High dimensional sparse polynomial approximations of parametric and stochastic PDE's

Albert Cohen
Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie
Paris

with Ronald DeVore and Christoph Schwab numerical results by Abdellah Chkifa

Banff, 2011

The curse of dimensionality
Consider a continuous function $y \mapsto u(y)$ with $y \in[0,1]$. Sample at equispaced points. Reconstruct, for example by piecewise linear interpolation.

Error in terms of point spacing $h>0$: if u has C^{2} smoothness

$$
\|u-R(u)\|_{L^{\infty}} \leq C\left\|u^{\prime \prime}\right\|_{L \infty} h^{2} .
$$

Using piecewise polynomials of higher order, if u has C^{m} smoothness

$$
\| u-R\left(u\left\|_{L \infty} \leq C\right\| u^{(m)} \|_{L \infty} h^{m} .\right.
$$

In terms of the number of samples $N \sim h^{-1}$, the error is estimated by N^{-m}.
In d dimensions : $u(y)=u\left(y_{1}, \cdots, y_{d}\right)$ with $y \in[0,1]^{d}$. With a uniform sampling, we still have

$$
\|u-R(u)\|_{L \infty} \leq C\left\|d^{m} u\right\|_{L^{\infty}} h^{m},
$$

but the number of samples is now $N \sim h^{-d}$, and the error estimate is in $N^{-m / d}$.

The curse of dimensionality
Consider a continuous function $y \mapsto u(y)$ with $y \in[0,1]$. Sample at equispaced points.
Reconstruct, for example by piecewise linear interpolation.

Error in terms of point spacing $h>0$: if u has C^{2} smoothness

$$
\|u-R(u)\|_{L^{\infty}} \leq C\left\|u^{\prime \prime}\right\|_{L^{\infty}} h^{2} .
$$

Using piecewise polynomials of higher order, if u has C^{m} smoothness

$$
\| u-R\left(u\left\|_{L} \infty \leq C\right\| u^{(m)} \|_{L \infty} h^{m} .\right.
$$

In terms of the number of samples $N \sim h^{-1}$, the error is estimated by N^{-m}.
In d dimensions : $u(y)=u\left(y_{1}, \cdots, y_{d}\right)$ with $y \in[0,1]^{d}$. With a uniform sampling, we still have

$$
\|u-R(u)\|_{L \infty} \leq C\left\|d^{m} u\right\|_{L \infty} h^{m},
$$

but the number of samples is now $N \sim h^{-d}$, and the error estimate is in $N-m / d$.

The curse of dimensionality
Consider a continuous function $y \mapsto u(y)$ with $y \in[0,1]$. Sample at equispaced points.
Reconstruct, for example by piecewise linear interpolation.

Error in terms of point spacing $h>0$: if u has C^{2} smoothness

$$
\|u-R(u)\|_{L^{\infty}} \leq C\left\|u^{\prime \prime}\right\|_{L \infty} h^{2} .
$$

Using piecewise polynomials of higher order, if u has C^{m} smoothness

$$
\|u-R(u)\|_{L} \infty \leq C\| \|^{(m)} \|_{L} \infty h^{m} .
$$

In terms of the number of samples $N \sim h^{-1}$, the error is estimated by N^{-m}.
In d dimensions : $u(y)=u\left(y_{1}, \cdots, y_{d}\right)$ with $y \in[0,1]^{d}$. With a uniform sampling, we still have

$$
\|u-R(u)\|_{L \infty} \leq C\left\|d^{m} u\right\|_{L^{\infty}} h^{m},
$$

The curse of dimensionality
Consider a continuous function $y \mapsto u(y)$ with $y \in[0,1]$. Sample at equispaced points. Reconstruct, for example by piecewise linear interpolation.

Error in terms of point spacing $h>0$: if u has C^{2} smoothness $\|u-R(u)\|_{L^{\infty}} \leq C\left\|u^{\prime \prime}\right\|_{L^{\infty}} h^{2}$

Using piecewise polynomials of higher order, if u has C^{m} smoothness

In terms of the number of samples $N \sim h^{-1}$, the error is estimated by N^{-m}.
In d dimensions : $u(y)=u\left(y_{1}, \ldots, y_{d}\right)$ with $y \in\left[0,11^{1 d}\right.$ With a uniform sampling, we still have
$\|u-R(u)\|_{L \infty} \leq C\left\|d^{m} u\right\|_{L^{\infty}} h^{m}$,

The curse of dimensionality
Consider a continuous function $y \mapsto u(y)$ with $y \in[0,1]$. Sample at equispaced points. Reconstruct, for example by piecewise linear interpolation.

Error in terms of point spacing $h>0$: if u has C^{2} smoothness

$$
\|u-R(u)\|_{L \infty} \leq C\left\|u^{\prime \prime}\right\|_{L \infty} h^{2} .
$$

Using piecewise polynomials of higher order, if u has C^{m} smoothness

In terms of the number of samples $N \sim h^{-1}$, the error is estimated by N^{-m}.
In d dimensions: $u^{(}(y)=u^{\prime}\left(y_{1}, \ldots, y_{d}\right)$ with $y \in\left[0,1^{1 d}\right.$ with a uniform sampling, we still have
$\|u-R(u)\|_{L^{\infty}} \leq C\left\|d^{m} u\right\|_{L^{\infty}} h^{m}$,

The curse of dimensionality
Consider a continuous function $y \mapsto u(y)$ with $y \in[0,1]$. Sample at equispaced points. Reconstruct, for example by piecewise linear interpolation.

Error in terms of point spacing $h>0$: if u has C^{2} smoothness

$$
\|u-R(u)\|_{L \infty} \leq C\left\|u^{\prime \prime}\right\|_{L \infty} h^{2} .
$$

Using piecewise polynomials of higher order, if u has C^{m} smoothness

$$
\|u-R(u)\|_{L^{\infty}} \leq C\left\|u^{(m)}\right\|_{L^{\infty}} h^{m} .
$$

In terms of the number of samples $N \sim h^{-1}$, the error is estimated by N^{-m}.
In d dimensions : $u(y)=u\left(y_{1}, \cdots, y_{d}\right)$ with $y \in[0,1]^{d}$. With a uniform sampling, we still have

The curse of dimensionality

Consider a continuous function $y \mapsto u(y)$ with $y \in[0,1]$. Sample at equispaced points. Reconstruct, for example by piecewise linear interpolation.

Error in terms of point spacing $h>0$: if u has C^{2} smoothness

$$
\|u-R(u)\|_{L \infty} \leq C\left\|u^{\prime \prime}\right\|_{L \infty} h^{2} .
$$

Using piecewise polynomials of higher order, if u has C^{m} smoothness

$$
\|u-R(u)\|_{L^{\infty}} \leq C\left\|u^{(m)}\right\|_{L^{\infty}} h^{m} .
$$

In terms of the number of samples $N \sim h^{-1}$, the error is estimated by N^{-m}.
In dimensions : $u(y)=u\left(y_{1}, \cdots, y_{d}\right)$ with $y \in[0,1]^{d}$. With a uniform sampling, we still have

$$
\|u-R(u)\|_{L^{\infty}} \leq C\left\|d^{m} u\right\|_{L^{\infty}} h^{m},
$$

but the number of samples is now $N \sim h^{-d}$, and the error estimate is in $N^{-m / d}$.

Other sampling/reconstruction methods cannot do better!
Can be explained by nonlinear manifold width (DeVore-Howard-Micchelli).
Let X be a normed space and $\mathcal{K} \subset X$ a compact set.
Consider mans $E: \mathcal{K} \mapsto \mathbb{R}^{N}$ (encoding) and $R: \mathbb{R}^{N} \mapsto X$ (reconstruction).
Introducing the distorsion of the pair (E, R) over \mathcal{K}

$$
\max _{u \in \mathcal{K}}\|u-R(E(u))\| x,
$$

we define the nonlinear N -width of \mathcal{K} as

$$
d_{N}(\mathbb{K}):=\inf _{E, R} \max _{u \in \mathbb{R}}\|u-R(E(u))\| x,
$$

where the infimum is taken over all continuous maps (E, R).
If $X=1^{\infty}$ and \mathcal{K} is the unit ball of $C^{m}\left([0,1]^{d}\right)$ it is known that

$$
c N^{-m / d} \leq d_{N}(\mathcal{K}) \leq C N^{-m / d} .
$$

Other sampling/reconstruction methods cannot do better!
Can be explained by nonlinear manifold width (DeVore-Howard-Micchelli).
Let X be a normed space and $\mathcal{K} \subset X$ a compact set.
Consider maps $E: \mathcal{K} \mapsto \mathbb{R}^{N}$ (encoding) and $R: \mathbb{R}^{N} \mapsto X$ (reconstruction).
Introducing the distorsion of the nair (E, R) over \mathcal{K}

$$
\max _{u \in \mathcal{K}}\|u-R(E(u))\| x,
$$

we define the nonlinear N-width of \mathcal{K} as

$$
d_{N}(\mathcal{K}):=\inf _{E, R} \max \|u-R(E(u))\| x,
$$

where the infimum is taken over all continuous maps (E, R).
If $X=1 \infty$ and \mathcal{K} is the unit ball of $C^{m}\left([0,1]^{d}\right)$ it is knowin that

