Strong Recovery Conditions for Low-rank Matrices

Maryam Fazel
University of Washington

Joint work with:
Samet Oymak (Caltech), Karthik Mohan (UW), Babak Hassibi (Caltech)

Banff Sparse and Low-rank Approximations Workshop, 3/8/11

Low-rank matrix recovery problem

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{rank}(X) \\
\text { subject to } & \mathcal{A}(X)=b
\end{array}
$$

where $X \in \mathbb{R}^{n_{1} \times n_{2}}, \mathcal{A}: \mathbb{R}^{n_{1} \times n_{2}} \rightarrow \mathbb{R}^{m}$ is a linear map, $m \ll n_{1}, n_{2}$
NP-hard in general.
system ID

distance geometry

min embedding dimension, given pairwise distances
machine learning
users/movies database

$$
\left[\begin{array}{lllll}
5 & ? & 8 & \ldots & ? \\
? & 10 & 3 & \ldots & 5 \\
2 & 1 & \ddots & & \\
\hline & ? & \ldots & 6
\end{array}\right]
$$

movie recommendation based on few features
quantum tomography, network tomography,. . .

ℓ_{1} and nuclear norm minimization

goal: find k-sparse $\mathbf{x}_{0} \in \mathbb{R}^{n}$ from m noisy measurements $\mathbf{y}=A \mathbf{x}_{0}+\mathbf{z},\|\mathbf{z}\|_{2} \leq \epsilon$. solve (convex relaxation)

$$
\begin{array}{ll}
\operatorname{minimize} & \|\mathrm{x}\|_{1} \\
\text { subject to } & \|A \mathrm{x}-\mathrm{y}\|_{2} \leq \epsilon
\end{array}
$$

goal: find rank- $k X_{0} \in \mathbb{R}^{n_{1} \times n_{2}}$ from $\mathbf{y}=\mathcal{A}\left(X_{0}\right)+\mathbf{z},\|\mathbf{z}\|_{2} \leq \epsilon$. solve

$$
\begin{array}{ll}
\operatorname{minimize} & \|X\|_{\star} \\
\text { subject to } & \|\mathcal{A}(X)-\mathbf{y}\|_{2} \leq \epsilon
\end{array}
$$

- both robust, even if not perfectly sparse/low-rank
- def: \mathbf{x}^{*} is as good as \mathbf{x}_{0} w.r.t \mathbf{y}, if $\left\|A \mathbf{x}^{*}-\mathbf{y}\right\|_{2} \leq \epsilon$ and $\left\|\mathbf{x}^{*}\right\|_{1} \leq\left\|\mathbf{x}_{0}\right\|_{1}$ (x^{*} in intersection of tube constraint and scaled ℓ_{1} ball)
- similarly for matrices

This talk

- direct extension of strong recovery* conditions from vectors to matrices; eliminate the existing gap
- use a key singular value inequality and unitary invariance
- typical result: same restricted isometry conditions for k sparse vector recovery guarantees rank k matrix recovery-nothing lost in translation!
- nullspace based properties (NSP, SSP); robust recovery; recovery using $\ell_{p}, p<1$

[^0]
Restricted isometry property

Restricted Isometry Constant (RIC) for \mathcal{A} : the smallest δ_{k} s.t.

$$
\left(1-\delta_{k}\right)\|X\|_{F}^{2}<\|\mathcal{A}(X)\|_{2}^{2}<\left(1+\delta_{k}\right)\|X\|_{F}^{2}
$$

holds for all X with $\operatorname{rank}(X) \leq k$.

Restricted Orthogonality Constant (ROC) for \mathcal{A} : the smallest $\theta_{k, k^{\prime}}$ s.t.

$$
\left|\left\langle\mathcal{A}(X), \mathcal{A}\left(X^{\prime}\right)\right\rangle\right| \leq \theta_{k, k^{\prime}}\|X\|_{F}\left\|X^{\prime}\right\|_{F}
$$

holds for all X, X^{\prime} where $\operatorname{rank}(X) \leq k, \operatorname{rank}\left(X^{\prime}\right) \leq k^{\prime}$, and X, X^{\prime} have orthogonal row and column spaces.

RIP: \mathcal{A} satisfies inequalities of form $f\left(\delta_{i_{1}}, \ldots, \delta_{i_{m}}, \theta_{j_{1}, j_{1}^{\prime}}, \ldots, \theta_{j_{n}, j_{n}^{\prime}}\right) \leq c$, where $f(0)=0$ and f is increasing.

