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Introduction and Problem Description

I Typical Light Detection and Ranging (LiDAR) systems
transmit a laser pulse and receive a deluge of data in the
form of a three-dimensional (3D) point-cloud.

I This point-cloud contains important information reflected
from the scene of interest, e.g., a terrain profile.

I Unfortunately, there are significant noise issues, e.g., due to
sensitivity of photodiodes.

I State-of-the-art 3D surface reconstruction algorithms require
the use of a grid to determine measures of gradient and how
“close” points are.

I We propose a 3D grid-free generalization of regularization
with non-local methods, which is already used extensively to
denoise 2D images.
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Denoised LiDAR Scene, Low-Altitude (22,120 points)

[Courtesy of AFRL/MNG VEAA Data Set #1]
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Denoised LiDAR Scene, Low-Altitude (5,928 points)

[Courtesy of AFRL/MNG VEAA Data Set #1]
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Denoised LiDAR Scene, High-Altitude (10,118 points)

[Courtesy of ITC Data Set]
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Denoised LiDAR Scene, High-Altitude (1,467 points)

[Courtesy of ITC Data Set]
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Denoised LiDAR Scene, High-Altitude (24,942 points)

[Courtesy of ITC Data Set]
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LiDAR Remote Sensing Data Collection

[Image from presentation by Myron Brown, Johns Hopkins University, Applied Physics Lab. Duke University 2009]
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Early Version of a 6× 5 GmAPD Detector Array

[Image from “Three-Dimensional Imaging Laser Radars with Geiger-Mode Avalanche Photodiode Arrays”,

M. Albota et al., Lincoln Lab Journal 2002]
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More Laser and Detector Array Details
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ee I Current GmAPD Arrays:

128× 32 = 4,096 elements

I Near-Future GmAPD Arrays:
256× 64 = 16,384 elements

I Laser pulse rate: 1-20 kHz

I Information rate: Mbps-Gbps

Noise in measurements due to:

I Dark current, internal thermal energy

I Other light sources (solar, lunar, etc.)

I Cross-talk between elements
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LiDAR Data Collection Scan Patterns

[Image from “Redundancy Analysis of Raw Geiger-mode Laser Radar Data”, N. Lopez et al., SPIE 2010]
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Timing Model for Single GmAPD Detector Element

[Image from “Redundancy Analysis of Raw Geiger-mode Laser Radar Data”, N. Lopez et al., SPIE 2010]

M. Herman, T. Goldstein, S. Osher Grid-Free Denoising of Point Clouds via Non-Local Reg.



Raw Point Cloud Formulation from GmAPD Counts

For each laser pulse, and each GmAPD element the value of bT

yields the range-to-target distance

RT =

(
bTTC + TD

2

)
· c

 XT

YT

ZT

 =

 XP

YP

ZP

+ RT ·(MPMRMH)(MITMCT )(MrowMcol)

 0
0
−1


I [XP ,YP ,ZP ] is the platform position
I MP ,MR ,MH are rotational matrices for the pitch, roll and heading

(platform attitude)
I MIT ,MCT are rotational matrices for the in-track and cross-track

laser pointing angles

I Mrow ,Mcol are rotational matrices calculated from angles related to

a detector’s position from the surface normal
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Simulation of Raw LiDAR Data Point Cloud

[Courtesy of Myron Brown, Johns Hopkins University, Applied Physics Lab. Image from “Product Chain Analysis of

Three-Dimensional Imaging Laser Radar Systems employing Geiger-mode Avalanche Photodiodes”, N. Lopez et al.,

SPIE 2010]
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Product Chain for 3D imaging LiDAR Systems

[Image from “Product Chain Analysis of Three-Dimensional Imaging Laser Radar Systems employing Geiger-mode

Avalanche Photodiodes”, N. Lopez et al., SPIE 2010]
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Background: 2D Non-Local Patches

Noisy Image f

[Image from “Image Denoising by Non-Local

Averaging”, A. Buades, B. Coll, J.-M. Morel,

IEEE ICASSP 2005]

Consider pixels p, q1, q2, q3 and their
respective patches Np,Nq1 ,Nq2 ,Nq3 .

Patches Np, Nq1 , and Nq2 look similar,
while Np, Nq3 are quite different.

The weight between pixels p, q is

wf (p, q) :=
1

Zp
e−
‖f (Nq )−f (Np)‖22

h2

with normalization factor Zp.

Thus, the weights w(p, q1) and w(p, q2)
are relatively large compared to w(p, q3).
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Background: Non-Local Total Variation Regularization

I Great deal of successful research using Non-Local Total
Variation (NL-TV) to denoise 2D images.