Other sampling/reconstruction methods cannot do better!
Can be explained by nonlinear manifold width (DeVore-Howard-Micchelli).
Let X be a normed space and $\mathcal{K} \subset X$ a compact set.
Consider maps $E: \mathcal{K} \mapsto \mathbb{R}^{N}$ (encoding) and $R: \mathbb{R}^{N} \mapsto X$ (reconstruction).
Introducing the distorsion of the pair (E, R) over K

$$
\max _{u \in \mathcal{K}}\|u-R(E(u))\|_{x},
$$

we define the nonlinear N-width of \mathcal{K} as

where the infimum is taken over all continuous maps (E, R).
If $X=L^{\infty}$ and \mathcal{K}. is the unit ball of $C^{m}\left([0,1]^{d}\right)$ it is known that

Other sampling/reconstruction methods cannot do better!
Can be explained by nonlinear manifold width (DeVore-Howard-Micchelli).
Let X be a normed space and $\mathcal{K} \subset X$ a compact set.
Consider maps $E: \mathcal{K} \mapsto \mathbb{R}^{N}$ (encoding) and $R: \mathbb{R}^{N} \mapsto X$ (reconstruction).
Introducing the distorsion of the pair (E, R) over \mathcal{K}

$$
\max _{u \in \mathcal{K}}\|u-R(E(u))\|_{x}
$$

we define the nonlinear N-width of \mathcal{K} as

$$
d_{N}(\mathcal{K}):=\inf _{E, R} \max _{u \in \mathcal{K}}\|u-R(E(u))\|_{X},
$$

where the infimum is taken over all continuous maps (E, R).
If $X=L^{\infty}$ and \mathcal{K} is the unit ball of $C^{m}\left([0,1]^{d}\right)$ it is known that

Other sampling/reconstruction methods cannot do better!
Can be explained by nonlinear manifold width (DeVore-Howard-Micchelli).
Let X be a normed space and $\mathcal{K} \subset X$ a compact set.
Consider maps $E: \mathcal{K} \mapsto \mathbb{R}^{N}$ (encoding) and $R: \mathbb{R}^{N} \mapsto X$ (reconstruction).
Introducing the distorsion of the pair (E, R) over \mathcal{K}

$$
\max _{u \in \mathcal{K}}\|u-R(E(u))\|_{x},
$$

we define the nonlinear N-width of \mathcal{K} as

$$
d_{N}(\mathcal{K}):=\inf _{E, R} \max _{u \in \mathcal{K}}\|u-R(E(u))\|_{X},
$$

where the infimum is taken over all continuous maps (E, R). If $X=L^{\infty}$ and \mathcal{K} is the unit ball of $C^{m}\left([0,1]^{d}\right)$ it is known that

$$
c N^{-m / d} \leq d_{N}(\mathcal{K}) \leq C N^{-m / d} .
$$

High dimensional problems occur frequently
PDE's with solutions $u(x, v, t)$ defined in phase space : $d=7$.
Post-processing of numerical codes : u solver with imput parameters $\left(y_{1}, \cdots, y_{d}\right)$.
Learning theory: u regression function of imput parameters $\left(y_{1}, \cdots, y_{d}\right)$
In these applications d may be of the order up to 10^{3}.
Approximation of stochastic-parametric PDEs (this talk)
Smoothness properties of functions should be revisited by other means than C^{m}
classes, and appropriate approximation tools should be used.
Key ingredients
(i) Sparsity
(ii) Variable reduction
(iii) Anisotropy

High dimensional problems occur frequently
PDE's with solutions $u(x, v, t)$ defined in phase space $: d=7$.
Post-processing of numerical codes : u solver with imput parameters $\left(y_{1}, \cdots, y_{d}\right)$.
Learning theory : u regression function of imput parameters $\left(y_{1}, \cdots, y_{d}\right)$
In these applications d may be of the order up to 10^{3}.
Approximation of stochastic-parametric PDEs (this talk)
Smoothness properties of functions should be revisited by other means than C^{m}
classes, and appropriate approximation tools should be used.
Key ingredients
(i) Sparsity
(ii) Variable reduction
(iii) Anisotropy

> High dimensional problems occur frequently

PDE's with solutions $u(x, v, t)$ defined in phase space $: d=7$.
Post-processing of numerical codes: u solver with imput parameters $\left(y_{1}, \cdots, y_{d}\right)$.
Learning theory : u regression function of imput parameters $\left(y_{1}, \cdots, y_{d}\right)$
In these applications d may be of the order up to 10^{3}.
Approximation of stochastic-parametric PDEs (this talk) : $d=+\infty$.
Smoothness properties of functions should be revisited by other means than C^{m} classes, and appropriate approximation tools should be used.

Key ingredients
(i) Sparsity
(ii) Variable reduction
(iii) Anisotropy

High dimensional problems occur frequently

PDE's with solutions $u(x, v, t)$ defined in phase space $: d=7$.
Post-processing of numerical codes : u solver with imput parameters $\left(y_{1}, \cdots, y_{d}\right)$.
Learning theory : u regression function of imput parameters $\left(y_{1}, \cdots, y_{d}\right)$
In these applications d may be of the order up to 10^{3}.
Approximation of stochastic-parametric PDEs (this talk) : $d=+\infty$.
Smoothness properties of functions should be revisited by other means than C^{m} classes, and appropriate approximation tools should be used.

Key ingredients :
(i) Sparsity
(ii) Variable reduction
(iii) Anisotropy

A model elliptic PDE
We consider the steady state diffusion equation

$$
-\operatorname{div}(a \nabla u)=f \text { in } D \subset \mathbf{R}^{\mathrm{m}} \text { and } \mathrm{u}=0 \text { on } \partial \mathrm{D},
$$

where $f=f(x) \in L^{2}(D)$ and $a=a(x, y)$ are variable coefficients depending on $x \in D$ and on a vector y of parameters in an affine manner :

$$
a=a(x, y)=\bar{a}(x)+\sum_{j>0} y_{j} \psi_{j}(x), x \in D, y=\left(y_{j}\right)_{j>0} \in U:=[-1,1]^{\mathbb{N}},
$$

where $\left(\psi_{j}\right)_{j>0}$ is a given family of functions.
The parameters may be deterministic (control, optimization) or random (uncertainty modeling and propagation, reliability assessment).

Uniform ellipticity assumption

Then $u: y \mapsto u(y)=u(\cdot, y)$ is a bounded map from U to $V:=H_{0}^{1}(\Omega)$

Proof : multiply equation by u and integrate

A model elliptic PDE
We consider the steady state diffusion equation

$$
-\operatorname{div}(a \nabla u)=f \text { in } D \subset \mathbf{R}^{\mathrm{m}} \text { and } \mathrm{u}=0 \text { on } \partial \mathrm{D},
$$

where $f=f(x) \in L^{2}(D)$ and $a=a(x, y)$ are variable coefficients depending on $x \in D$ and on a vector y of parameters in an affine manner :

$$
a=a(x, y)=\bar{a}(x)+\sum_{j>0} y_{j} \psi_{j}(x), \quad x \in D, y=\left(y_{j}\right)_{j>0} \in U:=[-1,1]^{\mathbb{N}},
$$

where $\left(\psi_{j}\right)_{j>0}$ is a given family of functions.
The parameters may be deterministic (control, optimization) or random (uncertainty modeling and propagation, reliability assessment).

Uniform ellipticity assumption

Then $u: y \mapsto u(y)=u(\cdot, y)$ is a bounded map from U to $V:=H_{0}^{1}(\Omega)$

Proof : multiply equation by u and integrate

A model elliptic PDE
We consider the steady state diffusion equation

$$
-\operatorname{div}(a \nabla u)=f \text { in } D \subset \mathbf{R}^{\mathrm{m}} \text { and } \mathrm{u}=0 \text { on } \partial \mathrm{D},
$$

where $f=f(x) \in L^{2}(D)$ and $a=a(x, y)$ are variable coefficients depending on $x \in D$ and on a vector y of parameters in an affine manner :

$$
a=a(x, y)=\bar{a}(x)+\sum_{j>0} y_{j} \psi_{j}(x), x \in D, y=\left(y_{j}\right)_{j>0} \in U:=[-1,1]^{\mathbb{N}},
$$

where $\left(\psi_{j}\right)_{j>0}$ is a given family of functions.
The parameters may be deterministic (control, optimization) or random (uncertainty modeling and propagation, reliability assessment).

