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Background and motivation

Definition

A Poisson algebra (A, {·, ·}) is an algebra A together with an
anti-symmetric bilinear map {·, ·} : A×A → A such that

1 {a, {b, c}}+ {b, {c, a}}+ {c , {a, b}} = 0,

2 {ab, c} = a{b, c}+ {a, c}b.

On a symplectic manifold Σ, for every function f ∈ C∞(Σ) the
symplectic form ω induces a “Hamiltonian vector field Xf

associated to f ” through

df (Y ) = ω(Xf ,Y )

for all vector fields Y , and a Poisson bracket can be defined as

{f , g} = ω(Xf ,Xg ).
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The work we’ve done over the past year originated in the following
concrete question

Question

Which geometric quantities can be written as algebraic expressions
in the Poisson algebra of functions on an embedded surface?

Answer: Almost everything; Curvature, Gauss’ equations,
Codazzi-Mainardi equations, complex structure, etc. Moreover,
everything is expressed in terms of the embedding coordinates.
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For instance, the Gaussian curvature of a surface embedded in Rm

can be computed as

K =
1

γ4

m∑
j ,k,l=1

(
1

2
{{x j , xk}, xk}{{x j , x l}, x l}

− 1

4
{{x j , xk}, x l}{{x j , xk}, x l}

)
,

where

γ2 =
1

2

m∑
i ,k=1

{x i , xk}2.

Here, x i are the embedding coordinates of the surface in Rm.
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I believe the above question (and its generalization to arbitrary
manifolds) is interesting in itself, but what lead us to it?

A common setup when trying to discretize/regularize/ quantize a
symplectic geometry / mechanical system is to map functions (on
the manifold) to operators (acting on a Hilbert space) such that
the image of the Poisson bracket of two functions (approximately)
equals the commutator of the corresponding operators.

Hence, everything expressed in terms of Poisson brackets might
provide a meaningful quantity on the operator side. In particular,
expressions for geometric quantities are important.
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In particular, we were interested in matrix regularizations of
surfaces, arising in the process of trying to define a quantum
theory of membranes. In this context, operators corresponding to
the embedding coordinates are given as solutions to (matrix)
differential equations, which contain solutions of arbitrary genus.

Our framework gives a way to directly compute the regularized
genus of a particular solution.
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Higher dimensional manifolds

First idea

Try to express the geometry of a n-dimensional submanifold in
terms of a n-ary algebraic structure, a “Nambu bracket”.

Result of first idea

On a n-dimensional submanifold, the differential geometry can be
expressed in terms of a n-ary Nambu bracket.

(I won’t say more about this in the following.)
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Higher dimensional manifolds

Second idea

Find a particular class of manifolds for which one can express the
geometry in terms of Poisson brackets.

Result of second idea

The results for surfaces can be extended to almost Kähler
manifolds.
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Why can we write objects in terms of the Poisson bracket?

A Poisson bivector θ is such that {f , h} ≡ θab(∂af )(∂ah) defines a
Poisson bracket.

Definition

Let (Σ, g) be a Riemannian manifold. A Kähler–Poisson structure
on (Σ, g) is a Poisson bivector θ such that

γ2gab = θapθbqgpq.

for some γ ∈ C∞(Σ).

Proposition

Let (Σ, g) be a Riemannian manifold. A Kähler–Poisson structure
exists on (Σ, g) if and only if it is an almost Kähler manifold.
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Kähler–Poisson structures on submanifolds

Assume Σ is a submanifold of the Riemannian manifold M,
embedded via coordinates x1, . . . , xm, and assume that there exists
a Kähler–Poisson structure on Σ. Define

Dij =
1

γ2
{x i , xk}{x j , x l}ηkl ,

where η denotes the metric on M.

Proposition

The map D : TM → TM is the projection onto T Σ.
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Proof

Let X be a vector in T Σ and write X = X i∂i = X a∂a. One then
computes

DijXj =
1

γ2
θab(∂ax i )(∂bxk)Xjθ

pq(∂px j)(∂qx l)ηkl

=
1

γ2
θabθpqgbq(∂ax i )(∂px j)Xj

= gap(∂ax i )(∂px j)X c(∂cxk)ηjk

= gapgpcX c(∂ax i ) = X a(∂ax i ) = X i .

