
Modeling p-adic
Whittaker Functions
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Whittaker functions

• F – a locally compact field
• G – a split reductive group over F
• B – positive Borel subgroup
• T – maximal torus
• U – unipotent radical of B=TU

• ψ – nondegenerate character of U

Example: G=GLn
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ψ(u)= ψ0(u12 +u23 +
 )
ψ0:F� C a nontriv char.

Theorem. (Gelfand-Graev, Shalika, Piatetski-Shapiro) The representa-

tion IndU
G(ψ) is multiplicity-free.

A Whittaker model of an irreducible representation (π, V ) is a space of func-
tions Wπ on G that satisfy

W (ug) = ψ(u)W (g), u∈U ,
that is closed under right translation:

W ∈Wπ ⇒ ρ(g)W ∈Wπ, ρ(g)W (x)=W (xg)

and such that Wπ B V as G-modules. The content of the theorem is that the
Whittaker model (if it exists) is unique.



Principal Series representations

Let χ be a character of TF . Extend χ to BF (Borel subgroup) and induce:

V (χ) = {f :GF� C|f(bg) = (δ1/2χ)(b)f(g)

(δ=modular character of BF)

GF acts by right translation: π(g)f(x) = f(xg)

• V (χ) is usually irreducible.

• If w ∈W (Weyl group) V (χ) and V (wχ) are isomorphic (if irreducible).

Suppose F is nonarchimedean, o = integers in F . Let K =G(o), max’l compact.

• Given any representation (π, V ), let V K = space of K-fixed vectors.

Proposition 1. If (π, V ) is irreducible dim(V K) 6 1.

The irreducible representation is spherical if dim(V K) = 1.
If χ is a character of TF , χ is unramified if χ(To) = 1.

Proposition. If χ is unramified V (χ) is spherical.

(If V (χ) is reducible, it has a unique spherical quotient.)



The L-group

Given a group G there is a group Ĝ whose root data are dual to G.

• G – a split reductive group
• T – maximal split torus in G
• Φ – root system of G
• P – weight lattice in G

• T̂ – maximal split torus in Ĝ

• Ĝ – the L-group

• Ĝ – root system of Ĝ

• P∨ – the weight lattice in Ĝ

Example:
G=GLn P =Zn

Ĝ =GLn P∨=Zn

Example:
G= Sp2r P =Zr

Ĝ = SO2r+1 P∨ =Zr

Assume that the ground field F is nonarchimedean local.

• T̂ (C)B group of characters of TF/To z ∈ T̂ (C) � χz ∈X(TF/To)
• TF/ToB coweight lattice P∨ λ∈P∨ � tλ∨∈TF

(if G is of adjoint type, otherwise ⊆P∨.)

• Dominant λ∈P∨ parametrize λ∈P∨ � ξλ, irreducible

irreducible characters of Ĝ(C) (dominant) char of Ĝ(C)

If z ∈ T̂ (C), we may consider the induced representation V (χz).



Duality

Recap: (Semisimple) (spherical)

Conjugacy classes of Ĝ(C) correspond to irreps of G(F)
(Semisimple) (finite-dimensional)

Conjugacy classes of G(F ) correspond to irreps of Ĝ(C)
(Not bijectively: tλ∨ is only determined up to multiplication by a unit.)

• z ∈ T̂ (C) � χz ∈X(TF/To)
L-group torus element

• z ∈ T̂ (C) � V (χz) = Ind(δ1/2χz)
(If irreducible – usually)

• z ′= wz (w ∈W ) � V (χz)B V (χz
′)

• λ∈P∨ � tλ∨∈TF/To

(Coweight)

• λ∈P∨ � ξλ irr char of Ĝ(C)

(Dominant weight)

L-group elements index
unramified chars of TF

and by induction, irreps
of GF . Conjugate z

index isomorphic V (χ).
Elements of TF/To are
indexed by coweights;
dominant coweights

index irreps of Ĝ(C).
Each conjugacy class
contains a unique
coset tλ∨ mod To with
λ∨ dominant.