Spherical section property

\mathcal{A} satisfies the Δ-Spherical Section Property (SSP) if $\Delta(\mathcal{A}) \geq \Delta$, where

$$
\Delta(\mathcal{A})=\min _{W \in \mathcal{N}(\mathcal{A}) \backslash\{0\}} \frac{\|W\|_{\star}^{2}}{\|W\|_{F}^{2}}
$$

Δ large \Rightarrow nullspace doesn't include low rank matrices (also known as an almost Euclidean subspace)
vector case: ℓ_{1} / ℓ_{2} [Kashin'77],[Gluskin,Garnaev'84],. . .
used in compressed sensing [Kashin,Temlyakov'07],[Zhang'08],[Vavasis'09], and matrix recovery [Dvijotham,F.'10]
vector case: $\quad \frac{\|\mathbf{w}\|_{1}}{\|\mathbf{w}\|_{2}} \geq \sqrt{\Delta} \quad(1 \leq \Delta \leq n)$
meaning: Δ large means if ℓ_{1} ball is cut by a subspace, intersection looks spherical $\left(1 / \sqrt{n} \leq\|\mathbf{w}\|_{2} \leq 1 / \sqrt{\Delta}\right)$

in high dimensions, random subspaces should have large Δ

Key inequality

[HornJohnson'90] for any $X, Y \in \mathbb{R}^{n_{1} \times n_{2}}$

$$
\sum_{i=1}^{n_{1}}\left|\sigma_{i}(X)-\sigma_{i}(Y)\right| \leq\|X-Y\|_{\star}
$$

LHS independent of singular vectors; equality when singular vectors are aligned.

Lemma. given W with SVD $W=U \Sigma_{W} V^{T}$, if there exists any X_{0} for which $\left\|X_{0}+W\right\|_{\star} \leq\left\|X_{0}\right\|_{\star}$, then $X_{1}=-U \Sigma_{X_{0}} V^{T}$ also satisfies $\left\|X_{1}+W\right\|_{\star} \leq\left\|X_{1}\right\|_{\star}$.
meaning: if there is a "bad" X_{0} for a particular W, can construct other "bad" X_{1}, with the same singular values, that lies on W^{\prime} 's subspace (given by U, V).

Nullspace property (NSP)

let $\epsilon=0$ (no noise)
Sparse recovery: [Feuer,Nemirovsky'03] All \mathbf{x}_{0} with $\left\|\mathbf{x}_{0}\right\|_{0} \leq k$ can be recovered via ℓ_{1} minimization iff

$$
\sum_{i=1}^{k} \bar{w}_{i}<\sum_{i=k+1}^{n} \bar{w}_{i}, \quad \forall \mathbf{w} \in \mathcal{N}(A)
$$

where \bar{w}_{i} is i th largest entry of $|\mathbf{w}|$.

Low-rank recovery: [Oymak,Hassibi'10] All X_{0} with $\operatorname{rank}\left(X_{0}\right) \leq k$ can be recovered via nuclear norm minimization iff

$$
\sum_{i=1}^{k} \sigma_{i}(W)<\sum_{i=k+1}^{n_{1}} \sigma_{i}(W), \quad \forall W \in \mathcal{N}(\mathcal{A})
$$

meaning: top k singular values contain no more than $1 / 2$ of total ℓ_{1} mass of σ

Main result

- V_{1} : A satisfies a property \mathbf{P}
- V_{2} : for any $\mathbf{x}_{0},\|\mathbf{z}\|_{2} \leq \epsilon, \mathbf{y}=A \mathbf{x}_{0}+\mathbf{z}$ and any \mathbf{x}^{*} as good as \mathbf{x}_{0}, $\left\|\mathbf{x}^{*}-\mathbf{x}_{0}\right\| \leq h\left(\overline{\mathbf{x}}_{0}, \epsilon\right)$
- V_{3} : any $\mathbf{w} \in \mathcal{N}(A)$ satisfies a property \mathbf{Q}
- $M_{1}: \mathcal{A}: \mathbb{R}^{n_{1} \times n_{2}} \rightarrow \mathbb{R}^{m}$ satisfies the (extension) property \mathbf{P}
- M_{2} : for any $X_{0},\|\mathbf{z}\|_{2} \leq \epsilon, \mathbf{y}=\mathcal{A}\left(X_{0}\right)+\mathbf{z}$ and any X^{*} as good as X_{0}, $\left\|X^{*}-X_{0}\right\| \leq h\left(\Sigma\left(X_{0}\right), \epsilon\right)$
- M_{3} : for any $W \in \mathcal{N}(\mathcal{A}), \sigma(W)$ satisfies property \mathbf{Q}

Main result: for a given \mathbf{P}, the following hold:

$$
\begin{aligned}
& \left(V_{1} \Longrightarrow V_{2}\right) \Longrightarrow\left(M_{1} \Longrightarrow M_{2}\right) \\
& \left(V_{1} \Longrightarrow V_{3}\right) \Longrightarrow\left(M_{1} \Longrightarrow M_{3}\right)
\end{aligned}
$$

