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What is a tropical curve?

A tropical curve C is a triple (G , l , w), where (G , l) is a metric
graph, and w is a weight function

w : V (G ) → Z≥0

on the vertices of G , with the property that every weight zero
vertex has degree at least 3.
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Its genus is g(G ) +
∑

v∈V w(v).

Its combinatorial type is the pair (G , w).



The Jacobian of a tropical curve

Given a genus g tropical curve C = (G , l , w), with edges of G

oriented for reference, let H1(G , R) = formal sums of edges of G

with zero boundary.



The Jacobian of a tropical curve

Given a genus g tropical curve C = (G , l , w), with edges of G

oriented for reference, let H1(G , R) = formal sums of edges of G

with zero boundary.

Now define a positive semidefinite form Q on H1(G , R) ⊕ R

∑
w(v)

which is 0 on R

∑
w(v) and on H1(G , R) is

Q(
∑

e∈E(G)

αe · e,
∑

e∈E(G)

βe · e) =
∑

e∈E(G)

αe · βe · l(e).

Choosing a Z-basis for H1(G , Z) defines Q as a g × g positive
semidefinite matrix with rational nullspace.

0 b e2
//

c e3

==

a e1

!!

0 e1 − e2, e2 − e3

(
a + b −b

−b b + c

)
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//

c e3

==

a e1

!!

0 e1 − e2, e2 − e3

(
a + b −b

−b b + c

)

Choosing a different Z-basis for H1(G , Z) changes Q by a
GLg (Z)-action:

0 b e2
//

c e3

==

a e1

!!

0 e1−e2, e1−2e2+e3

(
a + b a + 2b

−a + 2b a + 4b + c

)



The Jacobian of a tropical curve

0 b e2
//

c e3

==

a e1

!!

0 e1 − e2, e2 − e3

(
a + b −b

−b b + c

)

Choosing a different Z-basis for H1(G , Z) changes Q by a
GLg (Z)-action:

0 b e2
//

c e3

==

a e1

!!

0 e1−e2, e1−2e2+e3

(
a + b a + 2b

−a + 2b a + 4b + c

)

(
a + b a + 2b

−a + 2b a + 4b + c

)
=

(
1 1
0 −1

)T(
a + b −b

−b b + c

)(
1 1
0 −1

)
.



The Jacobian of a tropical curve

So we obtain a well-defined element of

S̃
g
≥0

GLg (Z)
:=

psd matrices with rational nullspace

Q ∼ XTQX for all X ∈ GLg (Z)
,

and this point in S̃
g
≥0/GLg (Z) is called the Jacobian of the curve.



The tropical Torelli map

Classically, the Torelli map, from the moduli space of curves to the
moduli space of principally polarized abelian varieties, sends a
curve to its Jacobian.

We will construct a tropical analogue: a tropical Torelli map

ttr
g : Mtr

g → Atr
g

from the moduli space of tropical curves to the moduli space of
principally polarized tropical abelian varieties that takes a tropical
curve to its Jacobian.

Brannetti-Melo-Viviani arXiv:0907.3324



Towards a moduli space of tropical curves
Warm up: what are the possible combinatorial types of genus 2
tropical curves?



Towards a moduli space of tropical curves
Warm up: what are the possible combinatorial types of genus 2
tropical curves?
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This is the poset of combinatorial types of genus 2 tropical curves,
ordered by contraction. Note: contracting a loop at a vertex
increases its weight by 1.



Motivation: stratification of Mg by dual graphs
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Figure: Posets of cells of M tr
2 (left) and of M2 (right). Vertices record

irreducible components, weights record genus, edges record nodes.



Construction of M
tr
g

Our goal is to construct a moduli space Mtr
g for genus g tropical

curves, that is, a space whose points correspond to tropical curves
of genus g and whose geometry reflects the geometry of the
tropical curves in a sensible way.
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Our goal is to construct a moduli space Mtr
g for genus g tropical

curves, that is, a space whose points correspond to tropical curves
of genus g and whose geometry reflects the geometry of the
tropical curves in a sensible way.

Construction due to B-M-V.

Fix a combinatorial type (G , w) of genus g . What is a parameter
space for all tropical curves of this type?
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curves, that is, a space whose points correspond to tropical curves
of genus g and whose geometry reflects the geometry of the
tropical curves in a sensible way.

Construction due to B-M-V.

Fix a combinatorial type (G , w) of genus g . What is a parameter
space for all tropical curves of this type?
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3
≥0

(a,b,c)∼(a,c,b) =
R

3
≥0

S2



Construction of M
tr
g continued

Strategy: each combinatorial type of genus g gets a cell

R
|E(G)|
≥0

Aut(G , w)
.

