Strong Recovery Conditions for Low-rank Matrices

Maryam Fazel University of Washington

Joint work with: Samet Oymak (Caltech), Karthik Mohan (UW), Babak Hassibi (Caltech)

Banff Sparse and Low-rank Approximations Workshop, 3/8/11

Low-rank matrix recovery problem

 $\begin{array}{ll} \mbox{minimize} & \mbox{rank}(X) \\ \mbox{subject to} & \mathcal{A}(X) = b \end{array}$

where $X \in \mathbb{R}^{n_1 \times n_2}$, $\mathcal{A} : \mathbb{R}^{n_1 \times n_2} \to \mathbb{R}^m$ is a linear map, $m \ll n_1, n_2$

NP-hard in general.

quantum tomography, network tomography, . . .

machine learning users/movies database

$\begin{bmatrix} 5 \\ ? \end{bmatrix}$?	8	 ?
	10	3	 5
2	1	· ?	 6

movie recommendation based on few features

ℓ_1 and nuclear norm minimization

goal: find k-sparse $\mathbf{x}_0 \in \mathbb{R}^n$ from m noisy measurements $\mathbf{y} = A\mathbf{x}_0 + \mathbf{z}$, $\|\mathbf{z}\|_2 \leq \epsilon$. solve (convex relaxation)

minimize
$$\|\mathbf{x}\|_1$$

subject to $\|A\mathbf{x} - \mathbf{y}\|_2 \le \epsilon$

goal: find rank- $k X_0 \in \mathbb{R}^{n_1 \times n_2}$ from $\mathbf{y} = \mathcal{A}(X_0) + \mathbf{z}$, $\|\mathbf{z}\|_2 \leq \epsilon$. solve

$$\begin{array}{ll} \text{minimize} & \|X\|_{\star} \\ \text{subject to} & \|\mathcal{A}(X) - \mathbf{y}\|_2 \leq \epsilon \end{array}$$

- both robust, even if not perfectly sparse/low-rank
- def: \mathbf{x}^* is as good as \mathbf{x}_0 w.r.t \mathbf{y} , if $||A\mathbf{x}^* \mathbf{y}||_2 \le \epsilon$ and $||\mathbf{x}^*||_1 \le ||\mathbf{x}_0||_1$ (\mathbf{x}^* in intersection of tube constraint and scaled ℓ_1 ball)
- similarly for matrices

This talk

- direct extension of strong recovery^{*} conditions from vectors to matrices; eliminate the existing gap
- use a key singular value inequality and unitary invariance
- typical result: same restricted isometry conditions for k sparse vector recovery guarantees rank k matrix recovery—nothing lost in translation!
- nullspace based properties (NSP, SSP); robust recovery; recovery using ℓ_p , p < 1

* strong recovery: works for all matrices up to certain rank

Restricted isometry property

Restricted Isometry Constant (RIC) for \mathcal{A} : the smallest δ_k s.t.

$$(1 - \delta_k) \|X\|_F^2 < \|\mathcal{A}(X)\|_2^2 < (1 + \delta_k) \|X\|_F^2$$

holds for all X with $rank(X) \leq k$.

Restricted Orthogonality Constant (ROC) for \mathcal{A} : the smallest $\theta_{k,k'}$ s.t.

$$|\langle \mathcal{A}(X), \mathcal{A}(X') \rangle| \leq \theta_{k,k'} ||X||_F ||X'||_F$$

holds for all X, X' where $rank(X) \le k$, $rank(X') \le k'$, and X, X' have orthogonal row and column spaces.

RIP: \mathcal{A} satisfies inequalities of form $f(\delta_{i_1}, \ldots, \delta_{i_m}, \theta_{j_1, j'_1}, \ldots, \theta_{j_n, j'_n}) \leq c$, where f(0) = 0 and f is increasing.

