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Österreichische Akademie der Wissenschaften

massimo.fornasier@oeaw.ac.at
http://www.ricam.oeaw.ac.at/people/page/fornasier/

Sparse and Low Rank Approximation
Banff 2011



Outline

The START-Project “Sparse Approximation and Optimization in
High Dimensions”

Numerical simulation of dynamical systems in high-dimension
Dynamical systems in high-dimension
Dimensionality reduction via Johnson-Lindenstrauss
embeddings
Restricted Isometry Property and Johnson-Lindenstrauss
embeddings
Projection of the dynamics in lower dimension

Kinetic equation in high-dimension
Mean-field limit
Dual Wasserstein-type distances and the optimal integration
problem
Projecting the PDE by duality
Delayed curse of dimensionality



Outline

The START-Project “Sparse Approximation and Optimization in
High Dimensions”

Numerical simulation of dynamical systems in high-dimension
Dynamical systems in high-dimension
Dimensionality reduction via Johnson-Lindenstrauss
embeddings
Restricted Isometry Property and Johnson-Lindenstrauss
embeddings
Projection of the dynamics in lower dimension

Kinetic equation in high-dimension
Mean-field limit
Dual Wasserstein-type distances and the optimal integration
problem
Projecting the PDE by duality
Delayed curse of dimensionality



Outline

The START-Project “Sparse Approximation and Optimization in
High Dimensions”

Numerical simulation of dynamical systems in high-dimension
Dynamical systems in high-dimension
Dimensionality reduction via Johnson-Lindenstrauss
embeddings
Restricted Isometry Property and Johnson-Lindenstrauss
embeddings
Projection of the dynamics in lower dimension

Kinetic equation in high-dimension
Mean-field limit
Dual Wasserstein-type distances and the optimal integration
problem
Projecting the PDE by duality
Delayed curse of dimensionality



Bridging compression and simulation, beyond signal
coding-decoding.
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The application framework
First, some notation:

I d ∈ N - dimension (very large!!),
I N ∈ N - number of agents, typically N = dα, α > 0;
I x = {x1, . . . , xN} ∈ RN×d , where xi ∈ Rd , i = 1, . . . ,N,
I D : RN×d → RN×N , Dx = (|xi − xj |)N

i ,j=1 is the adjacency
matrix of x ;

I fi : RN×N → Rd , i = 1, . . . ,N,;
I fij : RN×N → R, i , j = 1, . . . ,N.

We are interested in the
I numerical simulation
I automatic learning/training

of dynamical systems of the type

ẋi (t) = fi (Dx(t)) +
N∑

j=1

fij(Dx(t))xj(t), x(0) = x0 ∈ RN×d ,

describing the dynamics of multiple complex agents, interacting on
the basis of their mutual “social” distance.
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We are interested in the

I numerical simulation

I automatic learning/training

M. Fornasier, K. Schnass, and J. Vyb́ıral, Learning functions of few
arbitrary linear parameters in high dimensions, preprint, 2010.

K. Schnass, and J. Vyb́ıral, Compressed learning of
high-dimensional sparse functions, ICASSP, 2011.



An example inspired by nature

Mills in nature and in our simulations.

J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil, Particle, kinetic,

hydrodynamic models of swarming, within the book “Mathematical modeling

of collective behavior in socio-economic and life-sciences”, Birkhäuser (Eds.

Lorenzo Pareschi, Giovanni Naldi, and Giuseppe Toscani), 2010.



The application framework

With the development of communication technology and internet,
larger and larger groups of people will access

I information (interactive database access, trends in scientific
literature and in newspapers ...)

I services (Google, the financial market ...)

I social interactions (social networks ...)

Our aim is to provide innovative tools for analyzing, simulating,
even predicting and controlling the behavior of such large crowds,
as one today can already do with weather forecast.

We are facing very difficult challenges due to the “curse of
dimensionality”, as our individuals are not physical particles and
needs a large number d of degrees of freedom to be described.
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Some assumptions

We assume the following Lipschitz properties of fi and fij , namely

|fi (a)− fi (b)| ≤ L‖a− b‖∞,

max
i

∑
j

|fij(a)| ≤ L′,

max
i

∑
j

|fij(a)− fij(b)| ≤ L′′‖a− b‖∞,

for every a, b ∈ RN×N . Here, ‖a− b‖∞ := maxi ,j |aij − bij |.



A classical result

Theorem (Convergence of the Euler scheme)

Assume fij = 0. Fix x0 ∈ RN×d and let x(t) be the unique solution
of the ODE

ẋ(t) = f (Dx(t)) , x(0) = x0 ,

on the interval [0,T ], T > 0.

