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Drivers
Our incessant 

• demand for hydrocarbons while we are no longer finding oil...

• desire to understand the Earth’s inner workings 

Push for improved seismic inversion to

• create more high-resolution information 

• from more and more data... (moving to 100k channel systems)
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Seismic survey

http://fishsafe.eu/en/offshore-structures/seismic-surveys.aspx
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Seismic image

http://www.gentechintl.com/seismic.htm
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Full-waveform 
inversion (FWI)

http://www.westerngeco.com/services/dp/omega/depth/tomoportfolio/fwi.aspx

true
model

starting
model

inverted
model
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Wish list
Inversion costs determined by structure of data & complexity of the 
subsurface

‣ sampling & computational costs that are dictated by sparsity 
and not by the dimensionality of the problem (e.g. size of the 
discretization)

Controllable error that depends on 

‣ degree of subsampling / dimensionality reduction

‣ available computational resources
Thursday, March 10, 2011
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Problem statement
PDE-constrained optimization problem (unconstrained form):

[Tarantola, 84; Pratt, ’98; Plessix, ‘06]

min
m

1

2N

nf�

j=1

ns�

i=1

�di,j −F i,j [m,qi,j ]�22 with F i,j [m;qi,j ] := PiH
−1
j [m]qi,j ,

di,j = Monochromatic data from source i and frequency j

Pi = Detection operator for source i

H
−1
j = Inverse of time-harmonic Helmholtz at frequency j

qi,j = Seismic source i at frequency j

m = Unknown model, e.g. c−2
(x)

N = ns × nf (’batch size’)
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Simplification
Multiexperiment optimization problem:

[Tarantola, 84; Pratt, ’98; Plessix, ‘06]

min
m∈M

1

2
�D−F [m;Q]�2

2,2 with F [m;Q] := PH
−1

[m]Q

D = Total multi-source and multi-frequency data volume

P = Single detection operator

H
−1

= Inverse of time-harmonic Helmholtz

Q = Seismic sources

m = Unknown model, e.g. c−2
(x)
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Properties
Multiexperiment optimization problem:

• hyperbolic PDE, non convex, ‘over-’ and ‘underdetermined'

• wave-equation Hessian,                                     ,  is pseudo 
local, i.e.,  ‘preserves’ singularities

• # PDE solves increases linearly with # of sources & frequencies

• linear in the sources
[Tarantola, 84; Pratt, ’98; Plessix, ’06; Symes ’09]

∇FH [m;Q]∇F [m;Q]

min
m∈M

1
2
�D−F [m;Q]�22,2 and H[m]· := [ω2diag{m} +∇2]·
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Gauss-Newton

Evaluation of                                              each require 
two PDE solves for each source & angular frequency

Involves inversion of a tall linear system of equations

∇FH [m;Q] and ∇F [m;Q]

Algorithm 1: Gauss Newton

Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
δmk ←− arg minδm

1
2�D−F [mk;Q]−∇F [mk;Q]δm�22,2

mk+1 ←−mk + γkδmk
; // update with linesearch

k ←− k + 1;

end

Thursday, March 10, 2011
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Related work
Approximations of the Hessian

‣ Matrix probing: a randomized preconditioner for the 
wave-equation Hessian

‣ accurate linearization & high-frequency asymptotics

‣ redone for each GN iteration

Randomized-dimensionality reduction

‣ Randomized Kaczmarz 

‣ Faster Least Squares Approximation

‣ Blendenpik: supercharging LAPACK’s LS-solver 

‣ full overdetermined explicit matrices

[FJH et. all, ’03,’09; Demanet ’08-’10]

[Strohmer & Vershynen, ’09; Eldar & Needell ’10]

[Avron et.al., ’10]

[ Drineas, Mahoney,
 Muthukrishnan, and Sarlos, ’07]
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Our approach
Combine techniques from 

‣ compressive sensing (fast phase encoders)

‣ stochastic optimization (stochastic approximation)

Exploit

‣ block structure PDE-constrained optimization problem

‣ curvelet-domain sparsity

‣ convexity subproblems & properties Pareto curve
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CS experiment

‣ collection of K simultaneous-source experiments (supershots)

‣

Q Q = RMQ

adapted from FJH et. al. ,09

[FJH et. al.  ’08-’10]

K = n�
f × n�

s � nf × ns
Thursday, March 10, 2011
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Math
Fast (           ) compressive-sampling operator

with

and

where θ ∈ Uniform(−π, π], and η ∈ Normal(0, 1)

[Romberg, ’07, FJH, ’08-’10]

(RM)k = (RΣ
kMΣ ⊗ I⊗RΩ

k)

MΣ =

’Gaussian matrix’� �� �
sign(η)⊙ FΣ

HejθFΣ

n log n

RM = vec−1
�
(RM)1···n�

s

�
vec
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300 SPGL1 iteration

18.2dB28.1dB

Recovered Green’s functions
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Bottom line

Computational cost for the   -solver is less                                   
than the cost of solving Helmholtz...