Now identify two graphs in the disjoint union of all such cells if
they are the same after contracting all edges of length zero.



The resulting space, denoted Mtr
g , has points in bijection with

genus g tropical curves. It is a Hausdorff topological space
(Caporaso 2010).
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Figure: Cells of M tr
2 .



Theorem (C, also Maggiolo-Pagani 2010)

The moduli space Mtr
3 has 42 cells and f -vector (1, 2, 5, 9, 12, 8, 5).
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Theorem (C, also Maggiolo-Pagani 2010)

◮ The moduli space Mtr
4 has 379 cells and f -vector

(1, 3, 7, 21, 43, 75, 89, 81, 42, 17).

◮ The moduli space Mtr
5 has 4555 cells and f -vector

(1, 3, 11, 34, 100, 239, 492, 784, 1002, 926, 632, 260, 71).
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Note: does Mtr
g , the moduli space of tropical curves, really deserve

to be called that?

That is, we saw a poset correspondence between Mg and Mtr
g , but

what about a tropicalization map Mg → Mtr
g ?

This point is not addressed in my work, but see work on Berkovich
spaces by Baker, Payne, and Rabinoff.



What kind of space is Mtr
g ?
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It consists of rational open polyhedral cones modulo symmetries,
glued along boundaries via integral linear maps. We will make this
precise by defining a category of stacky fans.



What is a Stacky Fan?
Definition (C) Let

X1 ⊆ R
m1 , . . . ,Xk ⊆ R

mk

be full-dimensional rational open polyhedral cones and

G1 ⊆ GLm1(Z), . . . ,Gk ⊆ GLmk
(Z)

be subgroups such that the action of each Gi on R
mi fixes Xi . Let

Xi/Gi and Xi/Gi

be the topological quotient spaces.



What is a Stacky Fan?
Definition (C) Let

X1 ⊆ R
m1 , . . . ,Xk ⊆ R

mk

be full-dimensional rational open polyhedral cones and

G1 ⊆ GLm1(Z), . . . ,Gk ⊆ GLmk
(Z)

be subgroups such that the action of each Gi on R
mi fixes Xi . Let

Xi/Gi and Xi/Gi

be the topological quotient spaces.

Suppose that we have a topological space X and, for each
i = 1, . . . , k , a continuous map αi : Xi/Gi → X .

Αi

X i

Gi

X



Then X is a stacky fan, with cells Xi/Gi , if the following four
properties hold:

1. The restriction of αi to Xi

Gi
is a homeomorphism onto its

image,

Αi

X i

Gi

X

2. We have an equality of sets X =
∐

αi (Xi/Gi ),



3. For each face F of any cone Xi , there exists k such that
αi (F ) = αk(Xk/Gk), and an invertible, lattice
point-preserving linear map L taking F to Xk , such that the
following diagram commutes:

F

X i

Xk

X

Αi

Αk
L

We say that Xk/Gk is a stacky face of Xi/Gi in this situation.



3. For each face F of any cone Xi , there exists k such that
αi (F ) = αk(Xk/Gk), and an invertible, lattice
point-preserving linear map L taking F to Xk , such that the
following diagram commutes:

F

X i

Xk

X

Αi

Αk
L

We say that Xk/Gk is a stacky face of Xi/Gi in this situation.

4. For each pair i , j ,

αi (Xi/Gi ) ∩ αj(Xj/Gj) = αk1(Xk1/Gk1) ∪ · · · ∪ αkt
(Xkt

/Gkt
)

where the union ranges over the common stacky faces.



Theorem (B-M-V,C)

The moduli space Mtr
g is a stacky fan with cells corresponding to

combinatorial types of genus g.



Theorem (B-M-V,C)

The moduli space Mtr
g is a stacky fan with cells corresponding to

combinatorial types of genus g.

We have constructed the moduli space Mtr
g and shown that it is a

stacky fan. Next, we will construct the moduli space of principally
polarized tropical abelian varieties, denoted Atr

g , and then show
that the tropical Torelli map is a stacky morphism.



Construction of the moduli space A
tr
g

A principally polarized tropical abelian variety is a point in

S̃
g
≥0

GLg (Z)
:=

psd matrices with rational nullspace

Q ∼ XTQX for all X ∈ GLg (Z)
.
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Construction of the moduli space A
tr
g

A principally polarized tropical abelian variety is a point in

S̃
g
≥0

GLg (Z)
:=

psd matrices with rational nullspace

Q ∼ XTQX for all X ∈ GLg (Z)
.

What is a good moduli space of principally polarized tropical
abelian varieties?

S̃
g
≥0/GLg (Z) itself?

Not good enough: it’s not even Hausdorff, and does not admit
stacky fan structure.