Application to RIP based recovery

Robust + noisy recovery: Let $\mathcal{A}: \mathbb{R}^{n_{1} \times n_{2}} \rightarrow \mathbb{R}^{m}$ satisfy RIP inequality described by $f\left(\delta_{i_{1}}, \ldots, \delta_{i_{m}}, \theta_{j_{1}, j_{1}^{\prime}}, \ldots, \theta_{j_{n}, j_{n}^{\prime}}\right) \leq c$. Then for all X_{0}, all $\|\mathbf{z}\|_{2} \leq \epsilon$ and all X^{*} as good as X_{0},

$$
\begin{aligned}
\left\|X_{0}-X^{*}\right\|_{F} & \leq \frac{C_{1}}{\sqrt{k}}\left\|X_{0}-X_{0}^{k}\right\|_{\star}+C_{2} \epsilon \\
\left\|X_{0}-X^{*}\right\|_{\star} & \leq C_{3}\left\|X_{0}-X_{0}^{k}\right\|_{\star}
\end{aligned}
$$

with exactly the same constants C_{1}, C_{2}, C_{3} as the vector case, when A satisfies the same RIP inequality f.
(X_{0}^{k} : best rank- k approximation of X_{0})
matrix-vector RIP link: if \mathcal{A} has RIP, all its restrictions to $\left(U_{n_{1} \times n_{1}}, V_{n_{2} \times n_{1}}\right)$ have RIP

Application to SSP based recovery

Robust recovery: Let $\epsilon=0$ and X^{*} be as good as X_{0}. If \mathcal{A} satisfies Δ-SSP with $\Delta>4 k$,

$$
\left\|X^{*}-X_{0}\right\|_{\star} \leq C\left\|X_{0}-X_{0}^{k}\right\|_{\star}
$$

where $C=\frac{2}{1-2 \sqrt{k / \Delta}}$.

- improves sufficient condition of $k<\frac{\Delta}{6}$ [Dvijotham,F.'10] to $k<\frac{\Delta}{4}$
- simplifies analysis
- matches sufficient condition for sparse vector recovery [Zhang'08]

NSP based robust recovery

Nuclear norm robustness: Let $\epsilon=0$; for any X_{0} and any X^{*} as good as X_{0},

$$
\left\|X_{0}-X^{*}\right\|_{\star}<2 C\left\|X_{0}-X_{0}^{k}\right\|_{\star}
$$

iff for all $W \in \mathcal{N}(\mathcal{A})$,

$$
\sum_{i=1}^{k} \sigma_{i}(W)<\frac{C-1}{C+1} \sum_{i=k+1}^{n} \sigma_{i}(W) .
$$

Matrix noise robustness: For any X_{0} with $\operatorname{rank}\left(X_{0}\right) \leq k$, any $\|\mathbf{z}\|_{2} \leq \epsilon$ and any X^{*} as good as X_{0},

$$
\left\|X_{0}-X^{*}\right\|_{F}<C \epsilon
$$

iff for any W with $\sum_{i=1}^{k} \sigma_{i}(W) \geq \sum_{i=k+1}^{n} \sigma_{i}(W)$,

$$
\|W\|_{F}<\frac{C}{2}\|\mathcal{A}(W)\|_{2}
$$

Application to recovery via Schatten- p quasinorm

nonconvex surrogate for rank

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n_{1}} \sigma_{i}^{p}(X) \\
\text { subject to } & \mathcal{A}(X)=\mathbf{y}
\end{array}
$$

- motivated iterative algorithms, e.g. iterative reweighted least squares
- empirically observed to outperform nuclear norm recovery e.g. [Chartrand'08,Foucart,Lai'09]

Lemma. if property \mathbf{S} on matrix A implies recovery of all \mathbf{x}_{0} with sparsity $2 k$ via ℓ_{p} minimization ($0<p<1$), then (extended) \mathbf{S} implies recovery of all matrices with $\operatorname{rank}\left(X_{0}\right) \leq k$ via Schatten $-p$ quasinorm minimization.

- inequality $\sum_{i=1}^{n}\left(\sigma_{i}^{p}(X)-\sigma_{i}^{p}(Y)\right) \leq \sum_{i=1}^{n} \sigma_{i}^{p}(X-Y)$ is used. there is gap between necessary and sufficient parts.
- a stronger inequality (with abs values on RHS) will allow bridging the gap. this seems to hold empirically, though no proof yet. . .

Improved thresholds

strong thresholds for Gaussian measurements, using new NSP (plus probabilistic analysis using Gordon's lemma) [Oymak, Hassibi'10]

degrees of freedom per measurement vs number of measurements, for $n \times n$ matrix, constant k / n.
improves known thresholds (e.g. [Recht,Xu,Hassibi'10])

Conclusions

- extend strong recovery conditions from vectors to matrices with no loss
- match best vector RIP ([Cai,et al'10;Lai'10]) and nullspace recovery conditions (e.g., $\delta_{k}<0.309$ guarantees rank- k recovery)
- robust recovery: best error bounds via NSP
- some results for nonconvex Schatten- p quasinorm minimization (but not yet tight)
- also help obtain improved thresholds for Gaussian measurements
ref: Oymak, Mohan, Fazel, Hassibi, "A simplified approach to recovery conditions for low rank matrices ", http://arxiv.org/abs/1103.1178

[^0]: * strong recovery: works for all matrices up to certain rank