Fix h > 0 and tn := nh:

x̃n+1 = x̃n + hf (Dx̃n) , x̃0 = x̃0 ,

for n = 1, 2, . . . .

Then, we have the estimate for en = |x(tn)− x̃n|,

en ≤ exp(Ltn)

(
e0 + htn

|f (Dx̃0)|
2

)
.
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Exponential complexity reduction in d

The complexity of this algorithm stems from the evaluation of
f (Dx) which can be (generically) estimated by

O(d × N2).

Our first aim is to reduce the dimensionality of the problem to a
log-factor in d , and consequently the complexity to

O(log(d)× N2).
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Dimensionality reduction via Johnson-Lindenstrauss
embeddings

Again some notation

I ε > 0 - a distortion parameter from J-L Lemma, see below,

I n0 ∈ N - number of iterations,

I N = n0N - number of iterations times number of agents

I k = O(ε−2 log(N )), new lower dimension - see below,

I M ∈ Rk×d - randomly generated matrix, see below,

I D : RN×d → RN×N , Dx = (|xi − xj |)N
i ,j=1 is the adjacency

matrix in high-dimension and similarly defined
D′ : RN×k → RN×N , D′y = (|yi − yj |)N

i ,j=1, the one in
low-dimension.



Dimensionality reduction via Johnson-Lindenstrauss
embeddings

Lemma (Johnson and Lindenstrauss)

Let P be an arbitrary set of N points in Rd . Given ε > 0, there
exists

k0 = O(ε−2 log(N)),

such that for all integers k ≥ k0, there exists a k × d random
matrix M for which with high probability, for all x , x̃ ∈ P

(1− ε)|x − x̃ |2 ≤ |Mx −Mx̃ |2 ≤ (1 + ε)|x − x̃ |2.



Dimensionality reduction via Johnson-Lindenstrauss
embeddings
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Restricted Isometry Property

Definition
A k × d matrix M̃ is said to have the Restricted Isometry Property
of order K ≤ d and level δ ∈ (0, 1) if

(1− δ)|x |2 ≤ |M̃x |2 ≤ (1 + δ)|x |2

for all K -sparse x ∈ Rd .

Theorem (Krahmer, Ward)

Fix η > 0 and ε > 0, and consider a finite set P ⊂ Rd of cardinality
|P| = N . Set K ≥ 40 log 4N

η , and suppose that the k × d matrix

M̃ satisfies the Restricted Isometry Property of order K and level
δ ≤ ε/4. Let ξ ∈ Rd be a Rademacher sequence, i.e., uniformly
distributed on {−1, 1}d . Then with probability exceeding 1− η,

(1− ε)|x |2 ≤ |Mx |2 ≤ (1 + ε)|x |2.

uniformly for all x ∈ P, where M := M̃ diag(ξ).
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Projection of the dynamical system
We consider the system of ordinary differential equations in the
fixed form with the initial condition

xi (0) = x0
i , i = 1, . . . ,N .

The Euler method for this system is given by this initial condition
and

xn+1
i := xn

i + h

fi (Dxn) +
N∑

j=1

fij(Dxn)xn
j

 , n = 0, . . . , n0 − 1.

where h > 0 is the time step and n0 := T/h is the number of
iterations.

If M ∈ Rk×d is a matrix, we may consider the associated Euler
method in Rk , namely

y0
i := Mx0

i ,

yn+1
i := yn

i + h

Mfi (D′yn) +
N∑

j=1

fij(D′yn)yn
j

 , n = 0, . . . , n0 − 1.
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A first surprising result

Theorem (Fornasier, Haskovec, Vybiral)

Given a matrix M ∈ Rk×d such that∣∣Mfi (D′yn)−Mfi (Dxn)
∣∣ ≤ (1 + ε)

∣∣fi (D′yn)− fi (Dxn)
∣∣ ,

|Mxn
j | ≤ (1 + ε)|xn

j |,
(1− ε)|xn

i − xn
j | ≤ |Mxn

i −Mxn
j | ≤ (1 + ε)|xn

i − xn
j |

for all i , j = 1, . . . ,N and all n = 0, . . . , n0. Let us also assume,
that α ≥ maxj |xn

j | for all n = 0, . . . , n0, j = 1, . . . ,N. Let

en
i := |yn

i −Mxn
i |, i = 1, . . . ,N and n = 0, . . . , n0

and put En := maxi en
i . Then

En ≤ εhnB exp(hnA),

where A := L′ + 2(1 + ε)(L + αL′′) and B := 2α(1 + ε)(L + αL′′).



