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CS AT A GLANCE
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Compressed Sensing Measurement Model
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A

• x is K-sparse or K-compressible
• A random, satisfies a restricted isometry property (RIP)

• M=O(KlogN/K)
• A also has small coherence
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CS RECONSTRUCTION



CS Reconstruction

• Reconstruction using sparse approximation:
– Find sparsest x such that y ≈ Ax

• Convex optimization approach:
– Minimize ℓ1  norm: e.g.,

• Greedy algorithms approach:
– MP, OMP, ROMP, StOMP, CoSaMP, …

• If coherence μ or RIP δ is small: Exact reconstruction

�x = arg min
x
�x�1 s.t. y ≈ Ax

Semi-ignored question:
How do we measure “≈”?



Approximation Cost

• Convex optimization formulations

• Greedy pursuits (implicit) goal

�x = arg min
x
�x�1 +

µ

2
�y −Ax�2

2

�x = arg min
x
�x�1 s.t. �y −Ax�22 ≤ �

�x = arg min
x
�y −Ax�22 s.t. �x�0 ≤ K

All approaches attempt to minimize f(x)=‖y-Ax‖₂²
such that the argument x is sparse.

Can we do it for general f(x)?



SPARSITY-CONSTRAINED FUNCTION MINIMIZATION



x∗ = arg min
x

f (x) s.t. �x�0 ≤ K

Problem Formulation

• Objective: minimize an arbitrary cost function

• Applications:
– Sparse logistic regression
– Quantized and saturation-consistent Compressed Sensing
– De-noising and Compressed Sensing with non-gaussian noise models

• Questions:
– What algorithms can we use?
– What functions can we minimize?
– What are the conditions on f(x)?
– What guarantees can we provide?



Commonalities in Sparse Recovery Algorithms

• Most greedy and l1 algorithms have several common steps:
– Maintain a current estimate
– Compute a residual
– Compute a gradient, proxy, correlation, or some other name
– Update estimate based on proxy
– Prune (soft or hard threshold)
– Iterate

• Key step: proxy/correlation AT(y-Ax)
– This is the gradient of f(x)=‖y-Ax‖₂²
– Can we substitute it with the general gradient ∇f(x)?

YES
What guarantees can we prove?

What becomes of the RIP?



GraSP (Gradient Subspace Pursuit)

∇f(�x)

gCompute Gradient at
Current Estimate

Iterate using residual

Select location 
of largest 

2K gradient directions

supp(g|2K)

State Variables: Signal estimate, x support estimate: T
Initialize estimate and support 

x=0, T=supp(x)ˆ ˆ

ˆ

Ω = supp(g|2K) ∪ T

b = arg min
x

f(x)

s.t. xΩc = 0

Add to 
support set

Truncate result

Minimize over
support

�x = b|K
T = supp (b|K)



f(x)=‖y-Ax‖₂²  ⇒ CoSaMP (Compressive Sampling MP) [Needell and Tropp]

AT pr

Correlate residual
with dictionary 
→ signal proxy

Iterate using residual

〈ak,r〉 = pk

Select location 
of largest 

2K correlations

supp(p|2K)

Ω = supp(p|2K) ∪ T

b = A†
Ωy

T = supp(b|K)
�x = b|K
r ← y −A�x

Add to 
support set

Truncate and 
compute residual

Invert over
support

State Variables: Signal estimate, x support estimate: Tˆ
Initialize estimate, residual and support 

x=0, T=supp(x), r=yˆ ˆ



CONDITIONS AND GUARANTEES



Stable Hessian Property

• Guarantees based on the Hessian of the function Hf(x)
• Some definitions:

• Stable Hessian Property (SHP) of order K, with constant μK:

• Bounds the local curvature of f(x)

AK (u)
BK (u)

≤ µK , for all �u�0 ≤ K

for all �u�0 ≤ K

AK (u) = sup
�

v
T
Hf (u)v
�v�2

2

���� supp(v) = supp(u), and v �= 0
�

BK (u) = inf
�

v
T
Hf (u)v
�v�2

2

���� supp(v) = supp(u), and v �= 0
�



Recovery Guarantees

• Denote the global optimum using x*:

• Assume f(x) satisfies and order 4K SHP with:

• And its restriction is convex:

• Then the estimate after the pth iteration,      , satisfies:

where I is the set of the largest 3K components of ∇f(x*) in magnitude

x∗ = arg min
x

f (x) s.t. �x�0 ≤ K

for all �u�0 ≤ 4K,
A4K (u)
B4K (u)

≤ µ4K ≤
√

2

����x(p) − x�
���

2
≤ 2−p �x��2 +

4
�
2 +

√
2
�

�
�∇f (x�)|I�2

�x(p)

for all �u�0 ≤ 4K, B4K > �



Connections to CS

• CS uses f(x)=‖y-Ax‖₂²  

• SHP bounds AK(u), BK(u), reduce to RIP bounds (1±δK)