Spherical section property

 \mathcal{A} satisfies the Δ -Spherical Section Property (SSP) if $\Delta(\mathcal{A}) \geq \Delta$, where

$$\Delta(\mathcal{A}) = \min_{W \in \mathcal{N}(\mathcal{A}) \setminus \{0\}} \frac{\|W\|_{\star}^2}{\|W\|_F^2}$$

 Δ large \Rightarrow nullspace doesn't include low rank matrices (also known as an *almost Euclidean* subspace)

vector case: ℓ_1/ℓ_2 [Kashin'77],[Gluskin,Garnaev'84],...

used in compressed sensing [Kashin, Temlyakov'07], [Zhang'08], [Vavasis'09], and matrix recovery [Dvijotham, F.'10]

vector case: $\frac{\|\mathbf{w}\|_1}{\|\mathbf{w}\|_2} \ge \sqrt{\Delta}$ $(1 \le \Delta \le n)$

meaning: Δ large means if ℓ_1 ball is cut by a subspace, intersection looks spherical $(1/\sqrt{n} \le ||\mathbf{w}||_2 \le 1/\sqrt{\Delta})$

in high dimensions, random subspaces should have large Δ

Key inequality

[HornJohnson'90] for any $X, Y \in \mathbb{R}^{n_1 \times n_2}$

$$\sum_{i=1}^{n_1} |\sigma_i(X) - \sigma_i(Y)| \le ||X - Y||_{\star}$$

LHS independent of singular vectors; equality when singular vectors are aligned.

Lemma. given W with SVD $W = U\Sigma_W V^T$, if there exists any X_0 for which $||X_0 + W||_{\star} \leq ||X_0||_{\star}$, then $X_1 = -U\Sigma_{X_0}V^T$ also satisfies $||X_1 + W||_{\star} \leq ||X_1||_{\star}$.

meaning: if there is a "bad" X_0 for a particular W, can construct other "bad" X_1 , with the same singular values, that lies on W's subspace (given by U, V).

Nullspace property (NSP)

let $\epsilon = 0$ (no noise)

Sparse recovery: [Feuer,Nemirovsky'03] All \mathbf{x}_0 with $\|\mathbf{x}_0\|_0 \le k$ can be recovered via ℓ_1 minimization **iff**

$$\sum_{i=1}^{\kappa} \bar{w}_i < \sum_{i=k+1}^{n} \bar{w}_i, \quad \forall \ \mathbf{w} \in \mathcal{N}(A)$$

where \bar{w}_i is *i*th largest entry of $|\mathbf{w}|$.

Low-rank recovery: [Oymak,Hassibi'10] All X_0 with $rank(X_0) \le k$ can be recovered via nuclear norm minimization **iff**

$$\sum_{i=1}^{k} \sigma_i(W) < \sum_{i=k+1}^{n_1} \sigma_i(W), \quad \forall \ W \in \mathcal{N}(\mathcal{A})$$

meaning: top k singular values contain no more than 1/2 of total ℓ_1 mass of σ

Main result

- V_1 : A satisfies a property **P**
- V_2 : for any \mathbf{x}_0 , $\|\mathbf{z}\|_2 \leq \epsilon$, $\mathbf{y} = A\mathbf{x}_0 + \mathbf{z}$ and any \mathbf{x}^* as good as \mathbf{x}_0 , $\|\mathbf{x}^* - \mathbf{x}_0\| \leq h(\bar{\mathbf{x}}_0, \epsilon)$
- V_3 : any $\mathbf{w} \in \mathcal{N}(A)$ satisfies a property \mathbf{Q}
- $M_1: \mathcal{A}: \mathbb{R}^{n_1 \times n_2} \to \mathbb{R}^m$ satisfies the (extension) property **P**
- M_2 : for any X_0 , $\|\mathbf{z}\|_2 \leq \epsilon$, $\mathbf{y} = \mathcal{A}(X_0) + \mathbf{z}$ and any X^* as good as X_0 , $\|X^* - X_0\| \leq h(\Sigma(X_0), \epsilon)$
- M_3 : for any $W \in \mathcal{N}(\mathcal{A})$, $\sigma(W)$ satisfies property \mathbf{Q}

Main result: for a given \mathbf{P} , the following hold:

$$(V_1 \implies V_2) \implies (M_1 \implies M_2)$$

 $(V_1 \implies V_3) \implies (M_1 \implies M_3)$

Application to RIP based recovery

Robust + noisy recovery: Let $\mathcal{A} : \mathbb{R}^{n_1 \times n_2} \to \mathbb{R}^m$ satisfy RIP inequality described by $f(\delta_{i_1}, \ldots, \delta_{i_m}, \theta_{j_1, j'_1}, \ldots, \theta_{j_n, j'_n}) \leq c$. Then for all X_0 , all $\|\mathbf{z}\|_2 \leq \epsilon$ and all X^* as good as X_0 ,

$$||X_0 - X^*||_F \leq \frac{C_1}{\sqrt{k}} ||X_0 - X_0^k||_{\star} + C_2 \epsilon$$
$$||X_0 - X^*||_{\star} \leq C_3 ||X_0 - X_0^k||_{\star}$$

with exactly the same constants C_1, C_2, C_3 as the vector case, when A satisfies the same RIP inequality f.