Visual explanation



A continuous Johnson-Lindenstrauss Lemma

Theorem (Fornasier, Haskovec, Vybiral)

Let ϕ : [0, 1]→ Rd be a C1 curve. Let 0 < ε < ε′ < 1,

γ := max
ξ∈[0,1]

|ϕ̇(ξ)|
|ϕ(ξ)|

<∞ and N ≥ (
√

d + 1) · γ

ε′ − ε
.

Let k be such a dimension, that a randomly chosen (and properly
normalized) projector M satisfies the statement of the
Johnson-Lindenstrauss Lemma with ε, d , k and N arbitrary points.
Then

(1− ε′)|ϕ(t)| ≤ |Mϕ(t)| ≤ (1 + ε′)|ϕ(t)|, t ∈ [0, 1]

holds with the same probability.



A continuous Johnson-Lindenstrauss Lemma

The condition

γ := max
ξ∈[0,1]

|ϕ̇(ξ)|
|ϕ(ξ)|

<∞ and N ≥ (
√

d + 1) · γ

ε′ − ε

is necessary.

Peano’s space-filling curve

By lifting a suitable parametrization
a Peano’s space-filling curve on the
unit sphere Sd−1, one generates a
curve with infinite speed (i.e., the
condition does not hold), and at the
same time it generates any possible
vector including those in the kernel
of M, hence

(1− ε′)|ϕ(t)| ≤ |Mϕ(t)|

cannot hold!



Projecting the continuous system

Theorem (Fornasier, Haskovec, Vybiral)

Let x(t) ∈ Rd×N , t ∈ [0,T ], be the solution of the given ODE
system, such that maxt∈[0,T ] maxi ,j |xi (t)− xj(t)| ≤ α . Let us fix

k ∈ N, k ≤ d, and a matrix M ∈ Rk×d such that

(1− ε)|xi (t)− xj(t)| ≤ |Mxi (t)−Mxj(t)| ≤ (1 + ε)|xi (t)− xj(t)| ,

for all t ∈ [0,T ] and i, j = 1, . . . ,N. Let y(t) ∈ Rk×N , t ∈ [0,T ]
be the solution of the projected (continuous) system such that for
a suitable β > 0, maxt∈[0,T ] maxi |yi (t)| ≤ β . Let us define the
columnwise `2-error ei (t) := |yi (t)−Mxi (t)| for i = 1, . . . ,N and

E(t) := max
i=1,...,N

ei (t) .

Then we have the estimate

E(t) ≤ εαt(L‖M‖+ L′′β) exp
[
(2L‖M‖+ 2βL′′ + L′)t

]
.



Verifying the crucial condition

According to our continuous Johnson-Lindenstrauss Lemma

(1− ε)|xi (t)− xj(t)| ≤ |Mxi (t)−Mxj(t)| ≤ (1 + ε)|xi (t)− xj(t)| ,

for all t ∈ [0,T ] and i , j = 1, . . . ,N, is verified if the necessary
condition

sup
t∈[0,T ]

max
i ,j

|ẋi (t)− ẋj(t)|
|xi (t)− xj(t)|

≤ γ <∞ ,

holds.

It is, for instance, trivially satisfied when the right hand
sides fi , fij have the following Lipschitz continuity:

|fi (Dx)− fj(Dx)| ≤ L′′′|xi − xj | for all i , j = 1, . . . ,N ,

|fi`(Dx)− fj`(Dx)| ≤ L′′′′|xi − xj | for all i , j , ` = 1, . . . ,N .

We will show examples below for which the condition is verified.
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Compressed sensing enters the picture

Theorem
Given a matrix M ∈ Rk×d with the RIP of order 2K and level
δ < 0.4, and

y = Mx + η ∈ Rk , |η| ≤ ε

The vector x̂ computed by x̂ = arg min|Mz−y |≤ε |z |1 :=
∑d

i=1 |zi |,
has the approximation property

|x̂ − x | ≤ C1
σK (x)1√

K
+ C2ε,

where σK (z)1 = |z − z[K ]|1, best-K -term approx. error.
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A second surprising algorithmic result
As a consequence of this theorem, by projecting and simulating in parallel
the dynamical system dk -times, dk ≤ d

k in lower dimension

ẏ `
i = M`fi (D′y `) +

N∑
j=1

fij(D′y `)y `
j , y `

i (0) = M`x0
i , j = 1, . . . , dk ,

we can assemble the following system
M1

M2

. . .

. . .
Mdk

 xi =


y1
i

y2
i

. . .

. . .

ydk

i

−


η1
i

η2
i

. . .

. . .

