

MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts

Sparse Cost Function Optimization

Petros Boufounos petrosb@merl.com

with Sohail Bahmani and Bhiksha Raj, CMU

Carnegie Mellon University

BIRS March 10, 2011

CS AT A GLANCE

Compressed Sensing Measurement Model

- *x* is *K*-sparse or *K*-compressible
- A random, satisfies a restricted isometry property (RIP)

A has RIP of order 2K with constant δ If there exists δ s.t. for all 2K-sparse x: $(1-\delta) \|\mathbf{x}\|_2^2 \le \|\mathbf{A}\mathbf{x}\| \le (1+\delta) \|\mathbf{x}\|_2^2$

- $M = O(K \log N/K)$
- A also has small coherence $\mu \triangleq \max_{i \neq j} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|$

Compressed Sensing Measurement Model

- *x* is *K*-sparse or *K*-compressible
- A random, satisfies a restricted isometry property (RIP)

A has RIP of order 2K with constant δ If there exists δ s.t. for all 2K-sparse x: $(1-\delta) \|\mathbf{x}\|_2^2 \le \|\mathbf{A}\mathbf{x}\| \le (1+\delta) \|\mathbf{x}\|_2^2$

- $M = O(K \log N/K)$
- A also has small coherence $\mu \triangleq \max_{i \neq j} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|$

CS RECONSTRUCTION

CS Reconstruction

- Reconstruction using **sparse approximation**:
 - Find sparsest x such that $y\approx Ax$
- Convex optimization approach:
 - Minimize ℓ_1 norm: e.g.,

$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ s.t. } \mathbf{y} \approx \mathbf{A}\mathbf{x}$$

- **Greedy algorithms** approach:
 - MP, OMP, ROMP, StOMP, CoSaMP, ...
- If coherence μ or RIP δ is *small*: Exact reconstruction

Semi-ignored question: How do we measure "≈"?

Approximation Cost

Convex optimization formulations

$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_{1} + \frac{\mu}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2}$$

$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_{1} \text{ s.t. } \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \leq \epsilon$$
• Greedy pursuits (implicit) goal
$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \text{ s.t. } \|\mathbf{x}\|_{0} \leq K$$
All approaches attempt to minimize $f(\mathbf{x}) = \|\mathbf{x}\|_{1}$

All approaches attempt to minimize $f(\mathbf{x}) = \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2$ such that the argument \mathbf{x} is sparse.

Can we do it for general $f(\mathbf{x})$?

SPARSITY-CONSTRAINED FUNCTION MINIMIZATION

Problem Formulation

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} f(\mathbf{x}) \text{ s.t. } \|\mathbf{x}\|_0 \le K$$

- Objective: minimize an arbitrary cost function
- Applications:
 - Sparse logistic regression
 - Quantized and saturation-consistent Compressed Sensing
 - De-noising and Compressed Sensing with non-gaussian noise models

Questions:

- What algorithms can we use?
- What **functions** can we minimize?
- What are the **conditions** on $f(\mathbf{x})$?
- What guarantees can we provide?

Commonalities in Sparse Recovery Algorithms

- Most greedy and *l*₁ algorithms have several common steps:
 - Maintain a current estimate
 - Compute a residual
 - **Compute** a gradient, **proxy**, correlation, or some other name
 - Update estimate based on proxy
 - **Prune** (soft or hard threshold)
 - Iterate
- Key step: proxy/correlation A^T(y-Ax)
 - This is the gradient of $f(\mathbf{x}) = \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
 - Can we substitute it with the general gradient $\nabla f(\mathbf{x})$?

YES

What **guarantees** can we prove? What becomes of the **RIP**?

GraSP (Gradient Subspace Pursuit)

State Variables: Signal estimate, $\hat{\mathbf{x}}$ support estimate: *T*

Initialize estimate and support

 $\hat{\mathbf{x}}=0, T=\operatorname{supp}(\hat{\mathbf{x}})$

Changes for the Better

 $f(\mathbf{x}) = \|\mathbf{y} \cdot \mathbf{A}\mathbf{x}\|_2^2 \Rightarrow \mathbf{CoSaMP}$ (Compressive Sampling MP) [Needell and Tropp]

State Variables: Signal estimate, $\hat{\mathbf{x}}$ support estimate: *T*

Initialize estimate, residual and support

 $\hat{\mathbf{x}}=0, T=\operatorname{supp}(\hat{\mathbf{x}}), \mathbf{r}=\mathbf{y}$

Changes for the Better

CONDITIONS AND GUARANTEES

Stable Hessian Property

- Guarantees based on the Hessian of the function $H_f(x)$
- Some definitions:

for all $\|\mathbf{u}\|_0 \leq K$ $A_K(\mathbf{u}) = \sup \left\{ \frac{\mathbf{v}^{\mathrm{T}} \mathbf{H}_f(\mathbf{u}) \mathbf{v}}{\|\mathbf{v}\|_2^2} \, \middle| \, \operatorname{supp}(\mathbf{v}) = \operatorname{supp}(\mathbf{u}), \text{ and } \mathbf{v} \neq 0 \right\}$ $B_K(\mathbf{u}) = \inf \left\{ \frac{\mathbf{v}^{\mathrm{T}} \mathbf{H}_f(\mathbf{u}) \mathbf{v}}{\|\mathbf{v}\|_2^2} \, \middle| \, \operatorname{supp}(\mathbf{v}) = \operatorname{supp}(\mathbf{u}), \text{ and } \mathbf{v} \neq 0 \right\}$