Since (∂ax i )Ni = 0 for any vector normal to the submanifold, it
follows that DijNj = 0.
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Covariant derivatives

Let ∇̄ denote the covariant derivative on M. In local coordinates
one writes

∇̄XY i = X k∂kY i + Γ̄i
jkX jY k .

Assuming X ,Y ∈ T Σ one can write X i = DijXj which gives

∇̄XY i = DklXl∂kY i + Γ̄i
jkX jY k

=
1

γ2
{Y i , x j}{x l , xm}ηjmXl + Γ̄i

jkX jY k ,

where all derivatives reside in Poisson brackets. Hence, the
covariant derivative on Σ can be expressed in terms of Poisson
brackets as

∇XY = D
(
∇̄XY

)
for all X ,Y ∈ T Σ.
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Curvature

One can proceed to explore Gauss’ and Weingarten’s equations.
For instance, denoting

∇̂i = Dk
i ∇̄k

Πij = ηij −Dij

one can compute the curvature of Σ as

X iY jZ kV l
[
R̄ijkl +

(
∇̂kΠim

)(
∇̂lΠ

m
j

)
−
(
∇̂lΠim

)(
∇̂kΠm

j

)]
for X ,Y ,Z ,V ∈ T Σ, where R̄ijkl is the curvature tensor of M.
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Some more formulas

For simplicity, let us consider the case of M = Rm.

(
∇u
)i

= ∇̂i (u) =
1

γ2
{u, xk}{x i , xk}

∆(u) = ∇̂i∇̂i (u) =
1

γ2
{ 1

γ2
{u, xk}{x i , xk}, x j}{xi , xj}

div(Y ) = ∇̂iY
i =

1

γ2
{Y i , xk}{xi , xk}
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Complex structure

The basic quantity P ij = {x i , x j} is related to the almost complex
structure, namely

1

γ
P i

jX
j = J (X )i

for all X ∈ T Σ. What if the complex structure is integrable?
In particular, the complex structure is parallel with respect to the
Riemannian connection. This can be formulated as

XjYk

(
∇̃i D̃jk

)
= 0,

where

∇̃i =
1

γ
{x i , xk}∇̄k ≡ D̃ik∇̄k .
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The operators D̃ and ∇̃ should be compared with D and ∇̂

D̃ik =
1

γ
{x i , xk} Dik =

1

γ2
{x i , x j}{xk , x l}ηjl

∇̃i = D̃ik∇̄k ∇̂i = Dik∇̄k

These new operators contain “half” the number of Poisson
brackets. The formula XjYk

(
∇̃i D̃jk

)
= 0 can be used to reduce

many formulas; e.g. in Rm

∆(u) =
1

γ2
{ 1

γ2
{u, xk}{x i , xk}, x j}{xi , xj} = ∇̂i∇̂i (u)

= D̃ik∇̃k

(
D̃il∇̃l(u)

)
= Dkl∇̃k∇̃l(u) + D̃ik

(
∇̃kD̃il

)
∇̃l(u)

= ∇̃l∇̃l(u) =
1

γ
{1

γ
{u, x i}, xi}
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Matrix regularizations

Idea of matrix regularizations

Map functions in C∞(Σ) to hermitian N × N matrices, for an
increasing sequence of N, such that the image of the Poisson
bracket of two functions is approximately the matrix commutator
of the corresponding images. The error should tend to zero as the
matrix dimension goes to infinity.

Physical motivation

“Membrane theory” can be expressed in terms of Poisson brackets
of functions. A map to finite dimensional matrices is used to
regularize the theory before quantizing it, since a theory with
finitely many degrees of freedom is straightforward to quantize. To
recover the full quantum theory one needs to take the N →∞
limit after quantization.
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Setup