Uniform ellipticity assumption :

$$
(U E A) \quad 0<r \leq a(x, y) \leq R, x \in D, y \in U .
$$

Then $u: y \mapsto u(y)=u(\cdot, y)$ is a bounded map from U to $V:=H_{0}^{1}(\Omega)$:

$$
\|u(y)\|_{v} \leq C_{0}:=\frac{\|f\|_{V^{*}}}{r}, \quad y \in U, \text { where }\|v\|_{V}:=\|\nabla v\|_{L^{2}} .
$$

Proof : multiply equation by u and integrate

A model elliptic PDE
We consider the steady state diffusion equation

$$
-\operatorname{div}(a \nabla u)=f \text { in } D \subset \mathbf{R}^{\mathrm{m}} \text { and } \mathrm{u}=0 \text { on } \partial \mathrm{D},
$$

where $f=f(x) \in L^{2}(D)$ and $a=a(x, y)$ are variable coefficients depending on $x \in D$ and on a vector y of parameters in an affine manner :

$$
a=a(x, y)=\bar{a}(x)+\sum_{j>0} y_{j} \psi_{j}(x), x \in D, y=\left(y_{j}\right)_{j>0} \in U:=[-1,1]^{\mathbb{N}},
$$

where $\left(\psi_{j}\right)_{j>0}$ is a given family of functions.
The parameters may be deterministic (control, optimization) or random (uncertainty modeling and propagation, reliability assessment).

Uniform ellipticity assumption :

$$
(U E A) \quad 0<r \leq a(x, y) \leq R, x \in D, y \in U .
$$

Then $u: y \mapsto u(y)=u(\cdot, y)$ is a bounded map from U to $V:=H_{0}^{1}(\Omega)$:

$$
\|u(y)\|_{V} \leq C_{0}:=\frac{\|f\|_{V^{*}}}{r}, \quad y \in U, \text { where }\|v\|_{V}:=\|\nabla v\|_{L^{2}} .
$$

Proof : multiply equation by u and integrate

$$
r\|u\|_{V}^{2} \leq \int_{D} a \nabla u \cdot \nabla u=-\int_{D} u \operatorname{div}(a \nabla u)=\int_{D} u f \leq\|u\|_{v}\|f\|_{V^{*}} .
$$

A model elliptic PDE

We consider the steady state diffusion equation

$$
-\operatorname{div}(a \nabla u)=f \text { in } D \subset \mathbf{R}^{\mathrm{m}} \text { and } \mathrm{u}=0 \text { on } \partial \mathrm{D},
$$

where $f=f(x) \in L^{2}(D)$ and $a=a(x, y)$ are variable coefficients depending on $x \in D$ and on a vector y of parameters in an affine manner :

$$
a=a(x, y)=\bar{a}(x)+\sum_{j>0} y_{j} \psi_{j}(x), \quad x \in D, y=\left(y_{j}\right)_{j>0} \in U:=[-1,1]^{\mathbb{N}},
$$

where $\left(\psi_{j}\right)_{j>0}$ is a given family of functions.
The parameters may be deterministic (control, optimization) or random (uncertainty modeling and propagation, reliability assessment).

Uniform ellipticity assumption :

$$
(U E A) \quad 0<r \leq a(x, y) \leq R, x \in D, y \in U .
$$

Then $u: y \mapsto u(y)=u(\cdot, y)$ is a bounded map from U to $V:=H_{0}^{1}(\Omega)$:

$$
\|u(y)\|_{V} \leq C_{0}:=\frac{\|f\|_{V^{*}}}{r}, \quad y \in U, \text { where }\|v\|_{V}:=\|\nabla v\|_{L^{2}} .
$$

Proof : multiply equation by u and integrate

$$
r\|u\|_{V}^{2} \leq \int_{D} a \nabla u \cdot \nabla u=-\int_{D} u \operatorname{div}(a \nabla u)=\int_{D} u f \leq\|u\|_{V}\|f\|_{V^{*}} .
$$

Objective : build a computable approximation to this map at reasonable cost, i.e. simultaneaously approximate $u(y)$ for all $y \in U$.
Polynomial expansions

Use of multivariate polynomials in the y variable.
Sometimes referred to as "polynomial chaos" in the random setting (Ghanem-Spanos, Babushka-Tempone-Nobile-Zouharis, Karniadakis, Schwab...).

We study the convergence of the Taylor development
where

Here \mathcal{F} is the set of all finitely supported sequences $v=\left(v_{j}\right)_{j>0}$ of integers (only finitely many v_{j} are non-zero). The Taylor coefficients $t_{v} \in V$ are

We also studied Legendre series $u(y)=\sum_{v \in \mathcal{F}} u_{v} L_{v}$ where $L_{v}(y):=\prod_{j>0} L_{v_{j}}\left(y_{j}\right)$
Polynomial expansions

Use of multivariate polynomials in the y variable.
Sometimes referred to as "polynomial chaos" in the random setting (Ghanem-Spanos, Babushka-Tempone-Nobile-Zouharis, Karniadakis, Schwab...).

We study the convergence of the Taylor development

$$
u(y)=\sum_{v \in \mathcal{F}} t_{v} y^{v},
$$

where

$$
y^{v}:=\prod_{j>0} y_{j}^{v_{j}} .
$$

Here \mathcal{F} is the set of all finitely supported sequences $v=\left(v_{j}\right)_{j>0}$ of integers (only finitely many v_{j} are non-zero). The Taylor coefficients $t_{v} \in V$ are

$$
t_{v}:=\frac{1}{v!} \partial^{\nu} u_{\mid y=0} \text { with } v!:=\prod_{j>0} v_{j}!\text { and } 0!:=1 .
$$

We also studied Legendre series $u(y)=\sum_{v \in \mathcal{F}} u_{v} L_{v}$ where $L_{v}(y):=\prod_{j>0} L_{v_{j}}\left(y_{j}\right)$.

Sparse N-term polynomial approximation
The sequence $\left(t_{v}\right)_{v \in \mathcal{F}}$ is indexed by countably many integers.

Objective : identify a set $\Lambda \subset \mathcal{F}$ with $\#(\Lambda) \leq N$ such that u is well approximated in the space
for example by the partial Taylor expansion

Sparse N-term polynomial approximation
The sequence $\left(t_{v}\right)_{v \in \mathcal{F}}$ is indexed by countably many integers.

Objective : identify a set $\Lambda \subset \mathcal{F}$ with $\#(\Lambda) \leq N$ such that u is well approximated in the space

$$
V_{\Lambda}:=\left\{\sum_{v \in \Lambda} c_{v} y^{v} ; u_{v} \in V\right\},
$$

for example by the partial Taylor expansion

$$
u_{\Lambda}(y):=\sum_{\nu \in \Lambda} t_{v} y^{\nu} .
$$

Best N-term approximation

A-priori choices for Λ have been proposed : (anisotropic) sparse grid defined by restrictions of the type $\sum_{j} \alpha_{j} v_{j} \leq A(N)$ or $\prod_{j}\left(1+\beta_{j} v_{j}\right) \leq B(N)$.

Instead we want study a choice of Λ optimally adapted to u.
For all $y \in U=[-1,1]^{\mathbb{N}}$ we have

Best N-term approximation in the $\ell^{1}(\mathcal{F})$ norm : use for Λ the N largest $\left\|t_{v}\right\|_{V}$ Observation (Stechkin) : if ("t $\left.t_{v} \| v\right)_{v \in \mathcal{F}} \in \operatorname{nn}(\mathcal{F})$ for some $p<1$, then for this Λ,

Proof : with $\left(t_{n}\right)_{n>0}$ the decreasing rearrangement, we combine

Best N-term approximation

A-priori choices for Λ have been proposed : (anisotropic) sparse grid defined by restrictions of the type $\sum_{j} \alpha_{j} v_{j} \leq A(N)$ or $\prod_{j}\left(1+\beta_{j} v_{j}\right) \leq B(N)$.
Instead we want study a choice of Λ optimally adapted to u.
For all $y \in U=[-1,1]^{\mathbb{N}}$ we have

$$
\left\|u(y)-u_{\Lambda}(y)\right\|_{v} \leq\left\|\sum_{v \notin \Lambda} t_{v} y^{v}\right\|_{v} \leq \sum_{v \notin \Lambda}\left\|t_{v}\right\|_{v}
$$

Best N-term approximation in the $\ell^{1}(\mathcal{F})$ norm : use for Λ the N largest $\left\|t_{v}\right\|_{V}$. Observation (Stechkin) : if $\left(\left\|t_{v}\right\|_{V}\right)_{v \in \mathcal{F}} \in \ell P(\mathcal{F})$ for some $p<1$, then for this Λ,

Proof : with $\left(t_{n}\right)_{n>0}$ the decreasing rearrangement, we combine

Best N-term approximation

A-priori choices for Λ have been proposed : (anisotropic) sparse grid defined by restrictions of the type $\sum_{j} \alpha_{j} v_{j} \leq A(N)$ or $\prod_{j}\left(1+\beta_{j} v_{j}\right) \leq B(N)$.
Instead we want study a choice of Λ optimally adapted to u.
For all $y \in U=[-1,1]^{\mathbb{N}}$ we have

$$
\left\|u(y)-u_{\Lambda}(y)\right\|_{v} \leq\left\|\sum_{v \notin \Lambda} t_{\nu} y^{v}\right\|_{v} \leq \sum_{v \notin \Lambda}\left\|t_{v}\right\|_{v}
$$

