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Compressed Sensing Measurement Model
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e xis K-sparse or K-compressible

A random, satisfies a restricted isometry property (RIP)
A has RIP of order 2K with constant 0

If there exists O s.t. for all 2K-sparse x:
(1= d)lx[l5 < [[Ax]] < (1+)IxIl5
* M=0O(KlogN/K)

e A also has small coherence [ £ max |(az-, aj>|
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CS RECONSTRUCTION
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CS Reconstruction

Reconstruction using sparse approximation:
— Find sparsest x such that y = Ax

Convex optimization approach:
— Minimize ¢ norm: e.g.,

X = argmin ||x||; s.t. y =~ Ax
X

Greedy algorithms approach:
— MP, OMP, ROMP, StOMP, CoSaMP, ...

If coherence u or RIP 0 is small: Exact reconstruction

Semi-ignored question:
How do we measure “=”?
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Approximation Cost

« Convex optimization formulations

X

arg min ||x||
X

X = argmin ||x||1 s.t
X

* Greedy pursuits (implicit) goal

All approaches attempt to minimize f(x)=||y-Ax||;
such that the argument x is sparse.

Can we do it for general f(x)?
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SPARSITY-CONSTRAINED FUNCTION MINIMIZATION
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Problem Formulation

X

x* = argmin f (x) s.t. [|x]|o < K
X
* Objective: minimize an arbitrary cost function

 Applications:
— Sparse logistic regression
— Quantized and saturation-consistent Compressed Sensing
— De-noising and Compressed Sensing with non-gaussian noise models

 Questions:
— What algorithms can we use?
— What functions can we minimize?
— What are the conditions on f(x)?
— What guarantees can we provide?
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Commonalities in Sparse Recovery Algorithms

* Most greedy and [; algorithms have several common steps:

Maintain a current estimate

Compute a residual

Compute a gradient, proxy, correlation, or some other name
Update estimate based on proxy

Prune (soft or hard threshold)

Iterate

* Key step: proxy/correlation AT(y-Ax)
— This is the gradient of f(X)=||y-Ax|[:

Can we substitute it with the general gradient Vf(x)?

YES
What guarantees can we prove?
What becomes of the RIP? / ¢ wTSUBISH
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GraSP (Gradient Subspace Pursuit)

State Variables: Signal estimate, x support estimate: T

Initialize estimate and support

x=0, T=supp(X)

Add to
Select location support set
: of largest 0 = SUpp(glzK) UT
Compute Gra_dlent at g 2K gradient directions
Current Estimate N

Minimize over

A Supp(g|,x) support
Vf(X) — b:argminf(x)

S.t. XQe = 0

A
Truncate result
X = bk

T = supp (b|x)

I
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f(x)=|ly-Ax|}3 = CoSaMP (Compressive Sampling MP) [needell and Tropp]

State Variables: Signal estimate, x support estimate: T
Initialize estimate, residual and support
X=0, T=supp(X), r=

Correlate residual

with dictionary Select location sugsgrgoset
— signal proxy of largest
r p 2K correlations (1= Supp(p|2K) U
7’
Invert over
supp(p| ,x) support
b=Any
Truncate and
compute residual
T = supp(b|k)
(1) = py T =0bK
T r—y— Az
| '
Iterate using residual "I\EIIII_E%%IIS;I%HI
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CONDITIONS AND GUARANTEES
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Stable Hessian Property

Guarantees based on the Hessian of the function Hqx)
Some definitions:
for all ||ullo < K

Ag (u) =sup { v H, (wv

VI3

supp(v) = supp(u), and v # O}

Bk (u) = inf { v H(u)v

VI3

supp(v) = supp(u), and v # O}

Stable Hessian Property (SHP) of order K, with constant ux:

Ak (u)
BK (u)

< pg, for all ||ullp < K

Bounds the local curvature of f(x)
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Recovery Guarantees

Denote the global optimum using x*:

x* = argmin f (x) s.t. ||x|jo < K

Assume f(x) satisfies and order 4K SHP with:

