New and improved Johnson－Lindenstrauss embeddings via the Restricted Isometry Property

Felix Krahmer
Hausdorff Center for Mathematics，Universität Bonn

3／10／2011

Joint work with Rachel Ward（Courant Institute，NYU）

Linear Dimensionality reduction

- Set up: We have many data vectors $\vec{x}_{j} \in \mathbb{R}^{N}$ for N large

Linear Dimensionality reduction

- Set up: We have many data vectors $\vec{x}_{j} \in \mathbb{R}^{N}$ for N large
- We would like a linear map $\Phi \in \mathbb{R}^{m \times N}$, with $m \ll N$, such that the geometry of the set $\left\{\vec{x}_{j}\right\}_{j=1}^{p}$ is preserved under the embedding $\vec{x}_{j} \mapsto \Phi \vec{x}_{j}$

Linear Dimensionality reduction

- Set up: We have many data vectors $\vec{x}_{j} \in \mathbb{R}^{N}$ for N large
- We would like a linear map $\Phi \in \mathbb{R}^{m \times N}$, with $m \ll N$, such that the geometry of the set $\left\{\vec{x}_{j}\right\}_{j=1}^{p}$ is preserved under the embedding $\vec{x}_{j} \mapsto \Phi \vec{x}_{j}$

Linear Dimensionality reduction

- Set up: We have many data vectors $\vec{x}_{j} \in \mathbb{R}^{N}$, and N is large
- We would like a linear map $\Phi \in \mathbb{R}^{m \times N}$, with $m \ll N$, such that the geometry of the set $\left\{\vec{x}_{j}\right\}_{j=1}^{p}$ is preserved under the embedding $\vec{x}_{j} \mapsto \Phi \vec{x}_{j}$

The Johnson-Lindenstrauss (JL) Lemma

Theorem (Johnson-Lindenstrauss (1984))
Let $\varepsilon \in(0,1 / 2)$ and let $x_{1}, \ldots, x_{p} \in \mathbb{R}^{N}$ be arbitrary points. Let $m=O\left(\varepsilon^{-2} \log (p)\right)$ be a natural number. Then there exists a Lipschitz map $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{m}$ such that

$$
\begin{equation*}
(1-\varepsilon)\left\|x_{i}-x_{j}\right\|_{2}^{2} \leq\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\|_{2}^{2} \leq(1+\varepsilon)\left\|x_{i}-x_{j}\right\|_{2}^{2} \tag{1}
\end{equation*}
$$

for all $i, j \in\{1,2, \ldots, p\}$.
Original proof: Random orthogonal projections

Applications

Dimension reduction for

- Computer science
- Numerical linear algebra
- Manifold Learning

Applications

Dimension reduction for

- Computer science
- Numerical linear algebra
- Manifold Learning

To use JL Lemma in practice, f should

- be efficiently computable
- not involve too much randomness

Linear JL embeddings

- In practice: Linear JL embeddings, represented by $\Phi \in \mathbb{R}^{m \times N}$.
- Consider set of differences. $E=\left\{x_{i}-x_{j}\right\}$. Then Φ should satisfy:

$$
(1-\varepsilon)\|y\|_{2}^{2} \leq\|\Phi y\|_{2}^{2} \leq(1+\varepsilon)\|y\|_{2}^{2}, \quad \text { for all } y \in E
$$

- For a random matrix Φ, we need for an arbitrary fixed $x \in \mathbb{R}^{N}$ $\mathbb{P}\left((1-\varepsilon)\|x\|_{2}^{2} \leq\|\Phi x\|_{2}^{2} \leq(1+\varepsilon)\|x\|_{2}^{2}\right) \geq 1-2 \exp \left(-c_{0} \varepsilon^{2} m\right)$.
- c_{0} constant (possibly mildly dependent on N)
- Then Φ is a JL embedding with high probability (union bound).