Best N-term approximation in the $\ell^{1}(\mathcal{F})$ norm : use for Λ the N largest $\left\|t_{v}\right\| v$.
Observation (Stechkin) : if $\left(\left\|t_{v}\right\|_{V}\right)_{v \in \mathcal{F}} \in \ell^{p}(\mathcal{F})$ for some $p<1$, then for this Λ,

$$
\sum_{v \notin \Lambda}\left\|t_{v}\right\|_{V} \leq C N^{-s}, \quad s:=\frac{1}{p}-1, \quad C:=\left\|\left(\left\|t_{v}\right\|_{v}\right)\right\|_{p} .
$$

Proof : with $\left(t_{n}\right)_{n>0}$ the decreasing rearrangement, we combine

$$
\sum_{v \notin \Lambda}\left\|t_{v}\right\| v=\sum_{n>N} t_{n}=\sum_{n>N} t_{n}^{1-p} t_{n}^{p} \leq t_{N}^{1-p} C^{p} \text { and } N t_{N}^{p} \leq \sum_{n=1}^{N} t_{n}^{p} \leq C^{p}
$$

Best N-term approximation

A-priori choices for Λ have been proposed : (anisotropic) sparse grid defined by restrictions of the type $\sum_{j} \alpha_{j} v_{j} \leq A(N)$ or $\prod_{j}\left(1+\beta_{j} v_{j}\right) \leq B(N)$.
Instead we want study a choice of Λ optimally adapted to u.
For all $y \in U=[-1,1]^{\mathbb{N}}$ we have

$$
\left\|u(y)-u_{\Lambda}(y)\right\|_{v} \leq\left\|\sum_{v \notin \Lambda} t_{v} y^{\nu}\right\|_{v} \leq \sum_{v \notin \Lambda}\left\|t_{v}\right\|_{v}
$$

Best N-term approximation in the $\ell^{1}(\mathcal{F})$ norm : use for Λ the N largest $\left\|t_{v}\right\| v$.
Observation (Stechkin) : if $\left(\left\|t_{v}\right\|_{V}\right)_{v \in \mathcal{F}} \in \ell^{p}(\mathcal{F})$ for some $p<1$, then for this Λ,

$$
\sum_{v \notin \Lambda}\left\|t_{v}\right\|_{V} \leq C N^{-s}, \quad s:=\frac{1}{p}-1, \quad C:=\left\|\left(\left\|t_{v}\right\|_{v}\right)\right\|_{p} .
$$

Proof : with $\left(t_{n}\right)_{n>0}$ the decreasing rearrangement, we combine

$$
\sum_{v \notin \Lambda}\left\|t_{v}\right\| v=\sum_{n>N} t_{n}=\sum_{n>N} t_{n}^{1-p} t_{n}^{p} \leq t_{N}^{1-p} C^{p} \text { and } N t_{N}^{p} \leq \sum_{n=1}^{N} t_{n}^{p} \leq C^{p}
$$

Question: do we have $\left(\left\|t_{v}\right\|_{V}\right)_{v \in \mathcal{F}} \in \ell^{P}(\mathcal{F})$ for some $p<1$?

The main result

Theorem (Cohen-DeVore-Schwab, 2009) : under the uniform ellipticity assumption (UAE), then for any $p<1$,

$$
\left(\left\|\psi_{j}\right\|_{L} \infty\right)_{j \geq 0} \in \ell^{P}(\mathbb{N}) \Rightarrow\left(\left\|t_{v}\right\|_{V}\right)_{v \in \mathcal{F}} \in \ell^{P}(\mathcal{F})
$$

Interpretations

(i) The Taylor expansion of $u(y)$ inherits the sparsity properties of the expansion of $a(y)$ into the ψ_{j}.
(ii) We approximate $u(y)$ in $L^{\infty}(U)$ with algebraic rate N^{-s} despite the curse of (infinite) dimensionality, due to the fact that y_{j} is less influencial as j gets large.
(iii) The set $\mathcal{K}:=\{u(y) ; y \in U\}$ is compact in V and has small N-width $d_{N}(\mathcal{K}):=\inf _{\operatorname{dim}}(E) \leq N \max _{v \in \mathcal{K}} \operatorname{dist}(v, E)_{V}$: for all y

With Λ corresponding to the N largest $\left\|t_{v}\right\| \nu$, we find that

Such approximation rates cannot be proved for the usual a-priori choices of Λ.

The main result
Theorem (Cohen-DeVore-Schwab, 2009) : under the uniform ellipticity assumption (UAE), then for any $p<1$,

$$
\left(\left\|\psi_{j}\right\|_{L} \infty\right)_{j \geq 0} \in \ell^{P}(\mathbb{N}) \Rightarrow\left(\left\|t_{v}\right\|_{v}\right)_{v \in \mathcal{F}} \in \ell^{p}(\mathcal{F})
$$

Interpretations :
(i) The Taylor expansion of $u(y)$ inherits the sparsity properties of the expansion of $a(y)$ into the ψ_{j}.
(ii) We approximate $u(y)$ in $L^{\infty}(U)$ with algebraic rate N^{-s} despite the curse of (infinite) dimensionality, due to the fact that y_{j} is less influencial as j gets large.
(iii) The set $\mathcal{K}:=\{u(y) ; y \in U\}$ is compact in V and has small N-width $d_{N}(\mathcal{K}):=\inf _{\operatorname{dim}(E) \leq N} \max _{v \in \mathcal{K}} \operatorname{dist}(v, E)_{V}:$ for all y

With Λ corresponding to the N largest $\left\|t_{v}\right\| \nu$, we find that

The main result
Theorem (Cohen-DeVore-Schwab, 2009) : under the uniform ellipticity assumption (UAE), then for any $p<1$,

$$
\left(\left\|\psi_{j}\right\|_{L} \infty\right)_{j \geq 0} \in \ell^{P}(\mathbb{N}) \Rightarrow\left(\left\|t_{v}\right\|_{V}\right)_{v \in \mathcal{F}} \in \ell^{P}(\mathcal{F}) .
$$

Interpretations :
(i) The Taylor expansion of $u(y)$ inherits the sparsity properties of the expansion of $a(y)$ into the ψ_{j}.
(ii) We approximate $u(y)$ in $L^{\infty}(U)$ with algebraic rate N^{-s} despite the curse of (infinite) dimensionality, due to the fact that y_{j} is less influencial as j gets large.
(iii) The set $\mathcal{K}:=\{u(y) ; y \in U\}$ is compact in V and has small N-width $d_{N}(\mathcal{K}):=\inf _{\operatorname{dim}(E) \leq N} \max _{v \in \mathcal{K}} \operatorname{dist}(v, E)_{V}:$ for all y

$$
u_{\Lambda}(y):=\sum_{v \in \Lambda} t_{v} y^{v}=\sum_{v \in \Lambda} y^{v} t_{v} \in E_{\Lambda}:=\operatorname{Span}\left\{t_{v} ; v \in \Lambda\right\} .
$$

With Λ corresponding to the N largest $\left\|t_{v}\right\|_{\nu}$, we find that

$$
\left.d_{N}(\mathcal{K}) \leq \max _{y \in U} \operatorname{dist}\left(u(y), E_{\Lambda}\right)\right)_{V} \leq \max _{y \in U}\left\|u(y)-u_{\Lambda}(y)\right\|_{V} \leq C N^{-s} .
$$

Such approximation rates cannot be proved for the usual a-priori choices of \wedge.

The main result
Theorem (Cohen-DeVore-Schwab, 2009) : under the uniform ellipticity assumption (UAE), then for any $p<1$,

$$
\left(\left\|\psi_{j}\right\|_{L} \infty\right)_{j \geq 0} \in \ell^{p}(\mathbb{N}) \Rightarrow\left(\left\|t_{v}\right\|_{v}\right)_{v \in \mathcal{F}} \in \ell^{p}(\mathcal{F}) .
$$

Interpretations :
(i) The Taylor expansion of $u(y)$ inherits the sparsity properties of the expansion of $a(y)$ into the ψ_{j}.
(ii) We approximate $u(y)$ in $L^{\infty}(U)$ with algebraic rate N^{-s} despite the curse of (infinite) dimensionality, due to the fact that y_{j} is less influencial as j gets large.
(iii) The set $\mathcal{K}:=\{u(y) ; y \in U\}$ is compact in V and has small N-width $d_{N}(\mathcal{K}):=\inf _{\operatorname{dim}(E) \leq N} \max _{v \in \mathcal{K}} \operatorname{dist}(v, E)_{V}:$ for all y

$$
u_{\Lambda}(y):=\sum_{v \in \Lambda} t_{v} y^{v}=\sum_{v \in \Lambda} y^{v} t_{v} \in E_{\Lambda}:=\operatorname{Span}\left\{t_{v} ; v \in \Lambda\right\} .
$$

With Λ corresponding to the N largest $\left\|t_{v}\right\|_{\nu}$, we find that

$$
\left.d_{N}(\mathcal{K}) \leq \max _{y \in U} \operatorname{dist}\left(u(y), E_{\Lambda}\right)\right)_{V} \leq \max _{y \in U}\left\|u(y)-u_{\Lambda}(y)\right\|_{V} \leq C N^{-s} .
$$

Such approximation rates cannot be proved for the usual a-priori choices of Λ.