• μK reduces to (1+δK)∕(1-δK)

• GraSP reduces to CoSaMP

• Reconstruction guarantees reduce to classical CS guarantees



APPLICATIONS



• Given: Bit	
  budget	
  B bits/sample, Signal	
  norm	
  ||x||2

• Set quantization threshold	
  G
– Implicitly sets quantization interval Δ=2-B+1G
– Implicitly sets saturation rate at 2Q(G/||x||2)

• Classical heuristic: Set G large (avoid saturation)

• Note: 
– equivalent to fixing G and varying signal amplification 
– Q(.) denotes the tail of the Gaussian distribution

CS and Saturation [Laska, Boufounos, Davenport, Baraniuk]

Measurement	
  PDF

Wrong!	
  Will	
  revisit!

Random	
  
Measurements

Quan/zer	
  
R(.)A

y=Ax

Saturated	
  
measurements



�x = arg min
x

�y − �Ax�2+ Unsaturated
���
�
G−A+x

�
+

���
2
+ Positive Saturation

���
�
G + A−x

�
+

���
2

Negative Saturation

s.t. �x�0 ≤ K

Exploit Saturation Information

Satura>on	
  provides	
  informa>on:
The	
  measurement	
  magnitude	
  is	
  larger	
  than	
  G.	
  But	
  how	
  to	
  handle	
  it?

Op=on	
  1:	
  Just	
  use	
  the	
  measurement	
  as	
  if	
  unsaturated
Op=on	
  2:	
  Discard	
  saturated	
  measurements

Op=on	
  3:	
  Treat	
  measurement	
  as	
  a	
  constraint!	
  (consistent	
  reconstruc>on)

y A

Saturated	
  measurements



Experimental Results

Note: optimal performance requires 10% saturation



Reconstruction Results: Real Data [Wei, Boufounos] 10

Loss of fine features

Significant intensity loss
due to saturation

Intensity loss restored
Crisper image

Synthetic Aperture Radar (SAR) acquisition



Reconstruction Results: Real Data, log scale 11

Significant Reconstruction Noise Image model (wavelet sparsity) 
performs denoising

Synthetic Aperture Radar (SAR) acquisition



Sparse Logistic Regression

• Examples in data points di, each has a label li (±1)

• Need to find coefficients xi that predict labels from data
– Prediction though the logistic function
– Feature selection: find a sparse set x

• Resulting problem is a sparse minimization:

• We can use GraSP!

• Alternative: ℓ1  regularization (e.g., IRLS-LARS, [Lee et al, 2006]):

k ≤ k� u Ak (u) ≤ Ak� (u)
Bk (u) ≥ Bk� (u) k ≤ k�

p q αk (p,q) ≤ αk� (p,q)
βk (p,q) ≥ βk� (p,q) µk ≤ µk�

µk−

αk (p,q)
βk (p,q)

=
1
0 Ak (tq + (1− t)p) dt
1
0 Bk (tq + (1− t)p) dt

≤
1
0 µkBk (tq + (1− t)p) dt

1
0 Bk (tq + (1− t)p) dt

= µk,

γk(p,q)
βk(p,q) ≤ µk − 1

p

��x(p)−x��2 ≤ (µ4s − 1)
�

1 +
µ4s − 1

2

�
��x(p−1) − x��2

+ 2
�∇f (x�) |T �2

β3s (b,x�)
+2

�
1+

µ4s−1
2

�

×
�∇f (x�) |R\Ω�2 + �∇f (x�) |Ω\R�2

β2s

�
�x(p−1),x�

�

≤1
2

�
µ2

4s − 1
�
��x(p−1) − x��2

+
2
�
�∇f (x�) |I�2+

2 (µ4s+1)
�

�∇f (x�) |I�2

µ4s ≤
√

2

��x(p)−x��2 ≤
��x(p−1)−x��2

2
+

2
�
2+
√

2
�

�
�∇f (x�) |I�2.

x

f (x) =
N�

i=1

log
�
1 + exp

�
−lixTdi

��
,

di li

±1

15

�1

�x = arg min
x

f(x) + λ�x�1



Simulation Results Classification Accuracy

• Data: UCI Adult Data Set
– Goal: Predict household income ≶$50K from 14 variables, 123 features

• Note: Prediction accuracy ≠ optimization performance
– We actually also achieve a smaller sparse minimum. 



Open Problems

• Several questions:
– What is the appropriate ℓ1  formulation?

– What about other greedy algorithms? (e.g., OMP, IHT)
– Can the Stable Hessian Property help with those?
– What does the SHP really mean for f(x)? What about its convexity?
– How to interpret the guarantees?
– What other conditions can we use instead? 

• Related work, different context, by Blumensath, SCP
– Can we derive equivalents of coherence or NSP?
– Can we accommodate functions that are not twice differentiable?

Questions/Comments?
More info: petrosb@merl.com


