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The curse of dimensionality

Consider a continuous function y 7→ u(y) with y ∈ [0,1]. Sample at equispaced points.
Reconstruct, for example by piecewise linear interpolation.
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Error in terms of point spacing h > 0 : if u has C2 smoothness

‖u −R(u)‖L∞ ≤ C‖u ′′‖L∞ h2.

Using piecewise polynomials of higher order, if u has Cm smoothness

‖u −R(u)‖L∞ ≤ C‖u(m)‖L∞ hm.

In terms of the number of samples N ∼ h−1, the error is estimated by N−m.

In d dimensions : u(y) = u(y1, · · · ,yd) with y ∈ [0,1]d . With a uniform sampling, we
still have

‖u −R(u)‖L∞ ≤ C‖dmu‖L∞ hm,

but the number of samples is now N ∼ h−d , and the error estimate is in N−m/d .
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Other sampling/reconstruction methods cannot do better !

Can be explained by nonlinear manifold width (DeVore-Howard-Micchelli).

Let X be a normed space and K ⊂ X a compact set.

Consider maps E : K 7→ R
N (encoding) and R : R

N 7→ X (reconstruction).

Introducing the distorsion of the pair (E ,R) over K

max
u∈K

‖u −R(E(u))‖X ,

we define the nonlinear N-width of K as

dN(K) := inf
E ,R

max
u∈K

‖u −R(E(u))‖X ,

where the infimum is taken over all continuous maps (E ,R).

If X = L∞ and K is the unit ball of Cm([0,1]d ) it is known that

cN−m/d ≤ dN(K) ≤ CN−m/d .
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High dimensional problems occur frequently

PDE’s with solutions u(x,v,t) defined in phase space : d = 7.

Post-processing of numerical codes : u solver with imput parameters (y1, · · · ,yd).

Learning theory : u regression function of imput parameters (y1, · · · ,yd)

In these applications d may be of the order up to 103.

Approximation of stochastic-parametric PDEs (this talk) : d = +∞.

Smoothness properties of functions should be revisited by other means than Cm

classes, and appropriate approximation tools should be used.

Key ingredients :

(i) Sparsity

(ii) Variable reduction

(iii) Anisotropy
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A model elliptic PDE

We consider the steady state diffusion equation

−div(a∇u) = f in D ⊂ IRm and u = 0 on ∂D,

where f = f (x) ∈ L2(D) and a = a(x,y) are variable coefficients depending on x ∈ D

and on a vector y of parameters in an affine manner :

a = a(x,y) = a(x)+
∑

j>0

yjψj(x), x ∈ D,y = (yj)j>0 ∈ U := [−1,1]N,

where (ψj)j>0 is a given family of functions.

The parameters may be deterministic (control, optimization) or random (uncertainty
modeling and propagation, reliability assessment).

Uniform ellipticity assumption :

(UEA) 0 < r ≤ a(x,y) ≤ R, x ∈ D, y ∈ U.

Then u : y 7→ u(y) = u(·,y) is a bounded map from U to V := H1
0 (Ω) :

‖u(y)‖V ≤ C0 :=
‖f ‖V∗

r
, y ∈ U, where ‖v‖V := ‖∇v‖L2 .

Proof : multiply equation by u and integrate

r‖u‖2
V ≤

∫

D

a∇u · ∇u = −

∫

D

u div(a∇u) =

∫

D

uf ≤ ‖u‖V ‖f ‖V∗ .

Objective : build a computable approximation to this map at reasonable cost, i.e.
simultaneaously approximate u(y) for all y ∈ U.
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Polynomial expansions

Use of multivariate polynomials in the y variable.

Sometimes referred to as “polynomial chaos” in the random setting (Ghanem-Spanos,
Babushka-Tempone-Nobile-Zouharis, Karniadakis, Schwab...).

We study the convergence of the Taylor development

u(y) =
∑

ν∈F

tνyν,

where
yν :=

∏

j>0

y
νj

j
.

Here F is the set of all finitely supported sequences ν= (νj)j>0 of integers (only
finitely many νj are non-zero). The Taylor coefficients tν ∈ V are

tν :=
1

ν!
∂νu|y=0 with ν! :=

∏

j>0

νj ! and 0! := 1.

We also studied Legendre series u(y) =
∑
ν∈F uνLν where Lν(y) :=

∏
j>0 Lνj (yj).
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Sparse N-term polynomial approximation

The sequence (tν)ν∈F is indexed by countably many integers.

ν

1

ν3

2

ν
Objective : identify a set Λ⊂ F with #(Λ) ≤ N such that u is well approximated in
the space

VΛ := {
∑

ν∈Λ

cνyν ; uν ∈ V },

for example by the partial Taylor expansion

uΛ(y) :=
∑

ν∈Λ

tνyν.
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Best N-term approximation

A-priori choices for Λ have been proposed : (anisotropic) sparse grid defined by
restrictions of the type

∑
j αjνj ≤ A(N) or

∏
j(1 +βjνj) ≤ B(N).