Problem:

‣ data space too large in 3D acquisition (10005 - 100k5)

‣ have to resimulate for each gradient update...

�1 (O(n3 log n) vs. O(n4))
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Reduced FWI 
formulation

Multiexperiment simultaneous-source optimization problem:

• requires smaller number of PDE solves

• explores linearity in the sources & block-diagonal structure 
of the Helmholtz system

• uses randomized frequency selection and phase encoding

min
m∈M

1
2
�D−F [m;Q]�2

2,2 with F [m;Q] := PH
−1

Q

[FJH et.al., ’08-10’, Krebs et.al., ’09, Operto et. al., ’09] 
[Haber, Chung, and FJH, ’10] 
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Interpretations

Consider randomized-dimensionality reduction as instances of

• stochastic optimization

‣ random-trace estimates

‣ stochastic gradient descent

• “compressive sensing” [FJH et. al, ’08-’10]

[Haber, Chung, and FJH, ’10; van Leeuwen, Aravkin, FJH, ’10] 

[Bertsekas,’ ’96; Nemirovski, ’09]

[Hutchinson, ’90, Avron & Toledo, ’10]
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Stochastic 
optimization

Replace deterministic-optimization problem

with sum cycling over different sources & corresponding 
monochromatic shot records (columns of D & Q)

min
m∈M

f(m) =
1
N

N�

i=1

1
2
�di − F [m;qi]�2

2

[Natterer, ’01]

Thursday, March 10, 2011



SLIM

Stochastic average 
approximation

by a stochastic-optimization problem

with

and

w ∈ N(0, 1) and Ew{wwH} = I

min
m∈M

Ew{f(m,w) =
1
2
�Dw − F [m;Qw]�22}

≈ 1
K

K�

j=1

1
2
�dj − F [m;qj ]�22

 [Haber, Chung, and FJH, ’10] 

dj = Dwj , qj = Qwj
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Stylized example
17
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Figure 1: True (a) and initial (b) squared-slowness models (s2/km2) and the true reflectivity.
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Figure 2: The full gradient is depicted in (a). The gradients for various K are depicted
in (b) K = 1, (c) K = 5 and (d) K = 10. For a relatively small batch-size the gradient
already shows the main features.
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Gradients
Search direction for increasing batch size K:

full K=1 K=5

gK ≈
1
K

K�

j=1

∇F∗[m;qj ]δdj
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Figure 1: True (a) and initial (b) squared-slowness models (s2/km2) and the true reflectivity.
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Figure 2: The full gradient is depicted in (a). The gradients for various K are depicted
in (b) K = 1, (c) K = 5 and (d) K = 10. For a relatively small batch-size the gradient
already shows the main features.
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Decay

error	  between	  full	  and	  sampled	  gradient

18
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Figure 3: Error in gradient for as a function of the batch-size K. As expected, the error
goes down as 1/

√
K (dashed line).
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Figure 4: Behavior of misfit for various K. Shown are five different realizations and the
true misfit (dashed line) for (a) K = 1, (b) K = 5 and (c) K = 10. The misfit approximates
the true misfit pretty well for relatively small batch-sizes.
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Figure 5: Residual matrix A = STS, where S is the data residual corresponding to the
smooth model depicted in figure 1 (a) at 5Hz.
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Misfit functional

K=1 K=5 K=10

fK(gK) =
1
K

K�

j=1

1
2
�dj − F [m + αgK ;qj ]�2

2
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Figure 3: Error in gradient for as a function of the batch-size K. As expected, the error
goes down as 1/

√
K (dashed line).
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Figure 5: Residual matrix A = STS, where S is the data residual corresponding to the
smooth model depicted in figure 1 (a) at 5Hz.

[Haber, Chung, and FJH, ’10; van Leeuwen, Aravkin, FJH, ’10] 
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Stochastic average 
approximation

In the limit             , stochastic & deterministic formulations 
are identical

We gain as long as              ...

But the error in Monte-Carlo methods decays only slowly 

K � N

(O(K−1/2))

K →∞
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Stochastic 
approximation

Use different simultaneous shots for each subproblem, i.e.,

Requires fewer PDE solves for each subproblem...