Casselman-Shalika Formula

Let z ∈ T̂ (C). Let W
z

◦ be the spherical vector in the Whittaker model of V (χz).
Langlands conjectured that the values of W

z

◦ are the values of irreducible charac-

ters of Ĝ. This was proved by Shintani, S. Kato, Casselman and Shalika and is
referred to as the Casselman-Shalika formula.

Theorem. We have

W
z

◦(tλ∨) =

{

const× δ1/2(tλ∨)χλ(z) if λ∨ is dominant,

0 otherwise

In a natural normalization the constant is
∏

α∈Φ+ (1 − q−1zα). More precisely,
we may define W

z

◦ as an integral, thus:

W
z

◦(g)=

∫

UF

f◦(w0ug)ψ(u)−1du, w0 = long W element,

where f◦(bk)= δ1/2χ(b), b∈BF , k ∈K. Then const=
∏

α∈Φ+ (1− q−1zα).



Why Seek Other Models?

The Casselman-Shalika formula is the complete story for the spherical Whittaker
function. Why look any further?

• The constant
∏

α∈Φ+ (1 − q−1zα) is a deformation of Weyl’s denomi-

nator. So we seek a deformation of the Weyl character formula.

• The study of such deformations leads us to crystal bases and statistical
(ice-type) models.

• Furthermore such models work for metaplectic Whittaker functions
where the Casselman-Shalika formula does not apply.

Suppose that F ⊃ µn (the n-th roots of unity). Weil, Kubota and Matsumoto
defined a metaplectic cover which is a central extension

1� µn� G̃(F )� G(F )� 1.

The cover splits over U(F ) so one may still consider Whittaker models.

• Uniqueness of Whittaker models fails. Still spherical Whittaker func-
tions have expressions in terms of crystal or ice models.



Deformations of the Weyl Character formula

A deformations of the Weyl character formula was found by Tokuyama (1988).
Others considered deformations of the Weyl denominator.

• Kuperberg, Okada, Simpson, Hamel and King.

• Beineke, Brubaker, Bump, Chinta, Friedberg, Frechette, Gunnells, Ivanov,
Tabony.

There are different ways of writing Tokuyama’s formula.

• Sum over strict Gelfand-Tsetlin patterns (original paper).

• Sum over crystal Bλ+ρ.

(

ρ=
1

2

∑

α∈Φ+

α

)

• Six-vertex model.

The last two approaches are subtly different suggesting different tools.



Weyl Characters

Let G be a complex Lie group. Note: Eventually G will be Ĝ(C) so Φ will
become Φ∨ (coroots) and P will become P ∨ coweights.

• Let λ∈P be dominant. Let ξλ be the irr character of highest weight λ.

• Decompose ξλ into a sum of weights with multiplicities.

λ

Example: G=GL3(C), P =Z3.
λ= (3, 1, 0)

. Elements of P

shaded
area

Positive Weyl Chamber
(dominant weights)

• Weights with multiplicity 1

◦ Weights with multiplicity 2

Observe that the “weight diagram” is
invariant under W (which is the group
generated by the reflections in the two
hyperplanes bounding the positive
Weyl chamber).



Root operators

Let G be a complex Lie group. Let P be the weights (char’s of max’l torus T ).

Note: Eventually G will be Ĝ(C) so Φ will become Φ∨ (coroots) and P

will become P ∨ coweights.

• Φ – The root system

• Φ+ – The positive roots
• Σ = {α1,
 , αr} – The simple roots
• V – A G-module
• µ∈P – a weight of G.
• V (µ) – The weight space

A positive root is called simple
if it cannot be decomposed as a
sum of other positive roots.

We have V =
⊕

µ∈P

V (µ)

If X ∈Lie(G) then X acts on V . Let α∈Φ and Xα ∈Lie(G) be in the one-dimen-
sional root eigenspace. Then

Xα:V (µ)� V (µ+α).

We choose Ei =Xαi
and Fi =X−αi

to be the Chevalley generators. Then

Ei:V (µ)� V (µ+αi), Fi:V (µ)� V (µ−αi).



Crystals

A (Kashiwara) crystal is a combinatorial substitute for V (µ). The crystal Bλ

of highest weight λ is a set with cardinality dim(V (µ)).

