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The Problem: Approximation of Points Near A Manifold

The Problem — Manifold CS [Baraniuk, Wakin, . ..

@ We have an approximate representation for a compact
d-dimensional Riemannian submanifold, M, of R

e We expect to recover points, X € R?, nearly on M
e d<<D
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The Problem: Approximation of Points Near A Manifold

The Problem — Manifold CS [Baraniuk, Wakin, .. .]

@ We have an approximate representation for a compact
d-dimensional Riemannian submanifold, M, of R

e We expect to recover points, X € R?, nearly on M
e d<<D

@ We acquire compressed measurements of X, Mx € R,
via an m x D matrix M

e M is a Johnson-Lindenstrauss embedding (also has RIP)

@ Approximate the Optimal Representative for X on M,

Xopt = argmin ||X — || .
yemMm
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Representing the Manifold: Geometric Wavelets

Geometric Wavelets [Allard, Chen, Maggioni]

Built in two stages:
@ Create a Dyadic Partition of Samples from M c RP
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Representing the Manifold: Geometric Wavelets

Geometric Wavelets [Allard, Chen, Maggioni]

Built in two stages:
@ Create a Dyadic Partition of Samples from M c RP

@ Estimate Tangent Space within Each Dyadic Cube
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Representing the Manifold: Geometric Wavelets

Example: Swiss Roll
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Representing the Manifold: Geometric Wavelets

Coarse Scale Approximation of Swiss Roll
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Representing the Manifold: Geometric Wavelets

Dyadic Structure for Swiss Roll Approximation
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Representing the Manifold: Geometric Wavelets

Geometric Wavelets Give Us . ..

Ateach Scaleje [J] = {1,...,J} we get:

M.A. lwen, M. Maggioni Manifold CS



Representing the Manifold: Geometric Wavelets

Geometric Wavelets Give Us . ..

Ateach Scaleje [J] = {1,...,J} we get:

@ A set of dyadic “centers” denoted by C; x for k € [K]]

M.A. lwen, M. Maggioni Manifold CS



Representing the Manifold: Geometric Wavelets

Geometric Wavelets Give Us . ..

Ateach Scaleje [J] = {1,...,J} we get:
@ A set of dyadic “centers” denoted by C; x for k € [K]]

@ A set of orthogonal d x D matrices, ®; x, for k < [K]]

M.A. lwen, M. Maggioni Manifold CS



Representing the Manifold: Geometric Wavelets

Geometric Wavelets Give Us . ..

Ateach Scaleje [J] = {1,...,J} we get:
@ A set of dyadic “centers” denoted by C; x for k € [K]]
@ A set of orthogonal d x D matrices, ®; x, for k < [K]]

@ An affine projector, P} x (X), for k € [K]] defined as

Pik (X) = &/ @« (X —Gix) + ik
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Representing the Manifold: Geometric Wavelets

The Scale j Approximation of X € R? near M is ...
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Representing the Manifold: Geometric Wavelets

The Scale j Approximation of X € R? near M is ...

—
: =
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Q K (X) = argmingep X = i
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Representing the Manifold: Geometric Wavelets

The Scale j Approximation of X € R? near M is ...

=
: =
C24
\\

Q K (X) = argmingep X = i

QO X~ P (X) = q’;;(j()?)d)/,’v(?) (X - C/}kf(’?)) T Gk(%)
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Representing the Manifold: Geometric Wavelets

Scale j Approximation Guarantee

e Recall that X, = argmin [|X — ¥|.
yem
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Representing the Manifold: Geometric Wavelets

Scale j Approximation Guarantee

e Recall that X, = argmin [|X — ¥|.
yem

Theorem

Let IP; be a scale j Geometric Wavelet representation for a
compact smooth submanifold, M, of RP. Then, for j sufficiently
large, we will have

%= By ()] < 418~ %] + 0 (27)

for all X € RP.
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Representing the Manifold: Geometric Wavelets

Scale j Approximation Guarantee

e Recall that X, = argmin [|X — ¥|.
yem

Theorem

Let IP; be a scale j Geometric Wavelet representation for a
compact smooth submanifold, M, of RP. Then, for j sufficiently
large, we will have

%= By ()] < 418~ %] + 0 (27)

for all X € RP.

e Can we achieve similar approximation guarantees using only
compressed measurements of X (i.e., Mx)???
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Proposed Recovery Procedure

Approximate P (%) (X) using only MX € R™

@ Input: Measurements Mx € R™, Approximation to
manifold M C RP, P; = {P; | k € [K]]}.
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Proposed Recovery Procedure

Approximate P (%) (X) using only MX € R™

@ Input: Measurements Mx € R™, Approximation to
manifold M C RP, P; = {P; | k € [K]]}.