Idea of proof : extension to complex variable
Estimates on $\left\|t_{v}\right\| v$ by complex analysis: extend $u(y)$ to $u(z)$ with $z=\left(z_{j}\right) \in \mathbb{C} \mathbb{N}$. Uniform ellipticity $0<r \leq \bar{a}(x)+\sum_{j>0} y_{j} \psi_{j}(x)$ for all $x \in D, y \in U$ is equivalent to

This allows to say that with $a(x, z)=\bar{a}(x)+\sum_{j>0} z_{j} \psi_{j}(x)$,

$$
0<r \leq n(a(x, z)) \leq|a(x, z)| \leq 2 R
$$

for all $z \in \mathcal{U}:=\{|z| \leq 1\}^{\mathbb{N}}=\otimes\left\{\left|z_{j}\right| \leq 1\right\}$.
Lax-Milgram theory applies: $\left\|u^{\prime}(z)\right\| \leq C_{0}=\frac{\|f\| v *}{r}$ for all $z \in \mathcal{U}$. The function $u \mapsto u(z)$ is holomorphic in each variable z_{j} at any $z \in \mathcal{U}$.

Extended domains of holomorphy : if $\rho=\left(\rho_{j}\right)_{j \geq 0}$ is any positive sequence such that for some $\delta>0$

then u is holomorphic with uniform bound $\|u(z)\| \leq C_{\delta}=\frac{\|f\|_{V^{*}}}{\delta}$ in the polydisc

We call such sequences ρ " δ-admissible". If $\delta<r$, we can take $\rho_{j}>1$.

Idea of proof : extension to complex variable
Estimates on $\left\|t_{\nu}\right\|_{V}$ by complex analysis: extend $u(y)$ to $u(z)$ with $z=\left(z_{j}\right) \in \mathbb{C} \mathbb{N}$.
Uniform ellipticity $0<r \leq \overline{\boldsymbol{a}}(x)+\sum_{j>0} y_{j} \psi_{j}(x)$ for all $x \in D, y \in U$ is equivalent to

$$
\sum_{j>0}\left|\psi_{j}(x)\right| \leq \bar{a}(x)-r, \quad x \in D .
$$

This allows to say that with $a(x, z)=\bar{a}(x)+\sum_{j>0} z_{j} \psi_{j}(x)$,

$$
0<r \leq \mathfrak{R}(a(x, z)) \leq|a(x, z)| \leq 2 R
$$

for all $z \in \mathcal{U}:=\{|z| \leq 1\}^{\mathbb{N}}=\otimes\left\{\left|z_{j}\right| \leq 1\right\}$.
Lax-Milgram theory applies : $\|u(z)\| \leq C_{0}=\frac{\|f\|_{V^{*}}}{r}$ for all $z \in \mathcal{U}$. The function $u \mapsto u(z)$ is holomorphic in each variable z_{j} at any $z \in \mathcal{U}$.

Extended domains of holomorphy : if $\rho=\left(\rho_{j}\right)_{j>0}$ is any positive sequence such that for some $\delta>0$

then u is holomorphic with uniform bound $\|u(z)\| \leq C_{\delta}=\frac{\|f\|_{V^{*}}}{\delta}$ in the polydisc

Idea of proof : extension to complex variable

Estimates on $\left\|t_{\nu}\right\|_{V}$ by complex analysis : extend $u(y)$ to $u(z)$ with $z=\left(z_{j}\right) \in \mathbb{C} \mathbb{N}$.
Uniform ellipticity $0<r \leq \overline{\boldsymbol{a}}(x)+\sum_{j>0} y_{j} \psi_{j}(x)$ for all $x \in D, y \in U$ is equivalent to

$$
\sum_{j>0}\left|\psi_{j}(x)\right| \leq \bar{a}(x)-r, \quad x \in D .
$$

This allows to say that with $a(x, z)=\bar{a}(x)+\sum_{j>0} z_{j} \psi_{j}(x)$,

$$
0<r \leq \mathfrak{R}(a(x, z)) \leq|a(x, z)| \leq 2 R
$$

for all $z \in \mathcal{U}:=\{|z| \leq 1\}^{\mathbb{N}}=\otimes\left\{\left|z_{j}\right| \leq 1\right\}$.
Lax-Milgram theory applies: $\|u(z)\| \leq C_{0}=\frac{\|f\|_{V^{*}}}{r}$ for all $z \in \mathcal{U}$. The function $u \mapsto u(z)$ is holomorphic in each variable z_{j} at any $z \in \mathcal{U}$.

Extended domains of holomorphy : if $\rho=\left(\rho_{j}\right)_{j \geq 0}$ is any positive sequence such that for some $\delta>0$
then u is holomorphic with uniform bound $\|u(z)\| \leq C_{\delta}=\frac{\|f\|_{V^{*}}}{\delta}$ in the polydisc

Idea of proof : extension to complex variable

Estimates on $\left\|t_{v}\right\|_{V}$ by complex analysis: extend $u(y)$ to $u(z)$ with $z=\left(z_{j}\right) \in \mathbb{C} \mathbb{N}^{\text {. }}$
Uniform ellipticity $0<r \leq \overline{\boldsymbol{a}}(x)+\sum_{j>0} y_{j} \psi_{j}(x)$ for all $x \in D, y \in U$ is equivalent to

$$
\sum_{j>0}\left|\psi_{j}(x)\right| \leq \bar{a}(x)-r, \quad x \in D .
$$

This allows to say that with $a(x, z)=\bar{a}(x)+\sum_{j>0} z_{j} \psi_{j}(x)$,

$$
0<r \leq \mathfrak{R}(a(x, z)) \leq|a(x, z)| \leq 2 R
$$

for all $z \in \mathcal{U}:=\{|z| \leq 1\}^{\mathbb{N}}=\otimes\left\{\left|z_{j}\right| \leq 1\right\}$.
Lax-Milgram theory applies : $\|u(z)\| \leq C_{0}=\frac{\|f\|_{V^{*}}}{r}$ for all $z \in \mathcal{U}$. The function $u \mapsto u(z)$ is holomorphic in each variable z_{j} at any $z \in \mathcal{U}$.
Extended domains of holomorphy: if $\rho=\left(\rho_{j}\right)_{j \geq 0}$ is any positive sequence such that for some $\delta>0$

$$
\sum_{j>0} \rho_{j}\left|\psi_{j}(x)\right| \leq \overline{\boldsymbol{a}}(x)-\delta, \quad x \in D
$$

then u is holomorphic with uniform bound $\|u(z)\| \leq C_{\delta}=\frac{\|f\|_{V^{*}}}{\delta}$ in the polydisc

$$
\mathcal{U}_{\rho}:=\otimes\left\{\left|z_{j}\right| \leq \rho_{j}\right\},
$$

We call such sequences ρ " δ-admissible". If $\delta<r$, we can take $\rho_{j}>1$.

Estimate on the Taylor coefficients

Use Cauchy formula. In 1 complex variable if $z \mapsto u(z)$ is holomorphic and bounded in a neighbourhood of disc $\{|z| \leq a\}$, then for all z in this disc

$$
u(z)=\frac{1}{2 i \pi} \int_{\left|z^{\prime}\right|=a} \frac{u\left(z^{\prime}\right)}{z-z^{\prime}} d z^{\prime}
$$

which leads by m differentiation at $z=0$ to $\left|u^{(m)}(0)\right| \leq m!a^{-m} \max _{|z| \leq a}|u(z)|$.
Recursive application of this to all variables z_{j} such that $v_{j} \neq 0$, with $a=\rho_{j}$, for a δ-admissible sequence ρ gives

and therefore

Since ρ is not fixed we have

We do not know the general solution to this problem, except when the ψ_{j} have disjoint supports. Instead design a particular choice $\rho=\rho(v)$ of δ-admissible sequences with $\delta=r / 2$, for which we prove that

Estimate on the Taylor coefficients

Use Cauchy formula. In 1 complex variable if $z \mapsto u(z)$ is holomorphic and bounded in a neighbourhood of disc $\{|z| \leq a\}$, then for all z in this disc

$$
u(z)=\frac{1}{2 i \pi} \int_{\left|z^{\prime}\right|=a} \frac{u\left(z^{\prime}\right)}{z-z^{\prime}} d z^{\prime}
$$

which leads by m differentiation at $z=0$ to $\left|u^{(m)}(0)\right| \leq m!a^{-m} \max _{|z| \leq a}|u(z)|$.
Recursive application of this to all variables z_{j} such that $v_{j} \neq 0$, with $a=\rho_{j}$, for a δ-admissible sequence ρ gives

$$
\left\|\partial^{v} u_{\mid z=0}\right\| v \leq C_{\delta} v!\prod_{j>0} \rho_{j}^{-v_{j}}
$$

and therefore

$$
\left\|t_{v}\right\|_{v} \leq C_{\delta} \prod_{j>0} \rho_{j}^{-v_{j}}=C_{0} \rho^{-v}
$$

Since ρ is not fixed we have

$$
\left\|t_{v}\right\|_{V} \leq C_{\delta} \inf \left\{\rho^{-v} ; \rho \text { is } \delta-\text { admissible }\right\} .
$$

