Approximation of Points on Low-dimensional Manifolds via Compressive Measurements

Mark Iwen, Mauro Maggioni

Duke University

Thursday, March 10, 2011

ヘロト ヘアト ヘヨト

크 > 크

Outline

- The Problem: Approximation of Points Near A Manifold
- 2 Representing the Manifold: Geometric Wavelets
- 3 Proposed Recovery Procedure
- Approximation Guarantees

ヘロト ヘ回ト ヘヨト ヘヨト

The Problem – Manifold CS [Baraniuk, Wakin, ...]

- We have an approximate representation for a compact *d*-dimensional Riemannian submanifold, \mathcal{M} , of \mathbb{R}^D
 - We expect to recover points, $\vec{x} \in \mathbb{R}^{D}$, nearly on \mathcal{M}
 - d << D
- We acquire compressed measurements of \vec{x} , $M\vec{x} \in \mathbb{R}^m$, via an $m \times D$ matrix M
 - *M* is a Johnson-Lindenstrauss embedding (also has RIP)
- Approximate the Optimal Representative for \vec{x} on \mathcal{M} ,

$$\vec{x}_{\text{opt}} = \operatorname*{arg\,min}_{\vec{y} \in \mathcal{M}} \|\vec{x} - \vec{y}\|.$$

The Problem – Manifold CS [Baraniuk, Wakin, ...]

- We have an approximate representation for a compact *d*-dimensional Riemannian submanifold, \mathcal{M} , of \mathbb{R}^D
 - We expect to recover points, $\vec{x} \in \mathbb{R}^{D}$, nearly on \mathcal{M}
 - d << D
- We acquire compressed measurements of *x*, *Mx* ∈ ℝ^m, via an *m* × *D* matrix *M*
 - *M* is a Johnson-Lindenstrauss embedding (also has RIP)
- Approximate the Optimal Representative for \vec{x} on \mathcal{M} ,

$$\vec{x}_{\text{opt}} = \operatorname*{arg\,min}_{\vec{y} \in \mathcal{M}} \| \vec{x} - \vec{y} \|.$$

< < >> < </p>

The Problem – Manifold CS [Baraniuk, Wakin, ...]

- We have an approximate representation for a compact *d*-dimensional Riemannian submanifold, \mathcal{M} , of \mathbb{R}^D
 - We expect to recover points, $\vec{x} \in \mathbb{R}^{D}$, nearly on \mathcal{M}
 - d << D
- We acquire compressed measurements of *x*, *Mx* ∈ ℝ^m, via an *m* × *D* matrix *M*
 - *M* is a Johnson-Lindenstrauss embedding (also has RIP)
- Approximate the Optimal Representative for \vec{x} on \mathcal{M} ,

$$ec{x}_{ ext{opt}} = rgmin_{ec{y} \in \mathcal{M}} \|ec{x} - ec{y}\|.$$

< < >> < </p>

Geometric Wavelets [Allard, Chen, Maggioni]

Built in two stages:

• Create a Dyadic Partition of Samples from $\mathcal{M} \subset \mathbb{R}^D$

< ロ > < 同 > < 三 >

• Estimate Tangent Space within Each Dyadic Cube

Geometric Wavelets [Allard, Chen, Maggioni]

Built in two stages:

• Create a Dyadic Partition of Samples from $\mathcal{M} \subset \mathbb{R}^D$

Estimate Tangent Space within Each Dyadic Cube

Example: Swiss Roll

M.A. Iwen, M. Maggioni M

Manifold CS

Coarse Scale Approximation of Swiss Roll

ъ

Dyadic Structure for Swiss Roll Approximation

M.A. Iwen, M. Maggioni Manifold CS

Geometric Wavelets Give Us

At each Scale $j \in [J] = \{1, \ldots, J\}$ we get:

- A set of dyadic "centers" denoted by $\vec{c}_{j,k}$ for $k \in [K_j]$
- A set of orthogonal $d \times D$ matrices, $\Phi_{j,k}$, for $k \in [K_j]$
- An affine projector, $\mathbb{P}_{j,k}(\vec{x})$, for $k \in [K_j]$ defined as

$$\mathbb{P}_{j,k}\left(ec{x}
ight) \ = \ \Phi_{j,k}^{\mathcal{T}}\Phi_{j,k}\left(ec{x}-ec{c}_{j,k}
ight)+ec{c}_{j,k}$$