ηdk

i


Therefore we can compute x̂i such that

|x̂i − xi | ≤ C1
σdkK (xi )1√

dkK
+ C2ε.

The computation of x̂i can be parallelized!

M. Fornasier, Domain decomposition methods for linear inverse problems with

sparsity constraints, Inverse Problems, Vol. 23, 2007, pp. 2505-2526.
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Interesting examples
Our theory apply, for instance, on

I the Cucker-Smale model, which is given by

ẋi = vi ∈ Rd ,

v̇i =
1

N

N∑
j=1

g(|xi − xj |)(vj − vi ).

The function g : R→ R is given by g(t) = G
(1+t2)β

, t > 0 and

bounded by g(0) = G > 0.
I the D’Orsogna-Chuang-Bertozzi-Chayes model, which is given

by

ẋi = vi ∈ Rd ,

v̇i = (a− b|vi |2)vi −
1

N

∑
j 6=i

∇U(|xi − xj |),

where a and b are positive constants and U : R→ R is a
smooth potential.
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Interesting examples

In principle, we can also consider

I the Keller-Segel model, given by

dxi (t) = −c
∑
j 6=i

xi − xj

|xi − xj |d
dt +

√
2dBi ,

where Bi (t), i = 1, . . . ,N are mutually independent
d-dimensional Brownian motions and c is a positive constant.

In this case, though, the matrix M should be better a partial
orthogonal random matrix (for instance a random partial Fourier
matrix), as MBi (t), i = 1, . . . ,N are mutually independent
k-dimensional Brownian motions!
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Summarizing
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Passage to kinetic equations N →∞
We specify

ẋi (t) = fi (Dx(t)) +
NX

j=1

fij(Dx(t))xj(t), x(0) = x0 ∈ RN×d ,

for the Cucker-Smale model.

The Cucker–Smale flocking model:8>>><>>>:
ẋi = vi ∈ Rd ,

v̇i =
1

N

NX
j=1

g(|xi − xj |)(vj − vi ) ,

for i = 1, . . . ,N, where f is the communica-

tion rate.
S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic

descriptions of flocking, Kinetic and Related Models 1(3) (2008) 415-435.

J. A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani, Asymptotic flocking

dynamics for the kinetic Cucker-Smale model, SIAM. J. Math. Anal., 42(1)

(2010) 218-236.
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Passage to kinetic equations

The Cucker–Smale model projected in low-dimension:
Mẋi = Mvi ∈ Rk ,

Mv̇i≈
1

N

N∑
j=1

g(|Mxi −Mxj |)(Mvj −Mvi ) ,

for i = 1, . . . ,N.
Substituting yi = Mxi ∈ Rk and wi = Mvi ∈ Rk , we define

ẏi = wi ,

ẇi =
1

N

N∑
j=1

g(|yi − yj |)(wj − wi ) ,



Mean-field limit

Define the empirical distribution density associated to a solution
(x(t), v(t)) of the Cucker-Smale model

µn(x , v , t) =
1

n

n∑
i=1

δ(x − xi (t))δ(v − vi (t)) ,

This probability measure formally satisfies the following equation
in weak sense

∂µn

∂t + v · ∇xµ
n = ∇v · [ξ(µn)µn]

↓ n→∞

∂µ
∂t + v · ∇xµ = ∇v · [ξ(µ)µ] ,

where ξ(µ)(x , v , t) = [(g(x)∇v U(v)) ∗ µ] and U(v) = 1
2
|v |2 and ∗ is the

(x , v)-convolution.
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Stability, approximation properties, and optimal integration
Such approximation is evaluated in terms of dual Wasserstein-type
distances:

W (µ, ν) = sup

{∫
ϕd(µ− ν) : ϕ ∈ Lip, ‖ϕ‖Lip ≤ 1

}
.

In particular

W (µ, µn) = sup
ϕ∈Lip(Rd×d ),‖ϕ‖Lip≤1

{∫
ϕdµ− 1

n

n∑
i=1

ϕ(xi , vi )

}
.

Stability (e.g, Ha-Liu|Carrillo-Canizo-Rosado):

W (µ(t), µn(t)) ≤ C (T )W (µ(0), µn(0)),
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Stability, approximation properties, and optimal integration

Let us consider:

W (µ, µn) = sup
ϕ∈Lip(Rd×d ),‖ϕ‖Lip≤1

{∫
ϕdµ− 1

n

∑
i

ϕ(xi , vi )

}
.

Which are the optimal and universal integration points (xi , vi ),
i = 1, . . . , n such that

W (µ, µn) = O(n−γ),

for the largest possible γ > 0?