• It is equipped with a weight map wt:Bλ� P .

• The number of Bλ with weight µ is m(µ) = dim V (µ)

• Root operators Ei, Fi:Bλ� Bλ∪{0} are defined.

• If Ei(v) =w� 0 then Fi(w) = v and wt(v) =wt(w) +αi.

Following Kashiwara and Nakashima, if Φ = Ar the elements of Bλ are semis-
tandard Young tableaux of shape λ in the alphabet {1, 2, 3, 
 , r}. These are
fillings of the Young diagram with shape λ by elements of the alphabet with
weakly increasing rows and strictly increasing columns, like this:

1 1 2 3 4

2 3

3



Example: GL3

Here is the crystal with highest weight λ = (3, 1, 0). Compare it with the weight
diagram (above) for V (λ).

1

2

1

22

222

22

1

1

1

1

1

11

1 1 1

2

1 1 2

2

1 2 2

2

1 1 1

3

1 1 1

3

1 1 2

3

1 1 3

2

1 2 2

3

1 2 3

2

1 1 3

3

1 2 3

3

1 3 3

2

1 3 3

3

2 3 3

3

2 2 2

3

2 2 3

3

Kashiwara: elements of Bλ

are labeled by tableaux
of shape λ in {1, 2, 3}.

If Fi(v)=w and Ei(w)= v

we draw an arrow v.i w.

We have drawn the crystal
so that the elements of
equal weight overlap.

λ

The crystal

is mapped to

the weight

diagram (left)

by wt:Bλ� P .



Tokuyama functions
By a Tokuyama function on the crystal Bλ+ρ we mean a function

G:Bλ+ρ ×C� C

such that
∑

v∈Bλ+ρ

G(v, t)zwt(v) =

[

∏

α∈Φ+

(1 + tzα)

]

ξλ(z).

• If t=− 1 the formula should reduce to the Weyl character formula.

• If t = 0, then G(v, t) should vanish unless v is in the image of a map

Bλ� Bλ+ρ, and the formula should reduce to ξλ(z)=
∑

v∈Bλ

zwt(v).

• If t = − q−1 the formula should give the Casselman-Shalika formula (with
deformed Weyl denominator.)

• There are also metaplectic Tokuyama functions. These produce not
characters but metaplectic Whittaker functions.

• “Natural” Tokuyama functions can be given in many cases, beginning with
Tokuyama (1988). The Tokuyama function is not unique. Using results of
McNamara one gets one Tokuyama function for each reduced word
decomposing the long Weyl group element into simple reflections.



Statistical Models

Solvable lattice models in statistical mechanics are 2-dimensional systems in
which the partition function can be evaluated explicitly. The first example was
the Ising model, solved by Onsager (1944). The six-vertex model is an important
example.

• Solved by Lieb and Sutherland in the 1960’s.

• Baxter developed the star-triangle relation or Yang-Baxter equation
as a powerful tool.

• Hamel and King showed how characters (together with deformed Weyl
denominators) are partition functions of systems of this type.

• Brubaker, Bump and Friedberg showed how to use the Yang-Baxter equa-
tion to investigate these models.

• Metaplectic Whittaker functions can also be represented as such partition
functions.



Six-Vertex Model

We describe a statistico-physical system S. Take a square lattice of finite size.

For
Example :

+

+

+

+

+ + + + + +

− + − + − −

−

−

−

−

To specify the system, we require some further data.

• Signs or spins ± on the boundary edges are fixed.

• At each vertex v there are assigned six values a1(v), a2(v), b1(v), b2(v),
c1(v), c2(v) which are also part of the data defining the system.



States

• A state s of the system S consists of an assignment of signs ± to the
interior edges.

• Recall that the signs of the boundary edges are fixed.

− + − + − −
− + − + +

+ − + − − +

+ − + − −
+ + − + − +

+ + − + −
+ + + − + +

+ + + − −
+ + + + + +

+

+

+

+

−

−

−

−
For example, here is a state of
the system shown earlier.

We will also consider more
general planar graphs in which
some of the edges are rotated.