Instead, we will use the beautiful combinatorics of Voronoi
reduction theory (Voronoi, 1908) to break S̃

g
≥0/GLg (Z) into a

finite number of polyhedral pieces, then glue them back together.



Voronoi reduction theory

Given Q ∈ S̃
g
≥0, the Delone subdivision Del(Q) is the

infinite-periodic regular subdivision of R
g obtained by lifting each

lattice point x ∈ Z
g to the height xTQx , then taking lower faces

of the convex hull of the lifted points.



Voronoi reduction theory

Given Q ∈ S̃
g
≥0, the Delone subdivision Del(Q) is the

infinite-periodic regular subdivision of R
g obtained by lifting each

lattice point x ∈ Z
g to the height xTQx , then taking lower faces

of the convex hull of the lifted points.

Now, given a Delone subdivision D, let

σD = {Q ∈ S̃
g
≥0 : Del(Q) = D}.

Then σD is an open rational polyhedral cone, called the secondary

cone of D.



Voronoi reduction theory
1 -1
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Figure: Infinite decomposition of S̃2
≥0 into secondary cones.



Theorem (Main theorem of Voronoi reduction theory)

The set of closed secondary cones

{σD : D is a Delone subdivision of R
g}

yields an infinite polyhedral fan whose support is S̃
g
≥0. There are

only finitely many GLg (Z)-orbits of this set.



Theorem (Main theorem of Voronoi reduction theory)

The set of closed secondary cones

{σD : D is a Delone subdivision of R
g}

yields an infinite polyhedral fan whose support is S̃
g
≥0. There are

only finitely many GLg (Z)-orbits of this set.

For example, when g = 2, there are four GLg (Z)-classes of Delone
subdivisions, with representatives shown below. They give rise to
secondary cones of dimensions 3, 2, 1, and 0, respectively.

D 1 D 2 D 3 D 4



The moduli space A
tr
g

Pick Delone subdivisions D1, . . . ,Dk that are representatives for
the GLg (Z)-equivalence classes. Let Stab(σD) denote the
subgroup of elements of GLg (Z) that fix σD as a set.



The moduli space A
tr
g

Pick Delone subdivisions D1, . . . ,Dk that are representatives for
the GLg (Z)-equivalence classes. Let Stab(σD) denote the
subgroup of elements of GLg (Z) that fix σD as a set.

Then define the moduli space of principally polarized tropical

abelian varieties, denoted Atr
g , to be the topological space

Atr
g =

(
k∐

i=1

σDi
/ Stab(σDi

)

)
/ ∼,

where ∼ denotes gluing by GLg (Z)-equivalence.



The moduli space A
tr
g

Theorem (B-M-V, C)

The moduli space Atr
g is a stacky fan. Its cells correspond to

GLg (Z)-equivalence classes of Delone subdivisions.

Theorem (C)

Atr
g is a Hausdorff topological space. It is independent of the

choice of representative Delone subdivisions in its construction.

That is, choosing different representatives produces an isomorphic

stacky fan.



Example: A
tr
2

D 1 D 2 D 3 D 4

When g = 2, we have four GLg (Z)-classes of Delone subdivisions,
with secondary cones of dimensions 3, 2, 1, and 0, respectively.

D 1

D 2

D 2

D 2

D 3

D 3

D 3

D 4

Atr
2 is homeomorphic to a closed, 3-dimensional simplicial cone.



The tropical Torelli map

Definition
We define the tropical Torelli map

ttr
g : Mtr

g → Atr
g

to send a tropical curve C ∈ Mtr
g to its Jacobian Jac(C ) ∈ Atr

g .



The tropical Torelli map

Definition
We define the tropical Torelli map

ttr
g : Mtr

g → Atr
g

to send a tropical curve C ∈ Mtr
g to its Jacobian Jac(C ) ∈ Atr

g .

Theorem (B-M-V)

The map ttr
g is a morphism of stacky fans. That is, it takes each

cell of Mtr
g to a cell of Atr

g , and this map is induced by an

integral-linear map on the relevant cones.
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Figure: Cells of M tr

3 and of Atr
3 , color-coded according to ttr

g .



The tropical Schottky locus

The tropical Torelli map ttr
g is surjective when g = 2, 3, but not

when g ≥ 4.

Thus, it becomes interesting to study the tropical Schottky

locus, i.e. the image of ttr
g inside Atr

g .



The tropical Schottky locus

The tropical Torelli map ttr
g is surjective when g = 2, 3, but not

when g ≥ 4.

Thus, it becomes interesting to study the tropical Schottky

locus, i.e. the image of ttr
g inside Atr

g .

