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Low-rank matrix recovery problem

minimize rank(X)
subject to A(X) = b

where X ∈ R
n1×n2, A : R

n1×n2 → R
m is a linear map, m ≪ n1, n2

NP-hard in general.
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movie recommendation
based on few features

quantum tomography, network tomography,. . .
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ℓ1 and nuclear norm minimization

goal: find k-sparse x0 ∈ R
n from m noisy measurements y = Ax0 + z, ‖z‖2 ≤ ǫ.

solve (convex relaxation)

minimize ‖x‖1

subject to ‖Ax − y‖2 ≤ ǫ

goal: find rank-k X0 ∈ R
n1×n2 from y = A(X0) + z, ‖z‖2 ≤ ǫ. solve

minimize ‖X‖⋆

subject to ‖A(X) − y‖2 ≤ ǫ

• both robust, even if not perfectly sparse/low-rank

• def: x∗ is as good as x0 w.r.t y, if ‖Ax∗ − y‖2 ≤ ǫ and ‖x∗‖1 ≤ ‖x0‖1

(x∗ in intersection of tube constraint and scaled ℓ1 ball)

• similarly for matrices
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This talk

• direct extension of strong recovery∗ conditions from vectors to matrices;
eliminate the existing gap

• use a key singular value inequality and unitary invariance

• typical result: same restricted isometry conditions for k sparse vector recovery
guarantees rank k matrix recovery—nothing lost in translation!

• nullspace based properties (NSP, SSP); robust recovery; recovery using ℓp, p < 1

* strong recovery: works for all matrices up to certain rank
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Restricted isometry property

Restricted Isometry Constant (RIC) for A: the smallest δk s.t.

(1 − δk)‖X‖2
F < ‖A(X)‖2

2 < (1 + δk)‖X‖2
F

holds for all X with rank(X) ≤ k.

Restricted Orthogonality Constant (ROC) for A: the smallest θk,k′ s.t.

| 〈A(X),A(X ′)〉 | ≤ θk,k′‖X‖F‖X ′‖F

holds for all X, X ′ where rank(X) ≤ k, rank(X ′) ≤ k′, and X, X ′ have orthogonal
row and column spaces.

RIP: A satisfies inequalities of form f(δi1, . . . , δim, θj1,j′1
, . . . , θjn,j′n

) ≤ c, where

f(0) = 0 and f is increasing.
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Spherical section property

A satisfies the ∆-Spherical Section Property (SSP) if ∆(A) ≥ ∆, where

∆(A) = min
W∈N (A)\{0}

‖W‖2
⋆

‖W‖2
F

∆ large ⇒ nullspace doesn’t include low rank matrices (also known as an almost

Euclidean subspace)

vector case: ℓ1/ℓ2 [Kashin’77],[Gluskin,Garnaev’84],. . .

used in compressed sensing [Kashin,Temlyakov’07],[Zhang’08],[Vavasis’09], and matrix
recovery [Dvijotham,F.’10]

5



vector case: ‖w‖1
‖w‖2

≥
√

∆ (1 ≤ ∆ ≤ n)

meaning: ∆ large means if ℓ1 ball is cut by a subspace, intersection looks
spherical (1/

√
n ≤ ‖w‖2 ≤ 1/

√
∆)

in high dimensions, random subspaces should have large ∆
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Key inequality

[HornJohnson’90] for any X, Y ∈ R
n1×n2

n1
∑

i=1

|σi(X) − σi(Y )| ≤ ‖X − Y ‖⋆

LHS independent of singular vectors; equality when singular vectors are aligned.

Lemma. given W with SVD W = UΣWV T , if there exists any X0 for which
‖X0 + W‖⋆ ≤ ‖X0‖⋆, then X1 = −UΣX0V

T also satisfies ‖X1 + W‖⋆ ≤ ‖X1‖⋆.

meaning: if there is a “bad” X0 for a particular W , can construct other “bad”
X1, with the same singular values, that lies on W ’s subspace (given by U, V ).
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Nullspace property (NSP)

let ǫ = 0 (no noise)

Sparse recovery: [Feuer,Nemirovsky’03] All x0 with ‖x0‖0 ≤ k can be recovered via
ℓ1 minimization iff

k
∑

i=1

w̄i <

n
∑

i=k+1

w̄i, ∀ w ∈ N (A)

where w̄i is ith largest entry of |w|.