The Partition Function

Given a state of the system, every vertex v is assigned a value βs(v),
its Boltzmann weight. This is either zero or one of the six values
a1(v), a2(v), b1(v), b2(v), c1(v), c2(v).

a1 a2 b1 b2 c1 c2













We are also
showing the
weights in a

rotated
configuration.













• If the weight does not appear in the table it is zero.

• Given the state s, the Boltzmann weight β(s)=
∏

v

βs(v).

• The Partition function Z(S)=
∑

states s

β(s).



Transfer Matrices
Let v be a vertex type with Boltzmann weights ai(v), bi(v), ci(v). Define

Vv(α, γ)=Z











α1 α2 αn

γ1 γ2 γn

+ · · · −v v v











where αi, γi ∈ { ± }. There are 2n possibilities for α= (α1, 
 , αn), so we think of
Vv as being a 2n × 2n matrix, the row transfer matrix for v. Clearly

Z





















α1 α2 αn

β1 β2 βn

+ · · · −

+ · · · −

v v v

w w w





















=
∑

γ

Vv(α, γ)Vw(γ, β).

We may compute the partition
function by multiplying transfer
matrices!



Baxter
• Baxter: organize transfer matrices

into commuting families.

• A maximal commuting family of
operators is like a maximal torus.

• This leads to evaluation of the
partition function.

Example: the Field-Free Case
Suppose a1(v) = a2(v)= a(v), b1(v) = b2(v)= b(v), c1(v)= c2(v)= c(v). Let

∆(v) =
a(v)2 + b(v)2− c(v)2

2a(v)b(v)
.

Theorem. (Baxter) If ∆(v) = ∆(w) then Vv and Vw commute.

Proof. Use the Yang-Baxter equation. �



The Yang-Baxter Equation

Let v, w, r be three types of vertices, with Boltzmann weights ai(x), bi(x), ci(x)
for x∈{v, w, r}. Then we write Jr , v, wK= 0 if for all ε1, ε2, ε3, ε4, ε5, ε6∈{±}:

Z



































ǫ2

ǫ1

ǫ3

ǫ6

ǫ4

ǫ5

r

v

w



































= Z



































ǫ2

ǫ1

ǫ3

ǫ6

ǫ4

ǫ5

w

v

r



































.

This means that summing over the three unlabeled edges gives the same result
on both sides.

Lemma. (Baxter) If ∆(v) = ∆(w) = ∆ there exists a third field-free vertex r

with ∆(r) = ∆ such that Jr, v, wK = 0.



The R-matrix in action ...

To prove Baxter’s commutativity in the field-free case, that Z(S),

S =





















α1 α2 αn

β1 β2 βn

+ · · · −

+ · · · −

v v v

w w w





















is unchanged if v and w are interchanged, attach the R-matrix vertex r:

Z





















α1 α2 αn

β1 β2 βn

+ · · · −

+ · · · −

v v v

w w w

r





















= a1(r)Z(S),

because a1(r)
is the value of

r , the only

legal configuration at r.



... Yang-Baxter equation n times ...

=Z





















α1 α2 αn

β1 β2 βn

+ · · · −

+ · · · −

w w w

v v v





















= a2(r)Z(S′),

where S
′ is the system S with v and w interchanged. Since a1(r) = a2(r) we

may cancel them and get Z(S)=Z(S′).

Z



















α1 α2 αn

β1 β2 βn

+ · · · −

+ · · · −

v v v

w w w



















= Z



















α1 α2 αn

β1 β2 βn

+ · · · −

+ · · · −

w w w

v v v



















That is, the transfer matrices Vv and Vw commute, as promised.



Parametrized Yang-Baxter Equation

Let ∆∈C be fixed and let R∆ be the set of field-free Boltzmann weights

a1 = a2 = a, b1 = b2 = b, c1 = c2 = c,
a2 + b2− c2

2ab
= ∆. Recall:

Lemma. (Baxter) If ∆(v) = ∆(w) = ∆ there exists a third field-free vertex r

with ∆(r) = ∆ such that Jr, v, wK = 0.

We have actually a parametrized Yang-Baxter equation.

Theorem. (Baxter) There is a map R:C×� R∆ such that

JR(t), R(tu), R(u)K = 0. So r=R(t), v=R(tu), w=R(u).