イロト イポト イヨト イヨト 三連

Geometric Wavelets Give Us

At each Scale $j \in [J] = \{1, \ldots, J\}$ we get:

- A set of dyadic "centers" denoted by $\vec{c}_{j,k}$ for $k \in [K_j]$
- A set of orthogonal $d \times D$ matrices, $\Phi_{j,k}$, for $k \in [K_j]$
- An affine projector, $\mathbb{P}_{j,k}(\vec{x})$, for $k \in [K_j]$ defined as

$$\mathbb{P}_{j,k}\left(ec{x}
ight) \ = \ \Phi_{j,k}^{\mathcal{T}}\Phi_{j,k}\left(ec{x}-ec{c}_{j,k}
ight)+ec{c}_{j,k}$$

イロト イポト イヨト イヨト 三連

Geometric Wavelets Give Us

At each Scale $j \in [J] = \{1, \ldots, J\}$ we get:

- A set of dyadic "centers" denoted by $\vec{c}_{j,k}$ for $k \in [K_j]$
- A set of orthogonal $d \times D$ matrices, $\Phi_{j,k}$, for $k \in [K_j]$
- An affine projector, $\mathbb{P}_{j,k}(\vec{x})$, for $k \in [K_j]$ defined as

$$\mathbb{P}_{j,k}\left(ec{x}
ight) \;=\; \Phi_{j,k}^{\mathcal{T}}\Phi_{j,k}\left(ec{x}-ec{c}_{j,k}
ight)+ec{c}_{j,k}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Geometric Wavelets Give Us ...

At each Scale $j \in [J] = \{1, \ldots, J\}$ we get:

- A set of dyadic "centers" denoted by $\vec{c}_{j,k}$ for $k \in [K_j]$
- A set of orthogonal $d \times D$ matrices, $\Phi_{j,k}$, for $k \in [K_j]$
- An affine projector, $\mathbb{P}_{j,k}(\vec{x})$, for $k \in [K_j]$ defined as

$$\mathbb{P}_{j,k}\left(\vec{x}\right) = \Phi_{j,k}^{\mathcal{T}} \Phi_{j,k}\left(\vec{x} - \vec{c}_{j,k}\right) + \vec{c}_{j,k}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The Scale *j* Approximation of $\vec{x} \in \mathbb{R}^{D}$ near \mathcal{M} is ...

• $k_j(\vec{x}) = \arg\min_{k \in [K_j]} \|\vec{x} - \vec{c}_{j,k}\|$ • $\vec{x} \approx \mathbb{P}_{j,k_j(\vec{x})}(\vec{x}) = \Phi_{j,k_j(\vec{x})}^T \Phi_{j,k_j(\vec{x})}(\vec{x} - \vec{c}_{j,k_j(\vec{x})}) + \vec{c}_{j,k_j(\vec{x})}$

The Scale *j* Approximation of $\vec{x} \in \mathbb{R}^{D}$ near \mathcal{M} is ...

• $k_j(\vec{x}) = \arg\min_{k \in [K_j]} \|\vec{x} - \vec{c}_{j,k}\|$ • $\vec{x} \approx \mathbb{P}_{j,k_j(\vec{x})}(\vec{x}) = \Phi_{j,k_j(\vec{x})}^T \Phi_{j,k_j(\vec{x})}(\vec{x} - \vec{c}_{j,k_j(\vec{x})}) + \vec{c}_{j,k_j(\vec{x})}$

The Scale *j* Approximation of $\vec{x} \in \mathbb{R}^D$ near \mathcal{M} is ...