Low-rank recovery: [Oymak,Hassibi’10] All X0 with rank(X0) ≤ k can be recovered
via nuclear norm minimization iff

k
∑

i=1

σi(W ) <

n1
∑

i=k+1

σi(W ), ∀ W ∈ N (A)

meaning: top k singular values contain no more than 1/2 of total ℓ1 mass of σ
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Main result

• V1: A satisfies a property P

• V2: for any x0, ‖z‖2 ≤ ǫ, y = Ax0 + z and any x∗ as good as x0,
‖x∗ − x0‖ ≤ h(x̄0, ǫ)

• V3: any w ∈ N (A) satisfies a property Q

• M1: A : R
n1×n2 → R

m satisfies the (extension) property P

• M2: for any X0, ‖z‖2 ≤ ǫ, y = A(X0) + z and any X∗ as good as X0,
‖X∗ − X0‖ ≤ h(Σ(X0), ǫ)

• M3: for any W ∈ N (A), σ(W ) satisfies property Q

Main result: for a given P, the following hold:

(V1 =⇒ V2) =⇒ (M1 =⇒ M2)

(V1 =⇒ V3) =⇒ (M1 =⇒ M3)
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Application to RIP based recovery

Robust + noisy recovery: Let A : R
n1×n2 → R

m satisfy RIP inequality described
by f(δi1, . . . , δim, θj1,j′1

, . . . , θjn,j′n
) ≤ c. Then for all X0, all ‖z‖2 ≤ ǫ and all X∗ as

good as X0,

‖X0 − X∗‖F ≤ C1√
k
‖X0 − Xk

0‖⋆ + C2ǫ

‖X0 − X∗‖⋆ ≤ C3‖X0 − Xk
0‖⋆

with exactly the same constants C1, C2, C3 as the vector case, when A satisfies the
same RIP inequality f .

(Xk
0 : best rank-k approximation of X0)

matrix-vector RIP link: if A has RIP, all its restrictions to (Un1×n1, Vn2×n1) have
RIP
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Application to SSP based recovery

Robust recovery: Let ǫ = 0 and X∗ be as good as X0. If A satisfies ∆-SSP with
∆ > 4k,

‖X∗ − X0‖⋆ ≤ C‖X0 − Xk
0‖⋆

where C = 2

1−2
√

k/∆
.

• improves sufficient condition of k < ∆
6 [Dvijotham,F.’10] to k < ∆

4

• simplifies analysis

• matches sufficient condition for sparse vector recovery [Zhang’08]
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NSP based robust recovery

Nuclear norm robustness: Let ǫ = 0; for any X0 and any X∗ as good as X0,

‖X0 − X∗‖⋆ < 2C‖X0 − Xk
0‖⋆

iff for all W ∈ N (A),

k
∑

i=1

σi(W ) <
C − 1

C + 1

n
∑

i=k+1

σi(W ).

Matrix noise robustness: For any X0 with rank(X0) ≤ k, any ‖z‖2 ≤ ǫ and any
X∗ as good as X0,

‖X0 − X∗‖F < Cǫ,

iff for any W with
∑k

i=1 σi(W ) ≥ ∑n
i=k+1 σi(W ),

‖W‖F <
C

2
‖A(W )‖2.
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Application to recovery via Schatten-p quasinorm

nonconvex surrogate for rank

minimize
∑n1

i=1 σp
i (X)

subject to A(X) = y

• motivated iterative algorithms, e.g. iterative reweighted least squares

• empirically observed to outperform nuclear norm recovery e.g.

[Chartrand’08,Foucart,Lai’09]
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Lemma. if property S on matrix A implies recovery of all x0 with sparsity 2k via
ℓp minimization (0 < p < 1), then (extended) S implies recovery of all matrices
with rank(X0) ≤ k via Schatten-p quasinorm minimization.

• inequality
∑n

i=1(σ
p
i (X) − σp

i (Y )) ≤ ∑n
i=1 σp

i (X − Y ) is used. there is gap
between necessary and sufficient parts.

• a stronger inequality (with abs values on RHS) will allow bridging the gap. this
seems to hold empirically, though no proof yet. . .
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Improved thresholds

strong thresholds for Gaussian measurements, using new NSP (plus probabilistic
analysis using Gordon’s lemma) [Oymak,Hassibi’10]
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Strong threshold (C→∞)
C=10
C=5
C=10/3
Closed Form Bound (C→∞)

degrees of freedom per measurement vs number of measurements, for n × n
matrix, constant k/n.

improves known thresholds (e.g. [Recht,Xu,Hassibi’10])
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Conclusions

• extend strong recovery conditions from vectors to matrices with no loss

• match best vector RIP ([Cai,et al’10;Lai’10]) and nullspace recovery conditions
(e.g., δk < 0.309 guarantees rank-k recovery)

• robust recovery: best error bounds via NSP

• some results for nonconvex Schatten-p quasinorm minimization (but not yet
tight)

• also help obtain improved thresholds for Gaussian measurements

ref: Oymak, Mohan, Fazel, Hassibi, “A simplified approach to recovery conditions for low rank

matrices ”, http://arxiv.org/abs/1103.1178
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