Previous work

- [Ailon, Chazelle '06] "Fast Johnson-Lindenstrauss transform": $\Phi=\mathcal{P} W \mathcal{D}$ is fast if $p \leq e^{N^{1 / 2}}$, slow if $e^{N^{1 / 2}}<p<e^{N}$:
- $\mathcal{D} \in \mathbb{R}^{N \times N}$ is diagonal matrix of random signs,
- $W \in \mathbb{R}^{N \times N}$ is discrete Fourier matrix,
- $\mathcal{P} \in \mathbb{R}^{m \times N}$ is sparse Gaussian matrix.
- [Vybiral '10]: $\Phi=\mathcal{C}_{\text {part }} \mathcal{D} ; \mathcal{C}_{\text {part }}$ is partial circulant matrix
- Fast, but suboptimal embedding bound of $m=\mathcal{O}\left(\varepsilon^{-2} \log ^{2}(p)\right)$.
- [Ailon, Liberty '10]: Random partial Fourier matrix $W_{\text {rand }} \mathcal{D}$:
- Fast, but suboptimal embedding dimension
$m=\mathcal{O}\left(\varepsilon^{-4} \log (p) \log ^{4}(N)\right)$.

The Restricted Isometry Property

Definition (Candès/Romberg/Tao (2006))
A matrix $\Phi \in \mathbb{R}^{m \times N}$ is said to have the Restricted Isometry Property of order k and level $\delta \in(0,1)$ (equivalently, (k, δ)-RIP) if
$(1-\delta)\|x\|_{2}^{2} \leq\|\Phi x\|_{2}^{2} \leq(1+\delta)\|x\|_{2}^{2} \quad$ for all k-sparse $x \in \mathbb{R}^{N}$.

Usual context: If Φ satisfies $(2 k, \delta)$-RIP with $\delta \leq .46$, and if $y=\Phi x$ admits a k-sparse solution $x^{\#}$, then $x^{\#}=\underset{\Phi z=y}{\operatorname{argmin}}\|z\|_{1}$.

Known RIP bounds

The following random matrices have RIP with high probability:

- Gaussian and Bernoulli matrices if $m \gtrsim \delta^{-2} k \log (N)$
- Partial Fourier/Hadamard if $m \gtrsim \delta^{-2} k \log ^{4}(N)$
- Partial Circulant Matrices (based on a Rademacher vector) if $m \gtrsim \max \left(\delta^{-2} k \log (N), \delta^{-1} k^{3 / 2} \log ^{3 / 2}(N)\right)$

Contributors: Baraniuk, Candès, Davenport, DeVore, Pfander, Rauhut, Romberg, Rudelson, Tao, Tropp, Vershynin, Wakin, Ward, . . .

- The best known deterministic constructions require $m \gtrsim k^{2-\mu}$ for some small μ (Bourgain et al. (2011)).

Proof of RIP through the JL Lemma

Recall the crucial concentration inequality for the JL Lemma:
$\mathbb{P}\left((1-\varepsilon)\|x\|_{2}^{2} \leq\|\Phi x\|_{2}^{2} \leq(1+\varepsilon)\|x\|_{2}^{2}\right) \geq 1-2 \exp \left(-c_{0} \varepsilon^{2} m\right)$
Baraniuk, Davenport, DeVore, Wakin (2008) establish a connection between this inequality and RIP:
Theorem (Baraniuk et al.)
Suppose that m, N, and $0<\delta<1$ are given. If the $m \times N$ random matrix Φ satisfies the concentration inequality (2) with $\varepsilon=\delta$ and absolute constant c_{0}, then there exist constants c_{1}, c_{2} such that with probability $\geq 1-2 e^{-c_{2} \delta^{2} m}$, the (k, δ)-RIP holds for Φ with any $k \leq c_{1} \delta^{2} m / \log (N / k)$.

- In this sense, the JL Lemma implies the RIP.

RIP implies the JL Lemma

Theorem (K., Ward (2010))
Fix $\eta>0$ and $\varepsilon>0$, let $E \subset \mathbb{R}^{N}$ with $|E|=p$. Set $k \geq 40 \log \frac{4 p}{\eta}$, and suppose that $\Phi \in \mathbb{R}^{m \times N}$ has the (k, δ)-RIP with $\delta \leq \frac{\varepsilon}{4}$. Let $\xi \in \mathbb{R}^{N}$ be a Rademacher sequence. Then with probability $\geq 1-\eta$,

$$
(1-\varepsilon)\|x\|_{2}^{2} \leq\left\|\Phi D_{\xi} x\right\|_{2}^{2} \leq(1+\varepsilon)\|x\|_{2}^{2}
$$

uniformly for all $x \in E$.