© Nearest Neighbors: k' — argminx; | MX — MC;«||.

© Least Squares: i’ «—— argming.po

MoT, i~ MX .

o A (M)_(‘) — q)}:k,lj " (D}:k/(bj,k’éj,k’ + 5]7;(/.
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Proposed Recovery Procedure

Approximate P (%) (X) using only MX € R™

@ Input: Measurements Mx € R™, Approximation to
manifold M C RP, P; = {P; | k € [K]]}.

© Nearest Neighbors: k' — argminx; | MX — MC;«||.

© Least Squares: i’ «—— argming.po

MoT, i~ MX .
o A (M)_(‘) — q)}:k,lj r— (D}:k/(bj,k’éj,k’ + 5]7;(/.
@ Output: A(MX) ~ P s (X)
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Approximation Guarantees

A Nonuniform Approximation Guarantee

Theorem

Let M c RP be a compact d-dimensional Riemannian
submanifold of R?, X € RP, § € RT, and p € (0,1). Then, the
reconstruction algorithm on the last slide, A : R™ — RP, is
such that a random m x D measurement matrix, M, will satisfy

IX = AMX)|| < 8- [|X = Xope]| + 6

with probability at least 1 — p whenever mis Q (dlog(d/p?)).
The reconstruction algorithm’s runtime will be O(dmD).
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Approximation Guarantees

A Nonuniform Approximation Guarantee

Theorem

The reconstruction algorithm, A4 : R™ — RP, is such that a
random m x D measurement matrix, M, will satisfy

IX = AMR)[| < 8- X — Xope]| +9

with probability at least 1 — p whenever mis Q (dlog(d/pJ)).

@ Q-notation hides m’s dependence on properties of M (i.e.,
its d-dimensional volume, curvature and reach)

@ But, m does not depend on the extrinsic dimension of M
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Approximation Guarantees

Uniform Approximation Guarantees

@ Uniform recovery guarantees are worse, as expected
[sparse recovery results, Wakin]
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@ Guarantees only hold when our measurement matrix has
the RIP of order r so that - ||X — Xo |, is
O (max {[[X — Xope [, 2 ’})
e This generally means r = Q(D) if ||X — )?OptHz
o Otherwise, ||X — Xop||, must be O (v/7-27)

is large
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Approximation Guarantees

Uniform Approximation Guarantees

@ Uniform recovery guarantees are worse, as expected
[sparse recovery results, Wakin]

@ Guarantees only hold when our measurement matrix has
the RIP of order r so that - ||X — Xo |, is
O (max {[[X — Xope [, 2 ’})
e This generally means r = Q(D) if ||X — )?OptHz
o Otherwise, ||X — Xop||, must be O (v/7-27)

is large

@ Measurement matrix, M, must approximately preserve all
distances between points in M J{C;« | k € [K]]}
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Approximation Guarantees

Theorem

Let M c RP be a compact d-dimensional Riemannian
submanifold of RP, § € R*. Then, there exists an m x D
measurement matrix, M, with m = O(dlog(D/¢)) such that the
proposed reconstruction algorithm, A : R™ — RP, will satisfy

Hx AMX)|, <06

I

for all X € RP with ||X — Xope/|, < vd (6 + || X — Xopd]|,)-
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Approximation Guarantees

Theorem

Let M c RP be a compact d-dimensional Riemannian
submanifold of RP, § € R*. Then, there exists an m x D
measurement matrix, M, with m = O(dlog(D/¢)) such that the
proposed reconstruction algorithm, A : R™ — RP, will satisfy

Hx AMX)|, <06

I

for all X € RP with ||X — Xope/|, < vd (6 + || X — Xopd]|,)-

@ O-notation hides m’s dependence on properties of M (i.e.,
its d-dimensional volume, curvature and reach)

@ We now also require logarithmic dependence on D
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Notes

@ If M collectively spans only a small subspace of RP,
Geometric Wavelets will reveal it. We can then reduce the
effective extrinsic dimensionality.
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Notes

@ If M collectively spans only a small subspace of RP,
Geometric Wavelets will reveal it. We can then reduce the
effective extrinsic dimensionality.

@ If we can adaptively measure X € RP then we can
approximate Xp € M by...
e Performing O(djlog d) half space tests to find the proper
scale j dyadic center.
e Projecting X onto the proper approximate tangent space

@ Compressive measurements may not be necessary if we
can collect many measurements, but only want to read a
few...
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Thank You!

Questions?
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