Let N1,N2, . . . be a strictly increasing sequence of positive
integers, let {Tα} for α = 1, 2, . . . be linear maps from C∞(Σ) to
hermitian Nα × Nα matrices and let ~(N) be a real-valued strictly
positive decreasing function such that limN→∞N~(N) <∞; we
set ~α = ~(Nα) Furthermore, let ω be a symplectic form on a
surface Σ and let {·, ·} denote the Poisson bracket induced by ω.
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Let {Tα} be a sequence of maps as in the previous slide. If {Tα}
has the following properties for all f , h ∈ C∞(Σ)

lim
α→∞

||Tα(f )|| <∞, (1)

lim
α→∞

||Tα(fh)− Tα(f )Tα(h)|| = 0, (2)

lim
α→∞

∣∣∣∣∣∣∣∣ 1

i~α
[Tα(f ),Tα(h)]− Tα({f , h})

∣∣∣∣∣∣∣∣ = 0, (3)

lim
α→∞

2π~α Tr Tα(f ) =

∫
Σ

f ω, (4)

where || · || denotes the operator norm and ~α = ~(Nα), then we
call the pair (Tα, ~) a matrix regularization of (Σ, ω).

Joakim Arnlind (21/43)



Introduction
Kähler–Poisson structures

Matrix regularizations
Kähler–Poisson algebras

Existence of matrix regularizations

Although we are concerned with surfaces, the extension to more
general manifolds is straightforward. In particular, the following
existence theorem can be proven (which fits nicely with the fact
that almost Kähler manifolds can be but into Poisson brackets)

Theorem (Bordemann, Meinrenken, Schlichenmaier)

Every (quantizable) compact Kähler manifold has a matrix
regularization.
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Properties of matrix regularizations

Definition

A sequence of matrices f̂α converges to f ∈ C∞(Σ) if

lim
α→∞

∣∣∣∣∣∣f̂α − Tα(f )
∣∣∣∣∣∣ = 0.

Question

Does 1Nα converge to 1? No.

Question

Does 1
(i~α)2

[
[f α1 , f

α
2 ], f α3

]
converge to {{f1, f2}, f3} if f αi converges

to fi? No.
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Discretized geometrical concepts

Since we have formulated differential geometry in terms of Poisson
brackets, it is suggestive to introduce discretized geometrical
concepts by simply replacing Poisson brackets by commutators. At
least you now that they will converge in the norm sense.
Furthermore, geometrical theorems can be converted into
statements about matrices.

Let us consider a particular example. On a compact closed
manifold, a bound on the Ricci curvature induces a bound on the
eigenvalues of the Laplace operator.
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Differential geometric proof

Let us recall the proof. One rewrites∫
Σ

(
∆u
)2

= −λ
∫

Σ
u∆u = λ

∫
Σ
|∇u|2

On the other hand∫
Σ

(
∆u
)2

=

∫
Σ
∇i∇i (u)∇k∇k(u) = −

∫
Σ
∇i (u)∇i∇k∇k(u)

= −
∫

Σ

(
∇i (u)∇k∇i∇k(u)− Rik∇i (u)∇k(u)

)
≥ 1

n

∫
Σ

(
∆u
)2

+ κ

∫
Σ
|∇u|2 =

(λ
n

+ κ
)∫

Σ
|∇u|2

Comparing the two calculations gives λ ≥ nκ/(n − 1).
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What do we actually use?

Relation between covariant derivatives and curvature

Partial integration

Cauchy-Schwartz inequality.

Can we do this with matrices? Of course, since there exists a map
from the manifold to matrices, and the above concepts can be
expressed in terms of matrix algebra, the result must hold. But,
can one do it in terms of pure matrix manipulations?

Laplace operator ∆(A) = − 1
~2
α

[
[A,X i ],Xi

]
.

Partial integration:
Tr[X ,Y ]Z = Tr[X ,YZ ]− Tr Y [X ,Z ] = −Tr Y [X ,Z ].

A lot of (but not all, so far) manipulations can be done on the
matrix side.
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Proposition

Let (Tα, ~α) be a C 2-convergent matrix regularization of (Σ, ω)
and let {ûα} be a C 2-convergent eigenmatrix sequence of ∆̂α with
eigenvalues {−λα}. If K̂α ≥ κ1Nα for some κ ∈ R and all α > α0,
then lim

α→∞
λα ≥ 2κ.

The result depends on that the matrix algebras has an underlying
manifold structure. Can one prove this for sequences of matrix
algebras (satisfying some matrix conditions) without reference to
any manifold? We believe it might be possible.