- Rademacher sequence: Uniformly distributed on $\{-1,1\}^{N}$
- Notation: $D_{\xi}=$ diagonal matrix with ξ on the diagonal.

A converse to the result by Baraniuk et al.

Proposition (K., Ward (2010))

Fix $\varepsilon>0$, and suppose that for some c_{3} and all pairs (k, m) with $k \leq c_{3} \delta^{2} m / \log (N / k), \Phi=\Phi(m) \in \mathbb{R}^{m \times N}$ has the (k, δ)-RIP with $\delta \leq \frac{\varepsilon}{4}$. Fix $x \in \mathbb{R}^{N}$ and let $\xi \in \mathbb{R}^{N}$ be a Rademacher sequence.
Then there exists a constant c_{4} such that for all $m, \Phi D_{\xi}$ satisfies the concentration inequality (2) for $c_{0}=c_{4} \log ^{-1}\left(\frac{N}{k}\right)$.

- This converse is optimal up to a factor of $\log (N)$

	RIP bounds	Previous JL Bound	JL Bound from our result
Partial Fourier	$\delta^{-2} k \log ^{3}(k) \log (N) \quad[1,2]$	$\varepsilon^{-4} \log \left(\frac{p}{\eta}\right) \log ^{3}\left(\log \left(\frac{p}{\eta}\right)\right) \log (N)$ [3]	$\varepsilon^{-2} \log \left(\frac{p}{\eta}\right) \log ^{3}\left(\log \left(\frac{p}{\eta}\right)\right) \log (N)$
Partial Circulant	$\begin{gather*} \max \left(\delta^{-1} k^{\frac{3}{2}} \log ^{\frac{3}{2}}(N)\right. \\ \left.\delta^{-2} k \log ^{2}(k) \log ^{2}(N)\right) \tag{4} \end{gather*}$	$\varepsilon^{-2} \log ^{2}\left(\frac{p}{\eta}\right)$ [5]	$\begin{gathered} \max \left(\varepsilon^{-1} \log \frac{3}{2}\left(\frac{p}{\eta}\right) \log ^{\frac{3}{2}}(N),\right. \\ \left.\varepsilon^{-2} \log \left(\frac{p}{\eta}\right) \log ^{2}\left(\log \left(\frac{p}{\eta}\right)\right) \log ^{2}(N)\right) \end{gathered}$
Deterministic (DeVore, Iwen)	$\delta^{-2} k^{2} \log ^{2}(N)[6,7]$		$\varepsilon^{-2} \log ^{2}\left(\frac{p}{\eta}\right) \log ^{2}(N)$

References

[1] Candès/Tao (2006)
[2] Rudelson/Vershynin (2008)
[3] Ailon/Liberty (2010)
[4] Rauhut/Romberg/Tropp (2010) [7] Iwen (2010)
[5] Vybíral (2010)
[6] DeVore (2007)

Idea of Proof:

- Assume w.l.o.g. x is in decreasing arrangement.
- Partition x in $R=\frac{2 N}{k}$ blocks of length $s=\frac{k}{2}$:

$$
x=\left(x_{1}, \ldots, x_{N}\right)=\left(x_{(1)}, x_{(2)}, \ldots, x_{(R)}\right)=\left(x_{(1)}, x_{(b)}\right)
$$

- Need to bound

$$
\begin{aligned}
\left\|\Phi D_{\xi} \times\right\|_{2}^{2} & =\left\|\Phi D_{x} \xi\right\|_{2}^{2} \\
& =\sum_{J=1}^{R}\left\|\Phi_{(J)} D_{\times(J)} \xi_{(J)}\right\|_{2}^{2}+2 \xi_{(1)}^{*} D_{x_{(1)}} \Phi_{(1)}^{*} \Phi_{(b)} D_{x_{(b)}} \xi_{(b)}+\sum_{\substack{J, L=2 \\
J \neq L}}^{R}\left\langle\Phi_{(J)} D_{x_{(J)}} \xi_{(J)}, \Phi_{(L)} D_{x_{(L)}} \xi_{(L)}\right\rangle
\end{aligned}
$$

- Estimate each term separately.
- Union bound over x.