We do not know the general solution to this problem, except when the ψ_{j} have disjoint supports. Instead design a particular choice $\rho=\rho(v)$ of δ-admissible sequences with $\delta=r / 2$, for which we prove that

Estimate on the Taylor coefficients

Use Cauchy formula. In 1 complex variable if $z \mapsto u(z)$ is holomorphic and bounded in a neighbourhood of disc $\{|z| \leq a\}$, then for all z in this disc

$$
u(z)=\frac{1}{2 i \pi} \int_{\left|z^{\prime}\right|=a} \frac{u\left(z^{\prime}\right)}{z-z^{\prime}} d z^{\prime}
$$

which leads by m differentiation at $z=0$ to $\left|u^{(m)}(0)\right| \leq m!a^{-m} \max _{|z| \leq a}|u(z)|$.
Recursive application of this to all variables z_{j} such that $v_{j} \neq 0$, with $a=\rho_{j}$, for a δ-admissible sequence ρ gives

$$
\left\|\partial^{v} u_{\mid z=0}\right\| v \leq C_{\delta} v!\prod_{j>0} \rho_{j}^{-v_{j}}
$$

and therefore

$$
\left\|t_{v}\right\|_{v} \leq C_{\delta} \prod_{j>0} \rho_{j}^{-v_{j}}=C_{0} \rho^{-v}
$$

Since ρ is not fixed we have

$$
\left\|t_{v}\right\|_{V} \leq C_{\delta} \inf \left\{\rho^{-v} ; \rho \text { is } \delta-\text { admissible }\right\} .
$$

We do not know the general solution to this problem, except when the ψ_{j} have disjoint supports. Instead design a particular choice $\rho=\rho(v)$ of δ-admissible sequences with $\delta=r / 2$, for which we prove that

$$
\left(\left\|\psi_{j}\right\|_{L \infty}\right)_{j \geq 0} \in \ell^{p}(\mathbb{N}) \Rightarrow\left(\rho(v)^{-v}\right)_{v \in \mathcal{F}} \in \ell^{p}(\mathcal{F})
$$

A simple case
Assume that the ψ_{j} have disjoint supports. Then we maximize separately the ρ_{j} so that

$$
\sum_{j>0} \rho_{j}\left|\psi_{j}(x)\right| \leq \overline{\mathbf{a}}(x)-\frac{r}{2}, \quad x \in D
$$

which leads to

$$
\rho_{j}:=\min _{x \in D} \frac{\overline{\bar{a}}(x)-\frac{r}{2}}{\left|\psi_{j}(x)\right|} .
$$

We have

$$
\left\|t_{v}\right\|_{V} \leq 2 C_{0} \rho^{-v}=2 C_{0} b^{v},
$$

where $b=\left(b_{j}\right)$ and

Therefore $b \in \ell^{P}(\mathbb{N})$. From (UEA), we have $\left|\psi_{j}(x)\right| \leq \bar{a}(x)-r$ and thus $\|b\|_{\ell} \infty<1$.
We finally observe that

Proof : factorize

A simple case
Assume that the ψ_{j} have disjoint supports. Then we maximize separately the ρ_{j} so that

$$
\sum_{j>0} \rho_{j}\left|\psi_{j}(x)\right| \leq \overline{\mathbf{a}}(x)-\frac{r}{2}, \quad x \in D
$$

which leads to

$$
\rho_{j}:=\min _{x \in D} \frac{\bar{a}(x)-\frac{r}{2}}{\left|\psi_{j}(x)\right|} .
$$

We have

$$
\left\|t_{v}\right\|_{V} \leq 2 C_{0} \rho^{-v}=2 C_{0} b^{v}
$$

where $b=\left(b_{j}\right)$ and

$$
b_{j}:=\rho_{j}^{-1}=\frac{\left|\Psi_{j}(x)\right|}{\bar{a}(x)-\frac{r}{2}} \leq \frac{\left\|\Psi_{j}\right\|_{L \infty}}{R-\frac{r}{2}} .
$$

Therefore $b \in \ell^{\rho}(\mathbb{N})$. From (UEA), we have $\left|\psi_{j}(x)\right| \leq \bar{a}(x)-r$ and thus $\|b\|_{\ell} \infty<1$.

We finally observe that

Proof : factorize

A simple case

Assume that the ψ_{j} have disjoint supports. Then we maximize separately the ρ_{j} so that

$$
\sum_{j>0} \rho_{j}\left|\psi_{j}(x)\right| \leq \overline{\mathbf{a}}(x)-\frac{r}{2}, \quad x \in D
$$

which leads to

$$
\rho_{j}:=\min _{x \in D} \frac{\overline{\bar{a}}(x)-\frac{r}{2}}{\left|\psi_{j}(x)\right|} .
$$

We have

$$
\left\|t_{v}\right\|_{V} \leq 2 C_{0} \rho^{-v}=2 C_{0} b^{v}
$$

where $b=\left(b_{j}\right)$ and

$$
b_{j}:=\rho_{j}^{-1}=\frac{\left|\Psi_{j}(x)\right|}{\bar{a}(x)-\frac{r}{2}} \leq \frac{\left\|\Psi_{j}\right\|_{L} \infty}{R-\frac{r}{2}} .
$$

Therefore $b \in \ell^{\rho}(\mathbb{N})$. From (UEA), we have $\left|\psi_{j}(x)\right| \leq \bar{a}(x)-r$ and thus $\|b\|_{\ell} \infty<1$.
We finally observe that

$$
b \in \ell^{p}(\mathbb{N}) \text { and }\|b\|_{\ell \infty}<1 \Leftrightarrow\left(b^{v}\right)_{v \in \mathcal{F}} \in \ell^{p}(\mathcal{F})
$$

Proof : factorize

$$
\sum_{v \in \mathcal{F}} b^{p v}=\prod_{j>0} \sum_{n \geq 0} b_{j}^{p n}=\prod_{j>0} \frac{1}{1-b_{j}^{p}} .
$$

An adaptive algorithm
Strategies to build the set \wedge :
(i) Non-adaptive, based on the available a-priori estimates for the $\left\|t_{v}\right\|_{V}$.
(ii) Adaptive, based on a-posteriori information gained in the computation $\Lambda_{1} \subset \Lambda_{2} \subset$ $\cdot \subset \wedge_{N}$.

Objective : develop adaptive strategies that converge with optimal rate (similar to adaptive wavelet methods for elliptic PDE's : Cohen-Dahmen-DeVore, Stevenson).

Recursive computation of the Taylor coefficients: with e_{j} the Kroenecker sequence

We compute the t_{v} on sets Λ with monotone structure : $v \in \Lambda$ and $\mu \leq \nu \Rightarrow \mu \in \Lambda$. Given such a Λ_{k} and the $\left(t_{v}\right)_{\nu, \Lambda_{k}}$, we compute the t_{v} for v in the margin

$$
\mathcal{M}_{k}:=\left\{v \notin \Lambda_{k} ; v-e_{j} \in \Lambda_{k} \text { for some } j\right\},
$$

and build the new set by bulk search : $\Lambda_{k+1}=\Lambda_{k} \cup \mathcal{S}_{k}$, with $\mathcal{S}_{k} \subset \mathcal{M}_{k}$ smallest such that $\sum_{v \in \mathcal{S}_{k}}\left\|t_{v}\right\|_{V}^{2} \geq \theta \sum_{v \in \mathcal{M}_{k}}\left\|t_{v}\right\|_{V}^{2}$, with $\theta \in(0,1)$.

Such a strategy can be proved to converge with optimal convergence rate $\#\left(\Lambda_{k}\right)^{-s}$.

An adaptive algorithm
Strategies to build the set Λ :
(i) Non-adaptive, based on the available a-priori estimates for the $\left\|t_{v}\right\|_{V}$.
(ii) Adaptive, based on a-posteriori information gained in the computation $\Lambda_{1} \subset \Lambda_{2} \subset \cdots \subset \Lambda_{N}$.

Objective : develop adaptive strategies that converge with optimal rate (similar to adaptive wavelet methods for elliptic PDE's : Cohen-Dahmen-DeVore, Stevenson).

Recursive computation of the Taylor coefficients : with e_{j} the Kroenecker sequence

We compute the t_{v} on sets Λ with monotone structure $: \nu \in \Lambda$ and $\mu \leq \nu \Rightarrow \mu \in \Lambda$. Given such a Λ_{k} and the $\left(t_{v}\right)_{v \in \Lambda_{k}}$ we compute the t_{v} for v in the margin
\square that \square with $\theta \in(0,1)$.

Such a strategy can be proved to converge with optimal convergence rate $\#\left(\Lambda_{k}\right)^{-s}$

An adaptive algorithm
Strategies to build the set Λ :
(i) Non-adaptive, based on the available a-priori estimates for the $\left\|t_{v}\right\|_{V}$.
(ii) Adaptive, based on a-posteriori information gained in the computation $\Lambda_{1} \subset \Lambda_{2} \subset \cdots \subset \Lambda_{N}$.