I For noisy image f , NL-TVL2 solves

min
u

(∫
µ |∇w u|+ 1

2
‖u − f ‖22

)
,

and NL-TVL1 solves

min
u

(∫
µ |∇w u|+ ‖u − f ‖1

)
,

where (
∇w u

)
(p, q) :=

(
u(q)− u(p)

)√
wf (p, q).

I We want to use NL-TV to denoise point cloud data!!!
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How to apply the NL concept to noisy 3D Cloud Data?

Simulated point cloud data of a noisy unit-plain
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New Idea: “Patch Clouds” around points p and q

I We want to use the unique geometry of the individual patch
clouds to identify specific structures.

I Each patch cloud contain its k nearest-neighbors.

I However, forcing 3D data onto a grid will lose subtle
geometric information of the cloud.

I Moreover, in the 3D scenario we need to find a vector
location for each data point p in the denoised cloud.

I But if no grid, then what/where are the reference points?!?!
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“Centered” and Normalized Patch Clouds

I First, center the patch cloud around point p by subtracting
the centroid p̄ from each of its points.

I In particular, the characteristic for point p is Cf (p) := p − p̄.

I The characteristic for a point in a 3D data cloud is analogous
to the intensity of a pixel in a 2D image.

I Next, normalize by dividing by the largest component
(i.e., max{|x |max, |y |max, |z |max}) in the patch cloud.
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to the intensity of a pixel in a 2D image.

I Next, normalize by dividing by the largest component
(i.e., max{|x |max, |y |max, |z |max}) in the patch cloud.

M. Herman, T. Goldstein, S. Osher Grid-Free Denoising of Point Clouds via Non-Local Reg.



“Centered” and Normalized Patch Clouds

I First, center the patch cloud around point p by subtracting
the centroid p̄ from each of its points.

I In particular, the characteristic for point p is Cf (p) := p − p̄.

I The characteristic for a point in a 3D data cloud is analogous
to the intensity of a pixel in a 2D image.

I Next, normalize by dividing by the largest component
(i.e., max{|x |max, |y |max, |z |max}) in the patch cloud.

M. Herman, T. Goldstein, S. Osher Grid-Free Denoising of Point Clouds via Non-Local Reg.



How to Compare Geometries of Patch Clouds?

I For each corner of the centered-normalized cube, find the
Euclidean distance to the nearest point.

I The function G(p) ∈ R8
+ encodes the geometry of the

patch cloud associated with point p.
(Question: Is there a better way to do this?)

I Now the weight between points p and q in point cloud f is

wf (p, q) :=
1

Zp
e−
‖Gf (q)−Gf (p)‖22

h2 .

I Note: Number of points in each cloud need not be the same.
(Consider a noisy plain with different densities of points.)
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Grid-Free Denoising of Point Clouds via Non-Local Reg.

I Now we can apply the NL regularization techniques w.r.t. the
characteristic C and geometry G of the patch clouds.

I Given noisy point cloud f , NL-TVL2 solves:

min
u

(∫
µ |∇w u|+ 1

2
‖u − f ‖22

)
,

and NL-TVL1 solves:

min
u

(∫
µ |∇w u|+ ‖u − f ‖1

)
,

where (
∇w u

)
(p, q) :=

(
Cu(q)− Cu(p)

)√
wf (p, q).
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Numerical Simulations
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Numerical Simulations

Using NL-TVL2
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Left: Noisy Unit Plain Center, Right: NL-TVL1 Recovery
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Left: Noisy Unit Plain with “Fog” Center, Right: NL-TVL1
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Left: Noisy Catenary Cable Center, Right: NL-TVL1
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Left: Noisy Unit Plain with Cable Center, Right: NL-TVL1
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Clean and Gridded Hemisphere
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Left: Noisy Hemisphere Right: NL-TVL1
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Simulated “Real” LiDAR Scene
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Comments about Simulations

I We assumed randomness in the xy -plane, but many LiDAR
systems use arrays of detectors that have a strong grid
structure, which can help us.

I Holes and open surfaces in the point cloud are OK.

I Current histogram denoising method essentially “averages”
(LPF) the data and forces a relatively coarse grid.

I Our method does neither of these.

I Similar to non-local methods for 2D images, determining the
weights has a huge impact.
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Conclusion

I We demonstrated the viability of denoising point cloud data
using non-local techniques in a completely grid-free manner.

I This preserves the subtle geometric information of the cloud,
and permits identification of specific geometric structures.

I As far as we can tell this is novel.

I Permits simultaneous processing of objects with different
codimension.

I Can easily be extended to higher dimensional data sets.

I Possible applications include robot navigation, face
recognition, etc.

I It may be possible to use the geometry encoder G to train a
dictionary and obtain a sparse representation. This opens the
possibility of obtaining further compression.
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The End

Thank you.

Questions?
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