Theorem (C)

We obtained the following computational results:

1. The tropical Schottky locus A
cogr
3 has nine cells and f -vector

(1, 1, 1, 2, 2, 1, 1).

2. The tropical Schottky locus A
cogr
4 has 25 cells and f -vector

(1, 1, 1, 2, 3, 4, 5, 4, 2, 2).

3. The tropical Schottky locus A
cogr
5 has 92 cells and f -vector

(1, 1, 1, 2, 3, 5, 9, 12, 15, 17, 15, 7, 4).



The tropical Schottky locus: computations

g Mtr
g A

cogr
g Atr

g

2 2 1 1
3 5 1 1
4 17 2 3
5 71 4 222

g Mtr
g A

cogr
g Atr

g

2 7 4 4
3 42 9 9
4 379 25 61
5 4555 92 179433

Number of maximal cells and total number of cells in the stacky
fans Mtr

g , the Schottky locus A
cogr
g , and Atr

g .

Sources: Balaban 1980s, Engel 2002, Engel-Grishukhin 2002,
Vallentin 2003, Maggiolo-Pagani 2010, C 2010



A closer look at the tropical Schottky locus
There is a close relationship between the tropical Schottky locus
and cographic matroids.

Let M be a simple regular matroid of rank at most g , and let A be
a g × n totally unimodular matrix that represents M. Let

v1, . . . , vn be the columns of A. Then let σA ⊆ R
(g+1

2 ) be the
rational open polyhedral cone

R>0〈v1v
T
1 , . . . , vnv

T
n 〉.



A closer look at the tropical Schottky locus
There is a close relationship between the tropical Schottky locus
and cographic matroids.

Let M be a simple regular matroid of rank at most g , and let A be
a g × n totally unimodular matrix that represents M. Let

v1, . . . , vn be the columns of A. Then let σA ⊆ R
(g+1

2 ) be the
rational open polyhedral cone

R>0〈v1v
T
1 , . . . , vnv

T
n 〉.

Example. Let M be the uniform matroid U2,3. Then

A =

(
1 0 1
0 1 −1

)

represents M, and σA is the open cone generated by matrices
(

1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 −1
−1 1

)
.



A closer look at the tropical Schottky locus

Proposition (B-M-V)

The cone σA is a secondary cone in S̃
g
≥0. Choosing a

different matrix A′ to represent M produces a cone

σA′ that is GLg (Z)-equivalent to σA. Thus, we may

associate to M a unique cell of Atr
g , denoted C (M).

Proposition (B-M-V)

The tropical Schottky locus is the union of cells

{C (M) : M a simple cographic matroid of rank ≤ g}.

.



A closer look at the tropical Schottky locus
What permutations on the rays of σA are realized by Stab(σA)?



A closer look at the tropical Schottky locus
What permutations on the rays of σA are realized by Stab(σA)?

Theorem (Gerritzen 1980s, C)

The subgroup of permutations on the rays of σA that

are realized by Stab(σA) is isomorphic to Aut(M).



A closer look at the tropical Schottky locus
What permutations on the rays of σA are realized by Stab(σA)?

Theorem (Gerritzen 1980s, C)

The subgroup of permutations on the rays of σA that

are realized by Stab(σA) is isomorphic to Aut(M).

Example. Each cell of Atr
3 is cographic, and Atr

3 is a
6-dimensional closed simplicial cone modulo the
automorphisms of the matroid M(K4), plus some
additional identifications along the boundary.

.



A tropical cover for A
tr
3

One problem with the spaces Mtr
g and Atr

g is that although they are
tropical moduli spaces, they do not “look” very tropical: they do
not satisfy a tropical balancing condition. In other words: stacky
fans, so far, are not tropical varieties.

But what if we allow ourselves to consider finite-index covers of
our spaces – can we then produce a more tropical object?

We can do this for Atr
3 , using the Fano matroid F7.



A tropical cover for A
tr
3

Theorem (C)

Let FP
6 denote the complete polyhedral fan in R

6 usually

associated to the toric variety P
6, e.g. with rays

e1, . . . , e6, e7 := −e1 − · · · − e6.

Then there is a surjective morphism of stacky fans

FP
6 → Atr

3

mapping each of the seven maximal cells of FP
6 surjectively onto

the maximal cell of Atr
3 .



A tropical cover for A
tr
3

Proof Sketch.
We would like to send each maximal cone of FP

6 to
the unique maximal cell of Atr

3 , with maps that agree
on the lower-dimensional cones of FP

6. The only
possible obstacle is that not all 3-dimensional and
4-dimensional cells of Atr

3 look alike.

However, the Fano matroid precisely gives a way to
coherently identify each 6-element set of {1, . . . , 7}
with the matroid M(K4).
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