Rademacher Chaos:

Proposition (Hanson/Wright (1971))

Let X be the $N \times N$ matrix with entries $x_{i,j}$ and assume that $x_{i,i} = 0$ for all $i \in [N]$. Let $\xi = (\xi_j)_{j=1}^N$ be a Rademacher sequence. Then, for any t > 0,

$$\mathbb{P}\Big(|\sum_{i,j}\xi_i\xi_jx_{i,j}|>t\Big)\leq 2\exp\Big(-\frac{1}{64}\min\Big(\frac{\frac{96}{65}t}{\|X\|},\frac{t^2}{\|X\|_{\mathcal{F}}^2}\Big)\Big).$$

▶ Need ||C|| and $||C||_{\mathcal{F}}$ for

$$C \in \mathbb{R}^{N imes N}, \quad C_{j,\ell} = \left\{ egin{array}{cc} x_j \Phi_j^* \Phi_\ell x_\ell, & j,\ell > s \ ext{in different blocks} \\ 0, & ext{else.} \end{array}
ight.$$

Felix Krahmer:

Hausdorff Center for Mathematics, Universität Bonn

New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property 🗵 🕨 + I 🗇 🕨 + I 😇 🕨 + I 😇 🕨

JL Lemma	RIP	Main Results	Idea of proof	Discussion
0000000	000	000	000000	•

Summary and discussion

- Novel connection: RIP implies JL Lemma.
- Yields best-known bounds for embedding dimension for many random matrices, optimal dependence on distortion ε.
- ▶ Important balance: log-factors in *N* and log factors in *p*.
- Structured matrices also reduce randomness. Can randomness be reduced further?