• corresponds to the stochastic approximation

• related to Kaczmarz (’37) method applied by Natterer, ‘01

• supersedes ad hoc approach by Krebs et.al., ‘09

Q �→ Qk

[Bertsekas,’ ’96; Nemirovski, ’09]
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K=1 w and w/o redraw
[noise-free case]
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K=1
[noisy case]
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Observations
SAA:

‣ Error decays slowly with batch size K

‣ becomes worse when noisy

SA 

‣ Renewals improve convergence significantly

‣ Requires averaging to remove noise instability, which is 
detrimental to the convergence

Dimensionality reduction gives ‘noisy’ results ... Sounds familiar?
Thursday, March 10, 2011
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Combined approach

Leverage findings from sparse recovery & compressive sensing

• consider phase-encoded Gauss-Newton updates as 
separate “compressive-sensing /   regularized experiments”

• remove interferences by curvelet-domain sparsity promotion

• exploit properties of Pareto curves in combination with 
stochastic optimization

• turn ‘overdetermined’ problems with large matrix-setup 
costs into ‘undetermined’ problems via randomization

�1

Thursday, March 10, 2011
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Rationale
Wavefields are compressible in curvelet frames

• correlations between source & residual wavefields are 
compressible

• velocity distributions of sedimentary basins are also 
compressible

Linearized subproblems are convex

Assume proximity Pareto curves amongst successive GN 
iterations

[Smith, ’97; Candes & Demanet, ’03]
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• Objective:	  

• Iterative	  algorithm:	  

• Direction	  	  	  	  	  	  	  	  	  	  	  solves	  

• The	  subproblem	  for	  	  	  	  	  	  	  	  	  	  	  	  is	  convex,	  and	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  a	  descent	  direction:

Modified Gauss-Newton

min
δx

�D−F [mν ;Q]−∇F [mν ;Q]C∗δx�2F

s.t. �δx�1 ≤ τ

δx

δx C∗δx

f(mν)

f �(mν ;C∗δx) ≤ f(mν)− �D−F [mν ;Q]� �� �−∇F [m;Q]C∗δx�2F < 0

mν+1 = mν + γνC∗δx

f(m) := �D−F [m;Q]�2
F

[Burke	  ’89,	  Burke	  ’92]
Thursday, March 10, 2011
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Projected gradient. Our application of the SPG algorithm to solve (LSτ ) follows
Birgin, Mart́ınez, and Raydan [5] closely for the minimization of general nonlinear
functions over arbitrary convex sets. The method they propose combines projected-
gradient search directions with the spectral step length that was introduced by Barzilai
and Borwein [1]. A nonmonotone line search is used to accept or reject steps. The
key ingredient of Birgin, Mart́ınez, and Raydan’s algorithm is the projection of the
gradient direction onto a convex set, which in our case is defined by the constraint
in (LSτ ). In their recent report, Figueiredo, Nowak, and Wright [27] describe the
remarkable efficiency of an SPG method specialized to (QPλ). Their approach builds
on the earlier report by Dai and Fletcher [18] on the efficiency of a specialized SPG
method for general bound-constrained quadratic programs (QPs).

2. The Pareto curve. The function φ defined by (1.1) yields the optimal value
of the constrained problem (LSτ ) for each value of the regularization parameter τ .
Its graph traces the optimal trade-off between the one-norm of the solution x and
the two-norm of the residual r, which defines the Pareto curve. Figure 2.1 shows the
graph of φ for a typical problem.

The Newton-based root-finding procedure that we propose for locating specific
points on the Pareto curve—e.g., finding roots of (1.2)—relies on several important
properties of the function φ. As we show in this section, φ is a convex and differentiable
function of τ . The differentiability of φ is perhaps unintuitive, given that the one-
norm constraint in (LSτ ) is not differentiable. To deal with the nonsmoothness of
the one-norm constraint, we appeal to Lagrange duality theory. This approach yields
significant insight into the properties of the trade-off curve. We discuss the most
important properties below.

2.1. The dual subproblem. The dual of the Lasso problem (LSτ ) plays a
prominent role in understanding the Pareto curve. In order to derive the dual of
(LSτ ), we first recast (LSτ ) as the equivalent problem

(2.1) minimize
r,x

‖r‖2 subject to Ax + r = b, ‖x‖1 ≤ τ.
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Fig. 2.1. A typical Pareto curve (solid line) showing two iterations of Newton’s method. The
first iteration is available at no cost.