A4K (11)

B K(u)

And its restriction is convex:

for all ||ul|g < 4K, < par < V2

for all ||u|lp < 4K, Byx > €

Then the estimate after the pt" iteration, X", satisfies:

1(2+V2)

Hg(p) —

<2+

IV ()2l

where I is the set of the largest 3K components of Vf(x*) in magnitude
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Connections to CS

« CS uses fix)=|ly-Ax|[3

* SHP bounds Ax(u), Bx(u), reduce to RIP bounds (1+0k)

* ug reduces to (1+0x)/(1-0k)
« GraSP reduces to CoSaMP

« Reconstruction guarantees reduce to classical CS guarantees
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APPLICATIONS
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CS and Saturation [Laska, Boufounos, Davenport, Baraniuk]

X andc y=AX Qua y
Measurements A
G-A2T [T . Given: Bit budget B bits/sample, Signal Ixll
an/2 | . Bit budge Its/sample, Signal norm lixll,
| | | AI/2 | | | | g
¢ [taxaqg ¢ Setquantization threshold G
T — Implicitly sets quantization interval A4=2-8+1G
- T G+A/2 — Implicitly sets saturation rate at 2Q(G/Ixll,)
« Classical heurl oid saturation)
Wrong! Will revisit!
* Note:
— equivalent to fixing G and varying signal amplification
— Q() denotes the tail of the Gaussian distribution
Saturated
Measurement PDF measurements
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Exploit Saturation Information

Saturated measurements

Saturation provides information:
The measurement magnitude is larger than G. But how to handle it?

T TETITTT] S

Option 1: Just use the measurement as if unsaturated
Option 2: Discard saturated measurements
Option 3: Treat measurement as a constraint! (consistent reconstruction)

X = arg min ly — Ax||o+ Unsaturated
(G — ATx) |, + Positive Saturation
(G + A_x) ol Negative Saturation

st._xlo < K RN
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Experimental Results
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Reconstruction Results: Real Data [wei, Boufounos]

Synthetic Aperture Radar (SAR) acquisition

(a) CSA unsaturated (b) CSA 30% sat. (c) Robust 30% sat.

Loss of fine features Intensity loss restored
Crisper image
Significant intensity loss
due to saturation
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Reconstruction Results: Real Data, log scale

Synthetic Aperture Radar (SAR) acquisition

(a) CSA unsaturated (b) CSA 30% sat. (c) Robust 30% sat.

Significant Reconstruction Noise Image model (wavelet sparsity)
performs denoising
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Sparse Logistic Regression

 Examples in data points d;, each has a label /; (1)

* Need to find coefficients x; that predict labels from data
— Prediction though the logistic function
— Feature selection: find a sparse set x

* Resulting problem is a sparse minimization:
N

f(x) =) log (1 +exp(~l'x"d"))
=1

« We can use GraSP!

« Alternative: /¢ regularization (e.g., IRLS-LARS, [Lee et al, 2006]):
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X = argmin f(x) + A||x||1 /
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Simulation Results Classification Accuracy

 Data: UCI Adult Data Set

— Goal: Predict household income s$50K from 14 variables, 123 features

Accuracy (%)
84.2

-m-GraSP

84.0 / ——IRLS-LARS
83.8 //._.\

83.6 7 -

83.4 /

83.2 & /

83.0

82.8 T T T T T 1
10 12 14 16 18 20

Sparsity

* Note: Prediction accuracy # optimization performance
— We actually also achieve a smaller sparse minimum.
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Open Problems

« Several questions:
— What is the appropriate ¢, formulation?

— What about other greedy algorithms? (e.g., OMP, IHT)

— Can the Stable Hessian Property help with those?

— What does the SHP really mean for f(x)? What about its convexity?
— How to interpret the guarantees?

— What other conditions can we use instead?
« Related work, different context, by Blumensath, SCP

— Can we derive equivalents of coherence or NSP?
— Can we accommodate functions that are not twice differentiable?

Questions/Comments?

More info: petrosb@merl.com
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