However, let us start by examining the case of a commutative
algebra with a Poisson structure, instead of noncommutative
Poisson algebras (as in the case of matrices).
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Algebraic abstraction

Having expressed differential geometry in terms of Poisson
algebras, one may wonder if standard geometrical results (now
written as Poisson algebra statements) hold for general Poisson
algebras?

As expected, the class of Poisson algebras is too large, and one has
to find a suitable subclass that mimics a function algebra on a
manifold.

Thus, we need to encode the condition γ2gab = θapθbqgpq in the
ambient space function algebra.
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Kähler–Poisson algebras (with M = Rm)

As we have seen, a simple consequence of the Kähler–Poisson
structure condition is that Dij is a projection. By denoting
P ij = {x i , x j} we formulate it in the following way:

Definition (Kähler–Poisson algebra)

Let (A, {·, ·} be the field of fractions of the polynomial algebra
C[x1, . . . , xm] together with a Poisson structure {·, ·}. The pair
(A, {·, ·}) is called an almost Kähler–Poisson algebra if there exists
γ2 ∈ A such that

P i
jP j

kPk
l = −γ2P i

l (∗)

where repeated indices are summed over from 1 to m. (Note that
there is no difference between upper and lower indices.)
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Tangent space and normal space

Let us consider the space of derivations Der(A), spanned by ∂i ,
and let P act on X = X i∂i as

P(X ) = P i
jX

j∂i .

Condition (∗) implies that Dij = γ−2P i
kP jk is a projector, i.e.

D2 = D, which allows for a very natural definition of the tangent
space of the “submanifold” as a projective module.

X (A) = {D(X ) : X ∈ Der(A)}

The dimension of X (A) is called the geometric dimension of A.
By writing Π = 1−D we also obtain the normal space as

N (A) = {Π(X ) : X ∈ Der(A)}.

We also set (X ,Y ) = X iYi .
Joakim Arnlind (30/43)
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Covariant derivative

We learned from differential geometry that the covariant derivative
on the submanifold can be written as (in the case of M = Rm)

∇XY i = D
(
∇̂XY

)i
= DijX kDk(Yj),

where Dk(u) = Dl
k∂lu = γ−2{u, x l}Pkl . Let us take this as a

definition for derivations X ,Y ∈ X (A).
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Affine connection

Proposition

Let A be an almost Kähler–Poisson algebra. For all
X ,Y ,Z ∈ X (A) and u ∈ A, the covariant derivative has the
following properties

1 ∇X (Y + Z ) = ∇XY +∇XZ ,

2 ∇(X+Y )Z = ∇XZ +∇Y Z ,

3 ∇(uX )Y = u∇XY ,

4 ∇X (uY ) = ∇X (u)Y + u∇XY ,

where ∇X (u) = X kDk(u).
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Torsion-free metric connection

Proposition

The covariant derivative in an almost Kähler–Poisson algebra has
no torsion, i.e. ∇XY −∇Y X − [X ,Y ] = 0 for all X ,Y ∈ X (A).

Proposition

In an almost Kähler–Poisson algebra it holds that(
∇XD

)
(Y ,Z ) = 0 for all X ,Y ,Z ∈ X (A).

This can be though of as the equivalent of a “metric connection”,
since D(X ,Y ) ≡ DijXiYj = X iYi , for all X ,Y ∈ X (A).
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Bianchi identities

By introducing

R(X ,Y ,Z ) ≡ R(X ,Y )Z = [∇X ,∇Y ]Z −∇[X ,Y ]Z

one can prove the Bianchi identities.

Proposition

Let A be an almost Kähler–Poisson algebra and let R be the
curvature tensor of A. For all X ,Y ,Z ,V ∈ X (A) it holds that

R(X ,Y ,Z ) + R(Z ,X ,Y ) + R(Y ,Z ,X ) = 0(
∇XR

)
(Y ,Z ,V ) +

(
∇Y R

)
(Z ,X ,V ) +

(
∇ZR

)
(X ,Y ,V ) = 0.
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Sectional curvature

Introduce the sectional curvature with respect to X ,Y ∈ X (A)

K (X ,Y ) =
R(X ,Y ,X ,Y )

D(X ,X )D(Y ,Y )−D(X ,Y )2
.