 (X_0^k) : best rank-k approximation of X_0)

matrix-vector RIP link: if \mathcal{A} has RIP, all its restrictions to $(U_{n_1 \times n_1}, V_{n_2 \times n_1})$ have RIP

Application to SSP based recovery

Robust recovery: Let $\epsilon = 0$ and X^* be as good as X_0 . If \mathcal{A} satisfies Δ -SSP with $\Delta > 4k$,

$$||X^* - X_0||_{\star} \leq C||X_0 - X_0^k||_{\star}$$

where $C = \frac{2}{1-2\sqrt{k/\Delta}}$.

• improves sufficient condition of $k < \frac{\Delta}{6}$ [Dvijotham,F.'10] to $k < \frac{\Delta}{4}$

- simplifies analysis
- matches sufficient condition for sparse vector recovery [Zhang'08]

NSP based robust recovery

Nuclear norm robustness: Let $\epsilon = 0$; for any X_0 and any X^* as good as X_0 ,

$$||X_0 - X^*||_{\star} < 2C||X_0 - X_0^k||_{\star}$$

iff for all $W \in \mathcal{N}(\mathcal{A})$,

$$\sum_{i=1}^{k} \sigma_i(W) < \frac{C-1}{C+1} \sum_{i=k+1}^{n} \sigma_i(W).$$

Matrix noise robustness: For any X_0 with $rank(X_0) \le k$, any $||\mathbf{z}||_2 \le \epsilon$ and any X^* as good as X_0 ,

$$||X_0 - X^*||_F < C\epsilon,$$

iff for any W with $\sum_{i=1}^{k} \sigma_i(W) \ge \sum_{i=k+1}^{n} \sigma_i(W)$,

$$\|W\|_F < \frac{C}{2} \|\mathcal{A}(W)\|_2$$

Application to recovery via Schatten- $p\ {\rm quasinorm}$

nonconvex surrogate for rank

minimize
$$\sum_{i=1}^{n_1} \sigma_i^p(X)$$

subject to $\mathcal{A}(X) = \mathbf{y}$

- motivated iterative algorithms, e.g. iterative reweighted least squares
- empirically observed to outperform nuclear norm recovery e.g. [Chartrand'08,Foucart,Lai'09]

Lemma. if property S on matrix A implies recovery of all \mathbf{x}_0 with sparsity 2k via ℓ_p minimization ($0), then (extended) S implies recovery of all matrices with <math>\operatorname{rank}(X_0) \le k$ via Schatten-p quasinorm minimization.

- inequality $\sum_{i=1}^{n} (\sigma_i^p(X) \sigma_i^p(Y)) \le \sum_{i=1}^{n} \sigma_i^p(X Y)$ is used. there is gap between necessary and sufficient parts.
- a stronger inequality (with abs values on RHS) will allow bridging the gap. this seems to hold empirically, though no proof yet. . .

Improved thresholds

strong thresholds for Gaussian measurements, using new NSP (plus probabilistic analysis using Gordon's lemma) [Oymak,Hassibi'10]

degrees of freedom per measurement vs number of measurements, for $n \times n$ matrix, constant k/n.

improves known thresholds (e.g. [Recht,Xu,Hassibi'10])

Conclusions

- extend strong recovery conditions from vectors to matrices with no loss
- match best vector RIP ([Cai,et al'10;Lai'10]) and nullspace recovery conditions (e.g., $\delta_k < 0.309$ guarantees rank-k recovery)
- robust recovery: best error bounds via NSP
- some results for nonconvex Schatten-p quasinorm minimization (but not yet tight)
- also help obtain improved thresholds for Gaussian measurements

ref: Oymak, Mohan, Fazel, Hassibi, "A simplified approach to recovery conditions for low rank matrices ", http://arxiv.org/abs/1103.1178