Picking Lasso Parameter

min
δx

�
� �� �
D−F [mν ;Q]−

� �� �
∇F [mν ;Q]C∗ δx�2F

s.t. �δx�1 ≤ τ

b A
�b�F

min
δx

�δx�1

s.t. b = Aδx

min
δx

�δx�1

s.t. �b−Aδx�F ≤ σ

σ

Lasso

BP

BPDN

[van	  den	  Berg	  ’08]
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Modified GN with 
renewals

Algorithm 1: Modified Gauss-Newton with renewals

Result: Output estimate for the model m
m ←− m0; k ←− 0; δx ←− 0 ; // initial model

for j = 1 : M do
Obtain frequency band j, corresponding data slice D and operator F
while not converged do

Randomly subsample to obtain Dk,Qk
.

Solve with warm start δx

δx ←−






arg min
δx

�Dk −F [mk;Qk]−∇F [mk;Qk
]C∗δx�F

subject to �δx�1 ≤ τk

mk+1 ←−mk + γkC∗δx ; // update with linesearch

k ←− k + 1

end
end
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True model
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Initial model
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Inverted model
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True model

Lateral (× 24 meters)

D
ep

th
 (×

 2
4 

m
et

er
s)

 

 

50 100 150 200 250 300 350

20

40

60

80

100

120
2000

2500

3000

3500

4000

4500

5000

5500

Thursday, March 10, 2011



SLIM

Performance
Remember per subproblem

                                     versus

SPEEDUP of 13 X

n�1
PDE ×K � n�2

PDE × nf × ns

n�1
PDE ≈ 200

K = 150
n�2

PDE ≈ 10
K = 38400
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Conclusions
Leveraged 

‣ curvelet-domain sparsity on the model

‣ invariance under solution operators <=> preservation 
of sparsity

Indications that compressive sensing supersedes the stochastic 
approximation by sparse recovery of dimensionality reduced 
subproblems

Extension to 3D (5D data) will lead to larger improvements...
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Open problems
[some of them]

Preconditioner for indirect Helmholtz solvers in 3D

Extension to incomplete data, i,e,                (Hadamard product)

Analysis of performance of the proposed algorithm

‣ extension to nonlinear problems

‣ behavior Pareto curves etc.

Non-convexity of FWI

‣ ‘ad-hoc’ multiscale continuation methods

P �→ Pi
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‘Holy grail’
[FWI with focusing]

Convexification by extensions

                                           ,              positive-definite matrix

1.

2.   

F [X;Q] := PH̄
−1[SH

X]Q

�X�A = �X�∗

SHX

[Symes, ’09]�X�A = �
annihilator����

Ah X�1,2

X̃ = arg min
X∈X

�X�A subject to �D−F [X;Q]�2,2 ≤ σ

m̃ = diag{SHX} with X the extension

?
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Further reading
Compressive sensing

– Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information by Candes, 06.

– Compressed Sensing by D. Donoho, ’06

Simultaneous simulations, imaging, and full-wave inversion:
– Faster shot-record depth migrations using phase encoding by Morton & Ober, ’98.

– Phase encoding of shot records in prestack migration by Romero et. al., ’00.
– High-resolution wave-equation amplitude-variation-with-ray-parameter (AVP) imaging with sparseness constraints by Wang & Sacchi, ’07

– Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani et. al., ’08.
– Compressive simultaneous full-waveform simulation by FJH et. al., ’09.

– Fast full-wavefield seismic inversion using encoded sources by Krebs et. al., ’09

– Randomized dimensionality reduction for full-waveform inversion by FJH & X. Li, ’10

 Stochastic optimization and machine learning:

– A Stochastic Approximation Method by Robbins and Monro, 1951

– Neuro-Dynamic Programming by Bertsekas, ’96
– Robust stochastic approximation approach to stochastic programming by Nemirovski et. al., ’09

– Stochastic Approximation approach to Stochastic Programming by Nemirovski
– An effective method for parameter estimation with PDE constraints with multiple right hand sides. by Eldad Haber, Matthias Chung, 

and Felix J. Herrmann. ’10

– Seismic waveform inversion by stochastic optimization. Tristan van Leeuwen, Aleksandr Aravkin and FJH, 2010. 

 Full-waveform inversion with extensions
– Migration velocity analysis and waveform inversion by Symes Geophysical Prospecting, 56: 765–790, 2008.

– The seismic reflection inverse problem by Symes, Inverse Problems 25, 2009.
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Thank you

slim.eos.ubc.ca
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