•
$$k_j(\vec{x}) = \arg \min_{k \in [K_j]} \|\vec{x} - \vec{c}_{j,k}\|$$

• $\vec{x} \approx \mathbb{P}_{j,k_j(\vec{x})}(\vec{x}) = \Phi_{j,k_j(\vec{x})}^T \Phi_{j,k_j(\vec{x})}(\vec{x} - \vec{c}_{j,k_j(\vec{x})}) + \vec{c}_{j,k_j(\vec{x})}$

Scale *j* Approximation Guarantee

• Recall that
$$\vec{x}_{\text{opt}} = \underset{\vec{y} \in \mathcal{M}}{\arg\min} \| \vec{x} - \vec{y} \|.$$

Theorem

Let \mathbb{P}_j be a scale *j* Geometric Wavelet representation for a compact smooth submanifold, \mathcal{M} , of \mathbb{R}^D . Then, for *j* sufficiently large, we will have

$$\left\|\vec{x} - \mathbb{P}_{j,k_{j}\left(\vec{x}\right)}\left(\vec{x}\right)\right\| \leq 4\left\|\vec{x} - \vec{x}_{\text{opt}}\right\| + O\left(2^{-j}\right)$$

for all $\vec{x} \in \mathbb{R}^D$.

• Can we achieve similar approximation guarantees using only compressed measurements of \vec{x} (i.e., $M\vec{x}$)???

ヘロト 人間ト 人団ト 人団ト

Scale *j* Approximation Guarantee

• Recall that
$$\vec{x}_{\text{opt}} = \underset{\vec{y} \in \mathcal{M}}{\arg\min} \| \vec{x} - \vec{y} \|.$$

Theorem

Let \mathbb{P}_j be a scale *j* Geometric Wavelet representation for a compact smooth submanifold, \mathcal{M} , of \mathbb{R}^D . Then, for *j* sufficiently large, we will have

$$\left\| ec{x} - \mathbb{P}_{j,k_j\left(ec{x}
ight)}\left(ec{x}
ight)
ight\| \leq 4 \left\| ec{x} - ec{x}_{ ext{opt}}
ight\| + O\left(2^{-j}
ight)$$

for all $\vec{x} \in \mathbb{R}^{D}$.

• Can we achieve similar approximation guarantees using only compressed measurements of \vec{x} (i.e., $M\vec{x}$)???

Scale *j* Approximation Guarantee

• Recall that
$$\vec{x}_{\text{opt}} = \underset{\vec{y} \in \mathcal{M}}{\arg\min} \| \vec{x} - \vec{y} \|.$$

Theorem

Let \mathbb{P}_j be a scale *j* Geometric Wavelet representation for a compact smooth submanifold, \mathcal{M} , of \mathbb{R}^D . Then, for *j* sufficiently large, we will have

$$\left\| ec{x} - \mathbb{P}_{j,k_j\left(ec{x}
ight)}\left(ec{x}
ight)
ight\| \leq 4 \left\| ec{x} - ec{x}_{ ext{opt}}
ight\| + O\left(2^{-j}
ight)$$

for all $\vec{x} \in \mathbb{R}^{D}$.

• Can we achieve similar approximation guarantees using only compressed measurements of \vec{x} (i.e., $M\vec{x}$)???

Approximate $\mathbb{P}_{j,k_j(\vec{x})}(\vec{x})$ using only $M\vec{x} \in \mathbb{R}^m$

Input: Measurements $M\vec{x} \in \mathbb{R}^m$, Approximation to manifold $\mathcal{M} \subset \mathbb{R}^D$, $\mathbb{P}_j = \{\mathbb{P}_{j,k} \mid k \in [K_j]\}$.

2 Nearest Neighbors:
$$k' \leftarrow$$
 arg min $_{k \in [K_i]} || M\vec{x} - M\vec{c}_{j,k} ||$.

- **3** Least Squares: $\vec{u}' \leftarrow$ arg min $_{\vec{u} \in \mathbb{R}^d} \| M \Phi_{j,k'}^{\mathrm{T}} \vec{u} M \vec{x} \|$.
- **Output:** $\mathcal{A}(M\vec{x}) \approx \mathbb{P}_{j,k_j(\vec{x})}(\vec{x})$

Approximate $\mathbb{P}_{j,k_j(\vec{x})}(\vec{x})$ using only $M\vec{x} \in \mathbb{R}^m$

- **Input:** Measurements $M\vec{x} \in \mathbb{R}^m$, Approximation to manifold $\mathcal{M} \subset \mathbb{R}^D$, $\mathbb{P}_j = \{\mathbb{P}_{j,k} \mid k \in [K_j]\}$.
- **2** Nearest Neighbors: $k' \leftarrow \arg \min_{k \in [K_i]} ||M\vec{x} M\vec{c}_{j,k}||$.