This question belongs to the realm
of Information Based Complexity.
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Stability, approximation properties, and optimal integration
Let us assume d = 1 and that µ is a nice function supported on
[x0, xn] and

√
σ := |xn − x0|. We define xi the quatiles such that∫ xi

−∞
µ(x)dx =

i

n
.

Then, for ϕ ∈ Lip(R),∣∣∣∣∣
∫

R
ϕ(x)µ(x)dx − 1

n

n∑
i=1

ϕ(xi )

∣∣∣∣∣ ≤
√
σ

n
= O(n−1)

⇒ γ = 1.

Assume now d � 1 and µ = µ1 ⊗ · · · ⊗ µd , µi univariate
compactly supported with corresponding support size

√
σi , then∣∣∣∣∣

∫
Rd

ϕ(x)µ(x)dx − 1

n

n∑
i=1

ϕ(xi )

∣∣∣∣∣ ≤ Cd

d∑
i=1

√
σi

ni
,

and n :=
∏d

i=1 ni is the number of optimal sampling points.
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Stability, approximation properties, and optimal integration
Hence, if ni = N, for all i = 1, . . . , d , then

n = Nd ,

but∣∣∣∣∣
∫

Rd

ϕ(x)µ(x)dx − 1

n

n∑
i=1

ϕ(xi )

∣∣∣∣∣ ≤ Cd

∑d
i=1

√
σi

N
= O(n−1/d).

The number of points depends EXPONENTIALLY, γ = 1/d , on
the dimension d!! ⇒ curse of dimensionality.

One way to improve this approximation is by assuming∑
i∈X
√
σi ≤ ε, for a suitable set X ⊂ {1, . . . , d}, such that

#X ≤ d − k, k = k(ε):

ni = N, i ∈ X c and ni = 1, i ∈ X ⇒ n = Nk ,

k = k(ε)→ d , ε→ 0.
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Projecting the PDE in low-dimension
The natural projection in low-dimension of a measure is given
again by duality: νM := M#µ⇒ (push-forward):

〈νM , ϕ〉 := 〈µ, ϕ(M·)〉, ∀ϕ ∈ Lip(Rk×k).

If µ ∈ L1 then, we have a generalized Radon transform:

νM(y ,w , t) = CM

∫
ker M

µ(M†(y ,w) + ξ, t)dξ.

The equation in low-dimension with projected datum:

∂ν

∂t
+ w · ∇yν = ∇w · [ξ(ν)ν] , ν(y ,w , 0) = νM(y ,w , 0)

µ(0)
t−→ µ(t)

↓ M ↓ M

ν(0) = νM(0)
t−→ ν(t) ≈ νM(t)
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Delayed curse of dimensionality

The way to prove it:

µ
W (µ,µn).n−γ=ε−→ µn

↓ M ↓ M

ν
W (ν,νn).n−γ=ε−→ νn

This good approximation property can be ensured only if

W (µ, µn) . n−γ = ε, for γ = 1/k � 1/d ,

and this is possible if µ “concentrates” on manifolds of dimension
k!.

Typical non compactly supported example:

µ(x , v) =
dY

i=1

(2πσi )
−1/2 exp

“
x2

i /(2σi )
”
×

dY
j=1

(2πσ̃j)
−1/2 exp

“
v 2

i /(2σ̃j)
”
,

for
P

i∈X
√
σi +

P
i∈V
p
σ̃j ≤ ε, for suitable sets X ,V ⊂ {1, . . . , d},

#X + #V ≤ d − k, k = k(ε).
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Is this concentration property a realistic assumption?

About 1100 Science News articles, from 8 different categories. We
compute about 1000 coordinates, i-th coordinate of document d
represents frequency in document d of the i-th word in a dictionary.

Clustering in high-dimension.



Is this concentration property a realistic assumption?

The dynamics of a small protein in a bath of water molecules is
approximated by a Langevin system of stochastic equations

ẋ = ∇U(x) + ẇ .

The set of states of the protein is a noisy set of points in R36.

Protein in a water

bath.

. Projection in R3 of the states in

high-dimension.



Conclusion
I The projection of a nonlinear PDE associated to a dynamical

system governed by the adjacency matrix can furnish good
approximations in lower dimension only if the initial value
measure is concentrated;

I The recovery of the higher dimensional measure from lower
dimensional simulations is obtained by the inversion of the
following generalized Radon-type transform:

ν(y ,w , t) ≈ CM

∫
ker M

µ(M†(y ,w , t) + ξ)dξ.
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Visual summary



Bridging compression and simulation, beyond signal
coding-decoding.
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