Proposition

Let A be an almost Kähler–Poisson algebra with curvature tensor
R and geometric dimension n ≥ 3. If K (X ,Y ) = k ∈ A for all
X ,Y ∈ X (A) then {k , u} = 0 for all u ∈ A.
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Eigenvalues of the Laplacian

Since we have Poisson algebraic expressions for the Laplace
operator and the curvature, one can ask the question: Does a
bound on the (algebraic) Ricci curvature induce a bound on the
eigenvalues of the (algebraic) Laplacian?

To prove this we need to introduce some more concepts in the
algebra.
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∗-algebras and states

We make the Kähler–Poisson algebra into a ∗-algebra by setting
(x i )∗ = x i . A state on a ∗-algebra is a C-linear functional such that∫

A
a∗ =

∫
A

a and

∫
A

a∗a ≥ 0

for all a ∈ A. A state is called tracial if in addition∫
A
∇iX

i = 0

for all X ∈ X (A). An element a ∈ A is called positive if it can be
written as a =

∑
a∗i ai for some ai ∈ A.
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Ready to go!

Now we have all the ingredients to prove the desired theorem:

Covariant derivatives, and their relation to curvature.

Partial integration (tracial state).

Cauchy-Schwartz inequality since (X ∗,X ) ≥ 0.

Joakim Arnlind (38/43)



Introduction
Kähler–Poisson structures

Matrix regularizations
Kähler–Poisson algebras

Definition
Curvature
Eigenvalues of the Laplacian
Summary and outlook

Theorem

Let A be an almost Kähler–Poisson algebra, of geometric
dimension n, with a tracial state, and let −λ be an eigenvalue of
the Laplace operator corresponding to an eigenvector u such that
〈u, u〉 > 0. If there exists κ ∈ R such that R(X ∗,X ) ≥ κ(X ∗,X )
for all X ∈ X (A) then λ ≥ nκ/(n − 1).

Note that the proof is now purely algebraic!

Our belief is that one can continue and prove many classical
theorems in the context of almost Kähler–Poisson algebras.
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Example

Let A = C[x1, x2, x3] be the polynomial algebra in three variables
together with the Poisson structure

{x i , x j} = εijk∂kC

where C is an arbitrary (hermitian) element of A, and εijk is the
totally anti-symmetric Levi-Civita symbol. It is easy to check that
A is an almost Kähler–Poisson algebra with

γ2 = (∂1C )2 + (∂2C )2 + (∂3C )2,

and that {γ2, x i} = 0 for i = 1, 2, 3.
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The projection operator Dik is computed to be

Dik = δik −
1

γ2

(
∂iC

)(
∂kC

)
,

which gives Πik = (∂iC )(∂kC )/γ2. Hence, the geometric
dimension of A is 2, and a basis for N (A) (which is then
one-dimensional) is given by

∑3
i=1(∂iC )∂i . By using Gauss

formula, one computes the curvature to be

R(X ,Y ,Z ,V ) =
1

γ2

((
∂2
ikC
)(
∂2
jlC
)
−
(
∂2
ilC
)(
∂2
jkC
))

X iY jZ kV l .
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Summary

We have shown that the differential geometry of an almost
Kähler submanifold can be expressed as Poisson brackets of
the embedding coordinates.

Consequently, we defined almost Kähler–Poisson algebras, as
algebraic analogues of function algebras.

Almost Kähler–Poisson algebras have natural concepts of
tangent and normal space, as well as a nice theory of
curvature.

The connection has all the properties one wants, like being
torsion free and metric as well as satisfying the Bianchi
identities.

We have illustrated the usefulness of these algebras by proving
algebraic counterparts of several classical theorems in
differential geometry.
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Outlook

How far can one push the analogy with differential geometry?
Can we prove more theorems? A theory of Chern classes?

One needs to fully understand the isomorphisms between
almost Kähler–Poisson algebras (which is the equivalent of
coordinate transformations).

What is the natural algebraic generalization of submanifolds
of curved spaces?

Can one choose more general types of algebras (and fields) in
the definition of almost Kähler–Poisson algebras?

Non-commutative Kähler–Poisson algebras? Might provide an
alternative path to non-commutative geometry.
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