Second Least Squares: $\vec{u}' \leftarrow \arg \min_{\vec{u} \in \mathbb{R}^d} \| M \Phi_{j,k'}^{\mathrm{T}} \vec{u} - M \vec{x} \|$.

Output: $\mathcal{A}(M\vec{x}) \approx \mathbb{P}_{j,k_j(\vec{x})}(\vec{x})$

イロト イポト イヨト イヨト 三日

Approximate $\mathbb{P}_{j,k_j(\vec{x})}(\vec{x})$ using only $M\vec{x} \in \mathbb{R}^m$

• **Input:** Measurements $M\vec{x} \in \mathbb{R}^m$, Approximation to manifold $\mathcal{M} \subset \mathbb{R}^D$, $\mathbb{P}_j = \{\mathbb{P}_{j,k} \mid k \in [K_j]\}$.

2 Nearest Neighbors: $k' \leftarrow \arg \min_{k \in [K_i]} ||M\vec{x} - M\vec{c}_{j,k}||$.

Solution Least Squares: $\vec{u}' \leftarrow \arg \min_{\vec{u} \in \mathbb{R}^d} \| M \Phi_{j,k'}^{\mathrm{T}} \vec{u} - M \vec{x} \|.$

Output: $\mathcal{A}(M\vec{x}) \approx \mathbb{P}_{j,k_j(\vec{x})}(\vec{x})$

イロン 不得 とくほ とくほう 一座

Approximate $\mathbb{P}_{j,k_j(\vec{x})}(\vec{x})$ using only $M\vec{x} \in \mathbb{R}^m$

- **Input:** Measurements $M\vec{x} \in \mathbb{R}^m$, Approximation to manifold $\mathcal{M} \subset \mathbb{R}^D$, $\mathbb{P}_j = \{\mathbb{P}_{j,k} \mid k \in [K_j]\}$.
- 3 Nearest Neighbors: $k' \leftarrow \arg \min_{k \in [K_i]} \|M\vec{x} M\vec{c}_{j,k}\|$.
- **Solution** Least Squares: $\vec{u}' \leftarrow \arg \min_{\vec{u} \in \mathbb{R}^d} \| M \Phi_{j,k'}^{\mathrm{T}} \vec{u} M \vec{x} \|.$

Output: $\mathcal{A}(M\vec{x}) \approx \mathbb{P}_{j,k_i(\vec{x})}(\vec{x})$

イロト イポト イヨト イヨト 三日

Approximate $\mathbb{P}_{j,k_j(\vec{x})}(\vec{x})$ using only $M\vec{x} \in \mathbb{R}^m$

- **Input:** Measurements $M\vec{x} \in \mathbb{R}^m$, Approximation to manifold $\mathcal{M} \subset \mathbb{R}^D$, $\mathbb{P}_j = \{\mathbb{P}_{j,k} \mid k \in [K_j]\}$.
- **2** Nearest Neighbors: $k' \leftarrow \arg \min_{k \in [K_i]} ||M\vec{x} M\vec{c}_{j,k}||$.
- **Solution** Least Squares: $\vec{u}' \leftarrow \arg \min_{\vec{u} \in \mathbb{R}^d} \| M \Phi_{j,k'}^{\mathrm{T}} \vec{u} M \vec{x} \|.$

