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Low-rank matrix recovery problem

N——"

minimize  rank(X
subject to A(X) =10

where X € R™"*"2 A . R"1*"2 — R™ is a linear map, m < ny, no
NP-hard in general.
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/1 and nuclear norm minimization

goal: find k-sparse xg € R™ from m noisy measurements y = Axq + z, |

solve (convex relaxation)

minimize  ||x||;
subject to ||Ax —ylls <€

goal: find rank-k Xy € R™*"2 from y = A(Xy) + 2, ||z]]2 < €. solve

minimize || X«
subject to || A(X) —yll2 <€

e both robust, even if not perfectly sparse/low-rank

ZH2 S €.

e def: x* is as good as xg w.r.ty, if ||[Ax* —yll2 < e and ||x*||1 < [[x0o||1

(x* in intersection of tube constraint and scaled ¢; ball)

e similarly for matrices



This talk

e direct extension of strong recovery® conditions from vectors to matrices;
eliminate the existing gap

e use a key singular value inequality and unitary invariance

e typical result: same restricted isometry conditions for k£ sparse vector recovery
guarantees rank k£ matrix recovery—nothing lost in translation!

e nullspace based properties (NSP, SSP); robust recovery; recovery using ¢, p < 1

* strong recovery: works for all matrices up to certain rank



Restricted isometry property

Restricted Isometry Constant (RIC) for A: the smallest dj s.t.
(1= 0)IXNE < TA)IZ < 1+ ) IX |7
holds for all X with rank(X) < k.
Restricted Orthogonality Constant (ROC) for A: the smallest 0}, 4/ s.t.
[ (AX), AX ) | < 0w I XN 2| X

holds for all X, X’ where rank(X) < k, rank(X’) < k’, and X, X’ have orthogonal
row and column spaces.

RIP: A satisfies inequalities of form f(6;,,...,9;,,0

f(0) =0 and f is increasing.
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Spherical section property

A satisfies the A-Spherical Section Property (SSP) if A(A) > A, where

. (]
A(A) =
A WeNtANo} |2

A large = nullspace doesn't include low rank matrices (also known as an almost
Euclidean subspace)

vector case: (1 /l5 [Kashin'77],[Gluskin,Garnaev'84],. . .

used in compressed sensing [Kashin, Temlyakov'07],[Zhang’'08],[Vavasis'09], and matrix
recovery [Dvijotham,F."10]



vector case: ML > /A (1< A<np)

[wll2

meaning: A large means if /1 ball is cut by a subspace, intersection looks

spherical (1/y/n < ||wll2 < 1/VA)

in high dimensions, random subspaces should have large A



Key inequality

[HornJohnson'90] for any X,Y € R"™t1x"2
ny
D loX) oY) < IX ~ Y.

1=1

LHS independent of singular vectors; equality when singular vectors are aligned.

Lemma. given W with SVD W = UXy V!, if there exists any X for which
1 X0+ Wl < || Xolls, then X1 = —UXx V! also satisfies || X1 + W/l < || X1l

meaning: if there is a "bad” X for a particular W, can construct other “bad”
X1, with the same singular values, that lies on W's subspace (given by U, V).



Nullspace property (NSP)
let € = 0 (no noise)

Sparse recovery: [Feuer,Nemirovsky'03] All x¢ with ||xg|/og < k can be recovered via
/1 minimization iff

k n

Y owi< Y oy, VweN(A)
i=1 i=k+1

where w; is ith largest entry of |w|.

Low-rank recovery: [Oymak,Hassibi'10] All X with rank(Xy) < k£ can be recovered
via nuclear norm minimization iff

k ni
Y a(W)< Y (W), VW eN(A

1=k+1

meaning: top k singular values contain no more than 1/2 of total /; mass of o



Main result

o V1. A satisfies a property P

o V5: for any xq, ||z||2 <€ y = Axg+ z and any x* as good as X,
Ix* = xoll < (o, €)

e V5: any w € N (A) satisfies a property Q

o Mi: A:R">"2 — R™ satisfies the (extension) property P

o Msy: for any Xy, ||z]2 <€ y = A(Xp) +2z and any X* as good as X,
1X* = Xol| < A(%(X0),€)

e Mj: for any W € N(A), o(W) satisfies property Q

Main result: for a given P, the following hold:

(Vl — VQ) — (M1 — Mg)

(Vl — V3) — (M1 — Mg)



Application to RIP based recovery

Robust + noisy recovery: Let A : R"1*"2 — R™ satisfy RIP inequality described
by f (i, 0is 05y 415 -5 05,.51) < c. Then for all Xo, all ||z|2 < e and all X* as
good as X,

“
vk
[ Xo = X"l < Csl|Xo — Xl

IXo = X"|lF < | X0 — Xg |+ + Cae

with exactly the same constants C'1, C5, C3 as the vector case, when A satisfies the
same RIP inequality f.

(XE: best rank-k approximation of Xj)

matrix-vector RIP link: if A has RIP, all its restrictions to (U, xn;s Vnoxn,) have
RIP
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Application to SSP based recovery

Robust recovery: Let ¢ = 0 and X™ be as good as X. If A satisfies A-SSP with
A > 4k,

X" = Xol. < ClXo— Xl

where (' =

1—2+/k/A’

e improves sufficient condition of k < % [Dvijotham,F.'10] to k < %
e simplifies analysis

e matches sufficient condition for sparse vector recovery [Zhang'08]
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NSP based robust recovery
Nuclear norm robustness: Let ¢ = 0; for any Xy and any X* as good as X,
| X0 — X7l < 201 X0 — Xg||.

iff for all W € N(A),

k O _1 n
Zai(W)< o 'Z oi(W).
=1 1=k-+1

Matrix noise robustness: For any X with rank(Xy) < k, any ||z||2 < € and any

X™* as good as X,
| Xo — X*||F < Cle,

iff for any W with S0, o,(W) > S0, | 0y(W),

C
[WiFr < EHA(W)HQ-
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Application to recovery via Schatten-p quasinorm

nonconvex surrogate for rank

minimize 2oP(X)

subject to A():() =y

e motivated iterative algorithms, e.g. iterative reweighted least squares

e empirically observed to outperform nuclear norm recovery e.g.
[Chartrand’08,Foucart,Lai'09]
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Lemma. if property S on matrix A implies recovery of all xy with sparsity 2k via
¢, minimization (0 < p < 1), then (extended) S implies recovery of all matrices
with rank(Xg) < k via Schatten-p quasinorm minimization.

e inequality > " [ (o?(X) —o?(YV)) <>  oP(X —Y) is used. there is gap
between necessary and sufficient parts.

e a stronger inequality (with abs values on RHS) will allow bridging the gap. this
seems to hold empirically, though no proof yet. . .
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Improved thresholds

strong thresholds for Gaussian measurements, using new NSP (plus probabilistic
analysis using Gordon's lemma) [Oymak,Hassibi'10]
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improves known thresholds (e.g. [Recht,Xu,Hassibi'10])



Conclusions

e extend strong recovery conditions from vectors to matrices with no loss

e match best vector RIP ([Cai,et al'10;Lai'10]) and nullspace recovery conditions
(e.g., 0 < 0.309 guarantees rank-k recovery)

e robust recovery: best error bounds via NSP

e some results for nonconvex Schatten-p quasinorm minimization (but not yet
tight)

e also help obtain improved thresholds for Gaussian measurements

ref: Oymak, Mohan, Fazel, Hassibi, “A simplified approach to recovery conditions for low rank
matrices ", http://arxiv.org/abs/1103.1178
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