Instead we want study a choice of Λ optimally adapted to u.

For all y ∈ U = [−1,1]N we have

‖u(y)−uΛ(y)‖V ≤ ‖
∑

ν/∈Λ

tνyν‖V ≤
∑

ν/∈Λ

‖tν‖V

Best N-term approximation in the ℓ1(F) norm : use for Λ the N largest ‖tν‖V .

Observation (Stechkin) : if (‖tν‖V )ν∈F ∈ ℓp(F) for some p < 1, then for this Λ,

∑

ν/∈Λ

‖tν‖V ≤ CN−s , s :=
1

p
−1, C := ‖(‖tν‖V )‖p.

Proof : with (tn)n>0 the decreasing rearrangement, we combine

∑

ν/∈Λ

‖tν‖V =
∑

n>N

tn =
∑

n>N

t1−p
n tp

n ≤ t
1−p
N

Cp and Nt
p
N
≤

N∑

n=1

tp
n ≤ Cp.

Question : do we have (‖tν‖V )ν∈F ∈ ℓp(F) for some p < 1 ?
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Question : do we have (‖tν‖V )ν∈F ∈ ℓp(F) for some p < 1 ?
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The main result

Theorem (Cohen-DeVore-Schwab, 2009) : under the uniform ellipticity assumption
(UAE), then for any p < 1,

(‖ψj‖L∞ )j≥0 ∈ ℓp(N) ⇒ (‖tν‖V )ν∈F ∈ ℓp(F).

Interpretations :

(i) The Taylor expansion of u(y) inherits the sparsity properties of the expansion of
a(y) into the ψj .

(ii) We approximate u(y) in L∞ (U) with algebraic rate N−s despite the curse of
(infinite) dimensionality, due to the fact that yj is less influencial as j gets large.

(iii) The set K := {u(y) ; y ∈ U} is compact in V and has small N-width
dN(K) := infdim(E)≤N maxv∈K dist(v,E)V : for all y

uΛ(y) :=
∑

ν∈Λ

tνyν =
∑

ν∈Λ

yνtν ∈ EΛ := Span{tν ; ν∈ Λ}.

With Λ corresponding to the N largest ‖tν‖V , we find that

dN(K) ≤ max
y∈U

dist(u(y),EΛ)V ≤ max
y∈U

‖u(y)−uΛ(y)‖V ≤ CN−s .

Such approximation rates cannot be proved for the usual a-priori choices of Λ.
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Idea of proof : extension to complex variable

Estimates on ‖tν‖V by complex analysis : extend u(y) to u(z) with z = (zj) ∈ C|| IN.

Uniform ellipticity 0 < r ≤ a(x)+
∑

j>0 yjψj(x) for all x ∈ D,y ∈ U is equivalent to

∑

j>0

|ψj(x)| ≤ a(x)− r, x ∈ D.

This allows to say that with a(x,z) = a(x)+
∑

j>0 zjψj(x),

0 < r ≤ ℜ(a(x,z)) ≤ |a(x,z)| ≤ 2R,

for all z ∈ U := {|z | ≤ 1}N =⊗{|zj | ≤ 1}.

Lax-Milgram theory applies : ‖u(z)‖ ≤ C0 =
‖f ‖V∗

r
for all z ∈ U . The function

u 7→ u(z) is holomorphic in each variable zj at any z ∈ U .

Extended domains of holomorphy : if ρ= (ρj)j≥0 is any positive sequence such that
for some δ> 0 ∑

j>0

ρj |ψj(x)| ≤ a(x)−δ, x ∈ D,

then u is holomorphic with uniform bound ‖u(z)‖ ≤ Cδ =
‖f ‖V∗

δ
in the polydisc

Uρ :=⊗{|zj | ≤ ρj },

We call such sequences ρ “δ-admissible”. If δ< r , we can take ρj > 1.
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Estimate on the Taylor coefficients

Use Cauchy formula. In 1 complex variable if z 7→ u(z) is holomorphic and bounded in
a neighbourhood of disc {|z | ≤ a}, then for all z in this disc

u(z) =
1

2iπ

∫

|z ′|=a

u(z ′)

z − z ′
dz ′,

which leads by m differentiation at z = 0 to |u(m)(0)| ≤ m!a−m max|z|≤a |u(z)|.

Recursive application of this to all variables zj such that νj 6= 0, with a = ρj , for a
δ-admissible sequence ρ gives

‖∂νu|z=0‖V ≤ Cδν!
∏

j>0

ρ
−νj

j
.

and therefore
‖tν‖V ≤ Cδ

∏

j>0

ρ
−νj

j
= C0ρ

−ν.

Since ρ is not fixed we have

‖tν‖V ≤ Cδ inf{ρ−ν ; ρ is δ−admissible}.