イロン 不得 とくほ とくほう 一座

6 Output: $\mathcal{A}(M\vec{x}) \approx \mathbb{P}_{j,k_j(\vec{x})}(\vec{x})$

Notes

A Nonuniform Approximation Guarantee

Theorem

Let $\mathcal{M} \subset \mathbb{R}^D$ be a compact *d*-dimensional Riemannian submanifold of \mathbb{R}^D , $\vec{x} \in \mathbb{R}^D$, $\delta \in \mathbb{R}^+$, and $p \in (0, 1)$. Then, the reconstruction algorithm on the last slide, $\mathcal{A} : \mathbb{R}^m \to \mathbb{R}^D$, is such that a random $m \times D$ measurement matrix, M, will satisfy

$$\left\| ec{x} - \mathcal{A} \left(M ec{x}
ight)
ight\| \ \le \ \mathbf{8} \cdot \left\| ec{x} - ec{x}_{ ext{opt}}
ight\| + \delta$$

with probability at least 1 - p whenever *m* is $\Omega(d \log(d/p\delta))$. The reconstruction algorithm's runtime will be O(dmD).

ヘロト ヘアト ヘヨト ヘ

A Nonuniform Approximation Guarantee

Theorem

The reconstruction algorithm, $\mathcal{A} : \mathbb{R}^m \to \mathbb{R}^D$, is such that a random $m \times D$ measurement matrix, M, will satisfy

$$\left\| ec{x} - \mathcal{A} \left(\boldsymbol{M} ec{x}
ight)
ight\| \ \leq \ \mathbf{8} \cdot \left\| ec{x} - ec{x}_{ ext{opt}}
ight\| + \delta$$

with probability at least 1 - p whenever *m* is $\Omega(d \log(d/p\delta))$.

- Ω-notation hides *m*'s dependence on properties of *M* (i.e., its *d*-dimensional volume, curvature and reach)
- But, *m* does not depend on the extrinsic dimension of \mathcal{M}

イロト 不同 とくほ とくほ とう

A Nonuniform Approximation Guarantee

Theorem

The reconstruction algorithm, $\mathcal{A} : \mathbb{R}^m \to \mathbb{R}^D$, is such that a random $m \times D$ measurement matrix, M, will satisfy

$$\left\| ec{x} - \mathcal{A} \left(\boldsymbol{M} ec{x}
ight)
ight\| \ \leq \ \mathbf{8} \cdot \left\| ec{x} - ec{x}_{ ext{opt}}
ight\| + \delta$$

with probability at least 1 - p whenever *m* is $\Omega(d \log(d/p\delta))$.

- Ω-notation hides *m*'s dependence on properties of *M* (i.e., its *d*-dimensional volume, curvature and reach)
- But, *m* does not depend on the extrinsic dimension of \mathcal{M}

ヘロア ヘビア ヘビア・

A Nonuniform Approximation Guarantee

Theorem

The reconstruction algorithm, $\mathcal{A} : \mathbb{R}^m \to \mathbb{R}^D$, is such that a random $m \times D$ measurement matrix, M, will satisfy

$$\left\| \vec{x} - \mathcal{A} \left(\mathbf{M} \vec{x} \right) \right\| \leq 8 \cdot \left\| \vec{x} - \vec{x}_{\text{opt}} \right\| + \delta$$

with probability at least 1 - p whenever *m* is $\Omega(d \log(d/p\delta))$.

- Ω-notation hides *m*'s dependence on properties of *M* (i.e., its *d*-dimensional volume, curvature and reach)
- But, *m* does not depend on the extrinsic dimension of \mathcal{M}

イロン イボン イヨン

Uniform Approximation Guarantees

- Uniform recovery guarantees are worse, as expected [sparse recovery results, Wakin]
- Guarantees only hold when our measurement matrix has the RIP of order *r* so that $\frac{1}{\sqrt{r}} \|\vec{x} - \vec{x}_{opt}\|_1$ is $O\left(\max\left\{\|\vec{x} - \vec{x}_{opt}\|_2, 2^{-j}\right\}\right)$
 - This generally means $r = \Omega(D)$ if $\|\vec{x} \vec{x}_{opt}\|_2$ is large
 - Otherwise, $\|\vec{x} \vec{x}_{opt}\|_1$ must be $O(\sqrt{r} \cdot 2^{-j})^{-j}$
- Measurement matrix, *M*, must approximately preserve all distances between points in *M* ∪{*c*_{*j*,*k*} | *k* ∈ [*K*_{*j*}]}