• Stable Hessian Property (SHP) of order K, with constant μ_K :

$$\frac{A_K(\mathbf{u})}{B_K(\mathbf{u})} \le \mu_K, \text{ for all } \|\mathbf{u}\|_0 \le K$$

• Bounds the local curvature of $f(\mathbf{x})$

Recovery Guarantees

• Denote the **global optimum** using **x***:

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} f(\mathbf{x}) \text{ s.t. } \|\mathbf{x}\|_0 \le K$$

• Assume $f(\mathbf{x})$ satisfies and order 4K SHP with:

for all
$$\|\mathbf{u}\|_0 \le 4K$$
, $\frac{A_{4K}(\mathbf{u})}{B_{4K}(\mathbf{u})} \le \mu_{4K} \le \sqrt{2}$

• And its **restriction** is **convex**:

for all
$$\|\mathbf{u}\|_0 \leq 4K$$
, $B_{4K} > \epsilon$

• Then the estimate after the p^{th} iteration, $\widehat{\mathbf{x}}^{(p)}$, satisfies:

$$\left\|\widehat{\mathbf{x}}^{(p)} - \mathbf{x}^{\star}\right\|_{2} \le 2^{-p} \left\|\mathbf{x}^{\star}\right\|_{2} + \frac{4\left(2 + \sqrt{2}\right)}{\epsilon} \left\|\nabla f\left(\mathbf{x}^{\star}\right)\right|_{\mathcal{I}}\right\|_{2}$$

where *I* is the set of the largest 3*K* components of $\nabla f(\mathbf{x}^*)$ in magnitude

Connections to CS

- CS uses $f(\mathbf{x}) = \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$
- SHP bounds $A_K(\mathbf{u})$, $B_K(\mathbf{u})$, reduce to RIP bounds $(1 \pm \delta_K)$
- μ_K reduces to $(1+\delta_K)/(1-\delta_K)$
- GraSP reduces to CoSaMP
- Reconstruction guarantees reduce to classical CS guarantees

APPLICATIONS

CS and Saturation [Laska, Boufounos, Davenport, Baraniuk]

Exploit Saturation Information

Saturation provides information:

The measurement magnitude is larger than G. But how to handle it?

Option 1: Just use the measurement as if unsaturated Option 2: Discard saturated measurements Option 3: Treat measurement as a constraint! (consistent reconstruction)

$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{y} - \widetilde{\mathbf{A}}\mathbf{x}\|_{2} +$$
Unsaturated
$$\|(G - \mathbf{A}^{+}\mathbf{x})_{+}\|_{2} +$$
Positive Saturation
$$\|(G + \mathbf{A}^{-}\mathbf{x})_{+}\|_{2}$$
Negative Saturation
s.t.
$$\|\mathbf{x}\|_{0} \leq K$$

Changes for the Better

Experimental Results

Reconstruction Results: Real Data [Wei, Boufounos]

Synthetic Aperture Radar (SAR) acquisition

Reconstruction Results: Real Data, log scale

Synthetic Aperture Radar (SAR) acquisition

Sparse Logistic Regression

- Examples in data points d_i , each has a label l_i (±1)
- Need to find coefficients x_i that predict labels from data
 - Prediction though the logistic function
 - Feature selection: find a sparse set x
- Resulting problem is a sparse minimization: $f(\mathbf{x}) = \sum_{i=1}^{N} \log \left(1 + \exp \left(-l^i \mathbf{x}^{\mathrm{T}} \mathbf{d}^i\right)\right)$
- We can use GraSP!
- Alternative: ℓ_1 regularization (e.g., IRLS-LARS, [Lee et al, 2006]): $\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_1$

Simulation Results Classification Accuracy

- Data: UCI Adult Data Set
 - Goal: Predict household income ≤\$50K from 14 variables, 123 features

- Note: Prediction accuracy \neq optimization performance
 - We actually also achieve a smaller sparse minimum.

Open Problems

- Several questions:
 - What is the appropriate ℓ_1 formulation?
 - What about other greedy algorithms? (e.g., OMP, IHT)
 - Can the Stable Hessian Property help with those?
 - What does the SHP really mean for $f(\mathbf{x})$? What about its convexity?
 - How to interpret the guarantees?
 - What other conditions can we use instead?
 - Related work, different context, by Blumensath, SCP
 - Can we derive equivalents of coherence or NSP?
 - Can we accommodate functions that are not twice differentiable?

Questions/Comments?

More info: petrosb@merl.com