We do not know the general solution to this problem, except when the ψj have
disjoint supports. Instead design a particular choice ρ=ρ(ν) of δ-admissible
sequences with δ= r/2, for which we prove that

(‖ψj‖L∞ )j≥0 ∈ ℓp(N) ⇒ (ρ(ν)−ν)ν∈F ∈ ℓp(F).
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A simple case

Assume that the ψj have disjoint supports. Then we maximize separately the ρj so
that ∑

j>0

ρj |ψj (x)| ≤ a(x)−
r

2
, x ∈ D,

which leads to

ρj := min
x∈D

a(x)− r
2

|ψj(x)|
.

We have
‖tν‖V ≤ 2C0ρ

−ν = 2C0b
ν,

where b = (bj) and

bj := ρ−1
j

=
|ψj(x)|

a(x)− r
2

≤
‖ψj‖L∞

R − r
2

.

Therefore b ∈ ℓp(N). From (UEA), we have |ψj (x)| ≤ a(x)− r and thus ‖b‖ℓ∞ < 1.

We finally observe that

b ∈ ℓp(N) and ‖b‖ℓ∞ < 1 ⇔ (bν)ν∈F ∈ ℓp(F).

Proof : factorize ∑

ν∈F

bpν =
∏

j>0

∑

n≥0

b
pn
j

=
∏

j>0

1

1 −b
p
j

.
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An adaptive algorithm

Strategies to build the set Λ :

(i) Non-adaptive, based on the available a-priori estimates for the ‖tν‖V .

(ii) Adaptive, based on a-posteriori information gained in the computation
Λ1 ⊂ Λ2 ⊂ · · · ⊂ ΛN .

Objective : develop adaptive strategies that converge with optimal rate (similar to
adaptive wavelet methods for elliptic PDE’s : Cohen-Dahmen-DeVore, Stevenson).

Recursive computation of the Taylor coefficients : with ej the Kroenecker sequence

∫

D

ā∇tν∇v = −
∑

j : νj 6=0

∫

D

ψj∇tν−ej∇v, v ∈ V .

We compute the tν on sets Λ with monotone structure : ν∈ Λ and µ≤ ν⇒ µ∈ Λ.

Given such a Λk and the (tν)ν∈Λk
we compute the tν for ν in the margin

Mk := {ν /∈ Λk ; ν− ej ∈ Λk for some j},

and build the new set by bulk search : Λk+1 =Λk ∪ Sk , with Sk ⊂ Mk smallest such
that

∑
ν∈Sk

‖tν‖2
V

≥ θ
∑
ν∈Mk

‖tν‖2
V

, with θ∈ (0,1).

Such a strategy can be proved to converge with optimal convergence rate #(Λk)−s .
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Test case in moderate dimension d = 16

Physical domain D = [0,1]2 =∪d
j=1Dj .

Diffusion coefficients a(x,y) = 1 +
∑d

j=1 yj

“

0.9
j2

”

χDj
.

Adaptive search of Λ implemented in C++, spatial discretization by FreeFem++.

Comparison between the Λk generated by the adaptive algorithm (red) and
non-adaptive choices {supνj ≤ k} (blue) or {

∑
νj ≤ k} (green) or k largest a-priori

bounds on the ‖tν‖V (pink)
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Highest polynomial degree with #(Λ) = 1000 coefficients : 1, 4, 115 and 81.



What I did not speak about

Use of Legendre polynomials instead of Taylor series : leads to approximation error
estimates in L2(U,dµ) with dµ the tensor product probability measure on U.

Computation of the approximate Legendre coefficients : either use a Galerkin
(projection) method or a Collocation (interpolation) method. For the second one,
designing optimal collocation points is an open problem.

Strategies to build the set Λ :

(i) A-priori, based on the available estimates for the ‖tν‖V .

(ii) A-posteriori, based on error indicators in the Galerkin framework :
Λ1 ⊂ Λ2 ⊂ · · · ⊂ ΛN . Optimal convergence of this strategy may be proved by similar
techniques as for adaptive wavelet methods for elliptic PDE’s
(Cohen-Dahmen-DeVore, Stevenson).

(iii) Reconstruction a sparse orthogonal series from random sampling : techniques
from Compressed Sensing (Sparse Fourier series : Gilbert-Strauss-Tropp,
Candes-Romberg-Tao, Rudelson-Vershynin. Sparse Legendre series : Rauhut-Ward
2010).

Space discretization : should be properly tuned (use different resolution for each tν)
and injected in the final error analysis.

Our results can be used in the analysis of reduced basis methods.
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Conclusion and perspective

Rich topic : involves a variety of tools such as stochastic processes, high dimensional
approximation, complex analysis, sparsity and non-linear approximation, adaptivity and
a-posteriori analysis.

First numerical results in moderate dimensionality : reveal the adavantages of an
adaptive approach. Goal : implementation for very high or infinite dimensionality.

Many applications in engineering.

Many other models to be studied :

(i) Non-affine dependence of a in the variable y .

(ii) Other linear or non-linear PDE’s.

Papers : www.ann.jussieu.fr/cohen
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