<ロト <回 > < 注 > < 注 > 、

Uniform Approximation Guarantees

- Uniform recovery guarantees are worse, as expected [sparse recovery results, Wakin]
- Guarantees only hold when our measurement matrix has the RIP of order *r* so that $\frac{1}{\sqrt{r}} \|\vec{x} - \vec{x}_{opt}\|_1$ is $O(\max\{\|\vec{x} - \vec{x}_{opt}\|_2, 2^{-j}\})$
 - This generally means $r = \Omega(D)$ if $\|\vec{x} \vec{x}_{opt}\|_2$ is large
 - Otherwise, $\|\vec{x} \vec{x}_{opt}\|_1$ must be $O(\sqrt{r} \cdot 2^{-j})$
- Measurement matrix, *M*, must approximately preserve all distances between points in *M* ∪{*c*_{j,k} | *k* ∈ [*K*_j]}

イロン 不良 とくほう 不良 とうほ

Uniform Approximation Guarantees

- Uniform recovery guarantees are worse, as expected [sparse recovery results, Wakin]
- Guarantees only hold when our measurement matrix has the RIP of order *r* so that $\frac{1}{\sqrt{r}} \|\vec{x} - \vec{x}_{opt}\|_1$ is $O(\max\{\|\vec{x} - \vec{x}_{opt}\|_2, 2^{-j}\})$
 - This generally means $r = \Omega(D)$ if $\|\vec{x} \vec{x}_{opt}\|_2$ is large
 - Otherwise, $\|\vec{x} \vec{x}_{opt}\|_1$ must be $O(\sqrt{r} \cdot 2^{-j})^{-1}$
- Measurement matrix, *M*, must approximately preserve all distances between points in *M* ∪{*c*_{*j*,*k*} | *k* ∈ [*K*_{*j*}]}

ヘロト 人間 とくほとくほとう

Theorem

Let $\mathcal{M} \subset \mathbb{R}^D$ be a compact *d*-dimensional Riemannian submanifold of \mathbb{R}^D , $\delta \in \mathbb{R}^+$. Then, there exists an $m \times D$ measurement matrix, *M*, with $m = O(d \log(D/\delta))$ such that the proposed reconstruction algorithm, $\mathcal{A} : \mathbb{R}^m \to \mathbb{R}^D$, will satisfy

$$\left\|\vec{x} - \mathcal{A}\left(M\vec{x}\right)\right\|_{2} \leq \delta$$

for all
$$\vec{x} \in \mathbb{R}^{D}$$
 with $\left\| \vec{x} - \vec{x}_{\text{opt}} \right\|_{1} \leq \sqrt{d} \left(\delta + \left\| \vec{x} - \vec{x}_{\text{opt}} \right\|_{2} \right)$.

• *O*-notation hides *m*'s dependence on properties of *M* (i.e., its *d*-dimensional volume, curvature and reach)

ヘロト ヘアト ヘヨト

• We now also require logarithmic dependence on D

Theorem

Let $\mathcal{M} \subset \mathbb{R}^D$ be a compact *d*-dimensional Riemannian submanifold of \mathbb{R}^D , $\delta \in \mathbb{R}^+$. Then, there exists an $m \times D$ measurement matrix, *M*, with $m = O(d \log(D/\delta))$ such that the proposed reconstruction algorithm, $\mathcal{A} : \mathbb{R}^m \to \mathbb{R}^D$, will satisfy

$$\left\|\vec{x} - \mathcal{A}\left(M\vec{x}\right)\right\|_{2} \leq \delta$$

for all $\vec{x} \in \mathbb{R}^{D}$ with $\left\| \vec{x} - \vec{x}_{\text{opt}} \right\|_{1} \leq \sqrt{d} \left(\delta + \left\| \vec{x} - \vec{x}_{\text{opt}} \right\|_{2} \right)$.