Objective : develop adaptive strategies that converge with optimal rate (similar to adaptive wavelet methods for elliptic PDE's: Cohen-Dahmen-DeVore, Stevenson).

Recursive computation of the Taylor coefficients : with e_{j} the Kroenecker sequence

$$
\int_{D} \bar{a} \nabla t_{v} \nabla v=-\sum_{j: v_{j} \neq 0} \int_{D} \psi_{j} \nabla t_{v-e_{j}} \nabla v, \quad v \in V .
$$

We compute the t_{ν} on sets Λ with monotone structure : $\nu \in \Lambda$ and $\mu \leq \nu \Rightarrow \mu \in \Lambda$.

An adaptive algorithm
Strategies to build the set Λ :
(i) Non-adaptive, based on the available a-priori estimates for the $\left\|t_{v}\right\|_{V}$.
(ii) Adaptive, based on a-posteriori information gained in the computation $\Lambda_{1} \subset \Lambda_{2} \subset \cdots \subset \Lambda_{N}$.

Objective : develop adaptive strategies that converge with optimal rate (similar to adaptive wavelet methods for elliptic PDE's: Cohen-Dahmen-DeVore, Stevenson).

Recursive computation of the Taylor coefficients : with e_{j} the Kroenecker sequence

$$
\int_{D} \bar{a} \nabla t_{v} \nabla v=-\sum_{j: v_{j} \neq 0} \int_{D} \psi_{j} \nabla t_{v-e_{j}} \nabla v, \quad v \in V .
$$

We compute the t_{ν} on sets Λ with monotone structure : $\nu \in \Lambda$ and $\mu \leq \nu \Rightarrow \mu \in \Lambda$.
Given such a Λ_{k} and the $\left(t_{v}\right)_{v \in \Lambda_{k}}$ we compute the t_{v} for v in the margin

$$
\mathcal{M}_{k}:=\left\{v \notin \Lambda_{k} ; v-e_{j} \in \Lambda_{k} \text { for some } j\right\},
$$

and build the new set by bulk search : $\Lambda_{k+1}=\Lambda_{k} \cup \mathcal{S}_{k}$, with $\mathcal{S}_{k} \subset \mathcal{M}_{k}$ smallest such that $\sum_{v \in \mathcal{S}_{k}}\left\|t_{v}\right\|_{V}^{2} \geq \theta \sum_{v \in \mathcal{M}_{k}}\left\|t_{v}\right\|_{V}^{2}$, with $\theta \in(0,1)$.

An adaptive algorithm
Strategies to build the set Λ :
(i) Non-adaptive, based on the available a-priori estimates for the $\left\|t_{v}\right\|_{V}$.
(ii) Adaptive, based on a-posteriori information gained in the computation $\Lambda_{1} \subset \Lambda_{2} \subset \cdots \subset \Lambda_{N}$.

Objective : develop adaptive strategies that converge with optimal rate (similar to adaptive wavelet methods for elliptic PDE's: Cohen-Dahmen-DeVore, Stevenson).

Recursive computation of the Taylor coefficients : with e_{j} the Kroenecker sequence

$$
\int_{D} \bar{a} \nabla t_{v} \nabla v=-\sum_{j: v_{j} \neq 0} \int_{D} \psi_{j} \nabla t_{v-e_{j}} \nabla v, \quad v \in V .
$$

We compute the t_{ν} on sets Λ with monotone structure : $\nu \in \Lambda$ and $\mu \leq \nu \Rightarrow \mu \in \Lambda$.
Given such a Λ_{k} and the $\left(t_{v}\right)_{v \in \Lambda_{k}}$ we compute the t_{v} for v in the margin

$$
\mathcal{M}_{k}:=\left\{v \notin \Lambda_{k} ; v-e_{j} \in \Lambda_{k} \text { for some } j\right\},
$$

and build the new set by bulk search : $\Lambda_{k+1}=\Lambda_{k} \cup \mathcal{S}_{k}$, with $\mathcal{S}_{k} \subset \mathcal{M}_{k}$ smallest such that $\sum_{v \in \mathcal{S}_{k}}\left\|t_{v}\right\|_{V}^{2} \geq \theta \sum_{v \in \mathcal{M}_{k}}\left\|t_{v}\right\|_{V}^{2}$, with $\theta \in(0,1)$.

Such a strategy can be proved to converge with optimal convergence rate $\#\left(\Lambda_{k}\right)^{-s}$.

Test case in moderate dimension $d=16$
Physical domain $D=[0,1]^{2}=\cup_{j=1}^{d} D_{j}$.
Diffusion coefficients $a(x, y)=1+\sum_{j=1}^{d} y_{j}\left(\frac{0.9}{j^{2}}\right) \chi_{D_{j}}$.
Adaptive search of Λ implemented in $\mathrm{C}++$, spatial discretization by FreeFem ++ .
Comparison between the Λ_{k} generated by the adaptive algorithm (red) and non-adaptive choices $\left\{\sup v_{j} \leq k\right\}$ (blue) or $\left\{\Sigma v_{j} \leq k\right\}$ (green) or k largest a-priori bounds on the $\left\|t_{v}\right\|_{V}$ (pink)

Highest polynomial degree with $\#(\Lambda)=1000$ coefficients : $1,4,115$ and 81 .

What I did not speak about
Use of Legendre polynomials instead of Taylor series: leads to approximation error estimates in $L^{2}(U, d \mu)$ with $d \mu$ the tensor product probability measure on U.

```
Computation of the approximate Legendre coefficients : either use a Galerkin
(projection) method or a Collocation (interpolation) method. For the second one,
designing optimal collocation points is an open problem.
Strategies to build the set }
(i) A-priori, based on the available estimates for the |t\mp@subsup{t}{v}{}|V
(ii) A-posteriori, based on error indicators in the Galerkin framework
\Lambda1}\subset\mp@subsup{\Lambda}{2}{}\subset\cdots\subset\mp@subsup{\Lambda}{N}{}\mathrm{ . Optimal convergence of this strategy may be proved by similar
techniques as for adaptive wavelet methods for elliptic PDE's
(Cohen-Dahmen-DeVore, Stevenson)
(iii) Reconstruction a sparse orthogonal series from random sampling : techniques
from Compressed Sensing (Sparse Fourier series:Gilbert-Strauss-Tropp,
Candes-Romberg-Tao, Rudelson-Vershynin. Sparse Legendre series:Rauhut-Ward
2010)
Space discretization : should be properly tuned (use different resolution for each trv)
and injected in the final error analysis.
```

Our results can be used in the analysis of reduced basis methods.

What I did not speak about
Use of Legendre polynomials instead of Taylor series: leads to approximation error estimates in $L^{2}(U, d \mu)$ with $d \mu$ the tensor product probability measure on U.

Computation of the approximate Legendre coefficients : either use a Galerkin (projection) method or a Collocation (interpolation) method. For the second one, designing optimal collocation points is an open problem.

```
Strategies to build the set }
(i) A-priori, based on the available estimates for the |tv|}|
(ii) A-posteriori, based on error indicators in the Galerkin framework
\Lambda1\subset ^
techniques as for adaptive wavelet methods for elliptic PDE's
(Cohen-Dahmen-DeVore, Stevenson)
(iii) Reconstruction a sparse orthogonal series from random sampling : techniques
from Compressed Sensing (Sparse Fourier series: Gilbert-Strauss-Tropp
Candes-Romberg-Tao, Rudelson-Vershynin. Sparse Legendre series: Rauhut-Ward
2010)
Space discretization : should be properly tuned (use different resolution for each t}\mp@subsup{t}{v}{}\mathrm{ )
and injected in the final error analysis.
Our results can be used in the analysis of reduced basis methods.
```

What I did not speak about
Use of Legendre polynomials instead of Taylor series: leads to approximation error estimates in $L^{2}(U, d \mu)$ with $d \mu$ the tensor product probability measure on U.

Computation of the approximate Legendre coefficients : either use a Galerkin (projection) method or a Collocation (interpolation) method. For the second one, designing optimal collocation points is an open problem.

Strategies to build the set Λ :

```
(i) A-priori, based on the available estimates for the \(\left\|t_{v}\right\|_{V}\)
(ii) A-posteriori, based on error indicators in the Galerkin framework
\(\Lambda_{1} \subset \Lambda_{2} \subset \cdots \subset \Lambda_{N}\). Optimal convergence of this strategy may be proved by similar
techniques as for adaptive wavelet methods for elliptic PDE's
(Cohen-Dahmen-DeVore, Stevenson)
(iii) Reconstruction a sparse orthogonal series from random sampling : techniques
from Compressed Sensing (Sparse Fourier series : Gilbert-Strauss-Tropp,
Candes-Romberg-Tao, Rudelson-Vershynin. Sparse Legendre series : Rauhut-Ward
2010)
Space discretization : should be properly tuned (use different resolution for each \(t_{v}\) )
and injected in the final error analysis.
```

Our results can be used in the analysis of reduced basis methods.

What I did not speak about
Use of Legendre polynomials instead of Taylor series : leads to approximation error estimates in $L^{2}(U, d \mu)$ with $d \mu$ the tensor product probability measure on U.