First term

- Φ has (k, δ)-RIP, hence also has (s, δ)-RIP, and each $\Phi_{(J)}$ is almost an isometry.
- Noting that $\left\|D_{x_{(J)}} \xi_{(J)}\right\|_{2}=\left\|D_{\xi_{(J)}} x_{(J)}\right\|_{2}=\left\|x_{(J)}\right\|_{2}$, we estimate

$$
(1-\delta)\|x\|_{2}^{2} \leq \sum_{J=1}^{R}\left\|\Phi_{(J)} D_{x_{(J)}} \xi_{(J)}\right\|_{2}^{2} \leq(1+\delta)\|x\|_{2}^{2}
$$

- Conclude with $\delta \leq \frac{\varepsilon}{4}$ that

$$
\left(1-\frac{\varepsilon}{4}\right)\|x\|_{2}^{2} \leq \sum_{J=1}^{R}\left\|\Phi_{(J)} D_{x_{(J)}} \xi_{(J)}\right\|_{2}^{2} \leq\left(1+\frac{\varepsilon}{4}\right)\|x\|_{2}^{2}
$$

Second term

- Keep $\xi_{(1)}=b$ fixed, then use Hoeffding's inequality.

Proposition (Hoeffding (1963))
Let $x \in \mathbb{R}^{N}$, and let $\xi=\left(\xi_{j}\right)_{j=1}^{N}$ be a Rademacher sequence. Then, for any $t>0$,

$$
\mathbb{P}\left(\left|\sum_{j} \xi_{j} v_{j}\right|>t\right) \leq 2 \exp \left(-\frac{t^{2}}{2\|v\|_{2}^{2}}\right)
$$

- Need to estimate $\|v\|_{2}$ for $v=D_{x_{(b)}} \Phi_{(b)}^{*} \Phi_{(1)} D_{x_{(1)}} b$.

Estimate of $\|v\|_{2}$

Proposition

Let $R=\lceil N / s\rceil$. Let $\Phi=\left(\Phi_{j}\right)=\left(\Phi_{(1)}, \Phi_{(b)}\right) \in \mathbb{R}^{m \times N}$ have the $(2 s, \delta)$-RIP, let $x=\left(x_{(1)}, x_{(b)}\right) \in \mathbb{R}^{N}$ be in decreasing arrangement with $\|x\|_{2} \leq 1$, fix $b \in\{-1,1\}^{s}$, and consider the vector

$$
v \in \mathbb{R}^{N}, \quad v=D_{x_{(b)}} \Phi_{(b)}^{*} \Phi_{(1)} D_{x_{(1)}} b
$$

Then $\quad\|v\|_{2} \leq \frac{\delta}{\sqrt{s}}$.

Key ingredients for the proof of the proposition

- $\left\|x_{(J)}\right\|_{\infty} \leq \frac{1}{\sqrt{k}}\left\|x_{(J-1)}\right\|_{2}$ for $J>1$ (decreasing arrangement).
- Off-diagonal RIP estimate: $\left\|\Phi_{(J)}^{*} \Phi_{(L)}\right\| \leq \delta$ for $J \neq L$.

Third term

- Use concentration inequality for Rademacher Chaos:

Proposition (Hanson/Wright (1971))

Let X be the $N \times N$ matrix with entries $x_{i, j}$ and assume that $x_{i, i}=0$ for all $i \in[N]$. Let $\xi=\left(\xi_{j}\right)_{j=1}^{N}$ be a Rademacher sequence.
Then, for any $t>0$,

$$
\mathbb{P}\left(\left|\sum_{i, j} \xi_{i} \xi_{j} x_{i, j}\right|>t\right) \leq 2 \exp \left(-\frac{1}{64} \min \left(\frac{\frac{96}{65} t}{\|X\|}, \frac{t^{2}}{\|X\|_{\mathcal{F}}^{2}}\right)\right)
$$

- Need $\|C\|$ and $\|C\|_{\mathcal{F}}$ for

$$
C \in \mathbb{R}^{N \times N}, \quad C_{j, \ell}= \begin{cases}x_{j} \Phi_{j}^{*} \Phi_{\ell} x_{\ell}, & j, \ell>s \text { in different blocks } \\ 0, & \text { else. }\end{cases}
$$

Summary and discussion

- Novel connection: RIP implies JL Lemma.
- Yields best-known bounds for embedding dimension for many random matrices, optimal dependence on distortion ε.
- Important balance: log-factors in N and log factors in p.
- Structured matrices also reduce randomness. Can randomness be reduced further?