 O-notation hides m's dependence on properties of M (i.e., its d-dimensional volume, curvature and reach)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

• We now also require logarithmic dependence on D

Theorem

Let $\mathcal{M} \subset \mathbb{R}^D$ be a compact *d*-dimensional Riemannian submanifold of \mathbb{R}^D , $\delta \in \mathbb{R}^+$. Then, there exists an $m \times D$ measurement matrix, *M*, with $m = O(d \log(D/\delta))$ such that the proposed reconstruction algorithm, $\mathcal{A} : \mathbb{R}^m \to \mathbb{R}^D$, will satisfy

$$\left\|\vec{x} - \mathcal{A}\left(M\vec{x}\right)\right\|_{2} \leq \delta$$

for all $\vec{x} \in \mathbb{R}^{D}$ with $\left\| \vec{x} - \vec{x}_{\text{opt}} \right\|_{1} \leq \sqrt{d} \left(\delta + \left\| \vec{x} - \vec{x}_{\text{opt}} \right\|_{2} \right)$.

 O-notation hides m's dependence on properties of M (i.e., its d-dimensional volume, curvature and reach)

ヘロト ヘ回ト ヘヨト ヘヨト

• We now also require logarithmic dependence on D

Notes

- If *M* collectively spans only a small subspace of R^D,
 Geometric Wavelets will reveal it. We can then reduce the effective extrinsic dimensionality.
- If we can adaptively measure $\vec{x} \in \mathbb{R}^D$ then we can approximate $\vec{x}_{opt} \in \mathcal{M}$ by...
 - Performing *O*(*dj* log *d*) half space tests to find the proper scale *j* dyadic center.
 - Projecting \vec{x} onto the proper approximate tangent space
- Compressive measurements may not be necessary if we can collect many measurements, but only want to read a few...

・ロン ・ 一 マン・ 日 マー・

Notes

- If *M* collectively spans only a small subspace of R^D,
 Geometric Wavelets will reveal it. We can then reduce the effective extrinsic dimensionality.
- If we can adaptively measure $\vec{x} \in \mathbb{R}^D$ then we can approximate $\vec{x}_{opt} \in \mathcal{M}$ by...
 - Performing *O*(*dj* log *d*) half space tests to find the proper scale *j* dyadic center.
 - Projecting \vec{x} onto the proper approximate tangent space
- Compressive measurements may not be necessary if we can collect many measurements, but only want to read a few...

・ロン ・ 一 マン・ 日 マー・

Notes

- If *M* collectively spans only a small subspace of R^D,
 Geometric Wavelets will reveal it. We can then reduce the effective extrinsic dimensionality.
- If we can adaptively measure $\vec{x} \in \mathbb{R}^D$ then we can approximate $\vec{x}_{opt} \in \mathcal{M}$ by...
 - Performing $O(dj \log d)$ half space tests to find the proper scale *j* dyadic center.
 - Projecting \vec{x} onto the proper approximate tangent space
- Compressive measurements may not be necessary if we can collect many measurements, but only want to read a few...

ヘロア ヘビア ヘビア・

Notes

- If *M* collectively spans only a small subspace of R^D,
 Geometric Wavelets will reveal it. We can then reduce the effective extrinsic dimensionality.
- If we can adaptively measure $\vec{x} \in \mathbb{R}^D$ then we can approximate $\vec{x}_{opt} \in \mathcal{M}$ by...
 - Performing $O(dj \log d)$ half space tests to find the proper scale *j* dyadic center.
 - Projecting \vec{x} onto the proper approximate tangent space
- Compressive measurements may not be necessary if we can collect many measurements, but only want to read a few...

・ロン ・ 一 マン・ 日 マー・

Notes

- If *M* collectively spans only a small subspace of R^D,
 Geometric Wavelets will reveal it. We can then reduce the effective extrinsic dimensionality.
- If we can adaptively measure $\vec{x} \in \mathbb{R}^D$ then we can approximate $\vec{x}_{opt} \in \mathcal{M}$ by...
 - Performing $O(dj \log d)$ half space tests to find the proper scale *j* dyadic center.
 - Projecting \vec{x} onto the proper approximate tangent space
- Compressive measurements may not be necessary if we can collect many measurements, but only want to read a few...

・ロン ・ 一 マン・ 日 マー・

Notes

Questions?

M.A. Iwen, M. Maggioni Manifold CS

イロト 不同 とくほ とくほ とう

æ