Computation of the approximate Legendre coefficients : either use a Galerkin (projection) method or a Collocation (interpolation) method. For the second one, designing optimal collocation points is an open problem.

Strategies to build the set Λ :
(i) A-priori, based on the available estimates for the $\left\|t_{v}\right\|_{v}$.
(ii) A-posteriori, based on error indicators in the Galerkin framework
$\Lambda_{1} \subset \Lambda_{2} \subset \cdots \subset \Lambda_{N}$. Optimal convergence of this strategy may be proved by similar
techniques as for adaptive wavelet methods for elliptic PDE's
(Cohen-Dahmen-DeVore, Stevenson)
(iii) Reconstruction a sparse orthogonal series from random sampling : techniques from Compressed Sensing (Sparse Fourier series: Gilbert-Strauss-Tropp Candes-Romberg-Tao, Rudelson-Vershynin. Sparse Legendre series : Rauhut-Ward 2010)

Space discretization : should be properly tuned (use different resolution for each t_{v}) and injected in the final error analysis.

Our results can be used in the analysis of reduced basis methods.

Use of Legendre polynomials instead of Taylor series : leads to approximation error estimates in $L^{2}(U, d \mu)$ with $d \mu$ the tensor product probability measure on U.

Computation of the approximate Legendre coefficients : either use a Galerkin (projection) method or a Collocation (interpolation) method. For the second one, designing optimal collocation points is an open problem.

Strategies to build the set Λ :
(i) A-priori, based on the available estimates for the $\left\|t_{v}\right\|_{V}$.
(ii) A-posteriori, based on error indicators in the Galerkin framework:
$\Lambda_{1} \subset \Lambda_{2} \subset \cdots \subset \Lambda_{N}$. Optimal convergence of this strategy may be proved by similar techniques as for adaptive wavelet methods for elliptic PDE's (Cohen-Dahmen-DeVore, Stevenson).
(iii) Reconstruction a sparse orthogonal series from random sampling : techniques from Compressed Sensing (Sparse Fourier series: Gilbert-Strauss-Tropp, Candes-Romberg-Tao, Rudelson-Vershynin. Sparse Legendre series: Rauhut-Ward 2010)

Space discretization : should be properly tuned (use different resolution for each t_{v}) and injected in the final error analysis.

Our results can be used in the analysis of reduced basis methods.

Use of Legendre polynomials instead of Taylor series : leads to approximation error estimates in $L^{2}(U, d \mu)$ with $d \mu$ the tensor product probability measure on U.

Computation of the approximate Legendre coefficients : either use a Galerkin (projection) method or a Collocation (interpolation) method. For the second one, designing optimal collocation points is an open problem.

Strategies to build the set Λ :
(i) A-priori, based on the available estimates for the $\left\|t_{v}\right\|_{V}$.
(ii) A-posteriori, based on error indicators in the Galerkin framework:
$\Lambda_{1} \subset \Lambda_{2} \subset \cdots \subset \Lambda_{N}$. Optimal convergence of this strategy may be proved by similar techniques as for adaptive wavelet methods for elliptic PDE's
(Cohen-Dahmen-DeVore, Stevenson).
(iii) Reconstruction a sparse orthogonal series from random sampling : techniques from Compressed Sensing (Sparse Fourier series: Gilbert-Strauss-Tropp, Candes-Romberg-Tao, Rudelson-Vershynin. Sparse Legendre series: Rauhut-Ward 2010).

Space discretization : should be properly tuned (use different resolution for each t_{v}) and injected in the final error analysis.

Our results can be used in the analysis of reduced basis methods.

Use of Legendre polynomials instead of Taylor series : leads to approximation error estimates in $L^{2}(U, d \mu)$ with $d \mu$ the tensor product probability measure on U.

Computation of the approximate Legendre coefficients : either use a Galerkin (projection) method or a Collocation (interpolation) method. For the second one, designing optimal collocation points is an open problem.

Strategies to build the set Λ :
(i) A-priori, based on the available estimates for the $\left\|t_{v}\right\|_{V}$.
(ii) A-posteriori, based on error indicators in the Galerkin framework:
$\Lambda_{1} \subset \Lambda_{2} \subset \cdots \subset \Lambda_{N}$. Optimal convergence of this strategy may be proved by similar techniques as for adaptive wavelet methods for elliptic PDE's
(Cohen-Dahmen-DeVore, Stevenson).
(iii) Reconstruction a sparse orthogonal series from random sampling : techniques from Compressed Sensing (Sparse Fourier series: Gilbert-Strauss-Tropp, Candes-Romberg-Tao, Rudelson-Vershynin. Sparse Legendre series: Rauhut-Ward 2010).

Space discretization: should be properly tuned (use different resolution for each t_{v}) and injected in the final error analysis.

Our results can be used in the analysis of reduced basis methods.

What I did not speak about

Use of Legendre polynomials instead of Taylor series: leads to approximation error estimates in $L^{2}(U, d \mu)$ with $d \mu$ the tensor product probability measure on U.

Computation of the approximate Legendre coefficients : either use a Galerkin (projection) method or a Collocation (interpolation) method. For the second one, designing optimal collocation points is an open problem.

Strategies to build the set Λ :
(i) A-priori, based on the available estimates for the $\left\|t_{v}\right\|_{V}$.
(ii) A-posteriori, based on error indicators in the Galerkin framework:
$\Lambda_{1} \subset \Lambda_{2} \subset \cdots \subset \Lambda_{N}$. Optimal convergence of this strategy may be proved by similar techniques as for adaptive wavelet methods for elliptic PDE's
(Cohen-Dahmen-DeVore, Stevenson).
(iii) Reconstruction a sparse orthogonal series from random sampling : techniques from Compressed Sensing (Sparse Fourier series : Gilbert-Strauss-Tropp, Candes-Romberg-Tao, Rudelson-Vershynin. Sparse Legendre series: Rauhut-Ward 2010).

Space discretization : should be properly tuned (use different resolution for each t_{v}) and injected in the final error analysis.

Our results can be used in the analysis of reduced basis methods.

Conclusion and perspective

Rich topic: involves a variety of tools such as stochastic processes, high dimensional approximation, complex analysis, sparsity and non-linear approximation, adaptivity and a-posteriori analysis.

First numerical results in moderate dimensionality : reveal the adavantages of an adaptive approach. Goal : implementation for very high or infinite dimensionality.

Many anplications in engineering
Many other models to be studied
(i) Non-affine dependence of a in the variable y
(ii) Other linear or non-linear PDE's.

Papers: www.ann.jussieu.fr/cohen

Conclusion and perspective
Rich topic: involves a variety of tools such as stochastic processes, high dimensional approximation, complex analysis, sparsity and non-linear approximation, adaptivity and a-posteriori analysis.

First numerical results in moderate dimensionality : reveal the adavantages of an adaptive approach. Goal : implementation for very high or infinite dimensionality.

Many applications in engineering.
Many other models to be studied
(i) Non-affine denendence of a in the variable y
(ii) Other linear or non-linear PDE's.

Papers: www.ann.jussieu.fr/cohen

Conclusion and perspective

Rich topic : involves a variety of tools such as stochastic processes, high dimensional approximation, complex analysis, sparsity and non-linear approximation, adaptivity and a-posteriori analysis.

First numerical results in moderate dimensionality : reveal the adavantages of an adaptive approach. Goal : implementation for very high or infinite dimensionality.

Many applications in engineering.
Many other models to be studied
(i) Non-affine dependence of a in the variable y
(ii) Other linear or non-linear PDF's

Papers: www.ann.jussieu.fr/cohen

Conclusion and perspective

Rich topic : involves a variety of tools such as stochastic processes, high dimensional approximation, complex analysis, sparsity and non-linear approximation, adaptivity and a-posteriori analysis.

First numerical results in moderate dimensionality : reveal the adavantages of an adaptive approach. Goal : implementation for very high or infinite dimensionality.

Many applications in engineering.
Many other models to be studied :
(i) Non-affine dependence of a in the variable y.
(ii) Other linear or non-linear PDE's.

Papers : www.ann.jussieu.fr/cohen

Conclusion and perspective

Rich topic : involves a variety of tools such as stochastic processes, high dimensional approximation, complex analysis, sparsity and non-linear approximation, adaptivity and a-posteriori analysis.

First numerical results in moderate dimensionality : reveal the adavantages of an adaptive approach. Goal : implementation for very high or infinite dimensionality.

Many applications in engineering.
Many other models to be studied :
(i) Non-affine dependence of a in the variable y.
(ii) Other linear or non-linear PDE's.

Papers: www.ann.jussieu.fr/cohen

Conclusion and perspective

Rich topic : involves a variety of tools such as stochastic processes, high dimensional approximation, complex analysis, sparsity and non-linear approximation, adaptivity and a-posteriori analysis.

First numerical results in moderate dimensionality : reveal the adavantages of an adaptive approach. Goal : implementation for very high or infinite dimensionality.

Many applications in engineering.
Many other models to be studied :
(i) Non-affine dependence of a in the variable y.
(ii) Other linear or non-linear PDE's.

Papers: www.ann.jussieu.fr/cohen