Discard the field free assumption and impose free Fermionic condition. Let:

Rff = {v |a1(v)a2(v) + b1(v)b2(v)− c1(v)c2(v)= 0}.

Lemma. (BBF) There is a map R:GL1(C)×GL2(C)� Rff such that

JR(t), R(tu), R(u)K= 0.



The Yang-Baxter Commutator

Let V =C2 with basis + and − . Given T ∈End(V ⊗V ) let

T (εi ⊗ εj) =
∑

k,l

Tij
kl · εk ⊗ εl (εi∈{±}).

We interpret the coefficients Tij
kl as a Boltzmann weight of ǫ1

ǫ2
ǫ3

ǫ4

. With

respect to basis +⊗+ , +⊗− , −⊗+ , −⊗− of V ⊗V the vertex v is

the linear transformation with matrix









a1(v)
b1(v) c1(v)
c2(v) b2(v)

a2(v)









.

If T ∈ End(V ⊗ V ) let Tij ∈ End(V ⊗ V ⊗ V ) be T acting on the i-th and j-th
components and IV acts on the k-th component (k � i, j). The Yang-Baxter
commutator is

JA,B,CK=A12B13C23 −C23B13A12.



Quantum Groups

With this framework many (Faddeev, Kulish, Sklyanin, Kirillov, Reshetikhin,
Takhtadjan, Jimbo, Miwa, Drinfeld, ...) sought an explanation for the Yang-
Baxter equation. This led to the invention of Quantum groups.

The explanation for Baxter’s parametrized YBE

JR(t), R(tu), R(u)K = 0

is that V (t) is a module for the Hopf algebra H = Uq(sl̂2) (completed) and there
is an element R ∈ H ⊗ H that induces an endomorphism V (t) ⊗ V (u) for every
pair of modules. The quantum group H is a quasitriangular Hopf algebra
which means that R satisfies conditions implying the Yang-Baxter equation.

Question 1: Give a similar treatment of the Free fermionic case.

Question 2: Extend the free Fermionic story to the eight vertex model.



Schur Polynomials

• Hamel and King extended Tokuyama’s deformation for Cartan Type Ar

by giving a generalized deformation. They also treated Cartan Type Cr.

• Brubaker, Bump and Friedberg found two families of deformations, one of
which is Hamel and King’s. These are called Gamma ice and Delta ice.

• They gave proofs based on the Yang-Baxter equation.

• Fix a partition λ= (λ1,
 , λn).

• Let z1,
 , zn∈C× be spectral parameters.

• Let t1,
 , tn∈C be deformation parameters.

The character ξλ(z) is the Schur polynomial sλ(z).

There are two statistical systems Sλ
Γ and Sλ

∆ with

Z(Sλ
Γ)=

∏

i<j

(tizj + zi)sλ(z1,
 , zn), Z(Sλ
∆) =

∏

i<j

(tjzj + zi)sλ(z1,
 , zn).



Gamma Ice

Label columns 0, 1, 2,
 from right to left, rows 1, 2, 3,
 , n top to bottom.

Use these
weights in
the i-th row:

i i i i i i

a1(i) a2(i) b1(i) b2(i) c1(i) c2(i)

1 zi ti zi zi(ti + 1) 1

+

+

+

+

+ + + + + +

− + − + − −

−

−

−

−

012345

111111

222222

333333

444444

+ on left and bottom boundary edges,
− on right boundary edges.

On top edges in ρ+λ put − ,
On remaining top edges put + .

Theorem: Z(Sλ
Γ)=

∏

i<j

(tizj + zi)sλ(z1,
 , zn).

Example: λ = (2, 1, 0, 0)
λ + ρ = (5, 3, 1, 0)



Tokuyama Function

Recall that a Tokuyama function is a map G:Bλ+ρ ×C� C such that
[

∏

α∈Φ+

(1 + tzα)

]

ξλ(z) =
∑

v∈Bλ+ρ

G(v, t)zwt(v).

• There are different Tokuyama functions (one for every reduced decomposi-
tion of the long Weyl group element) but we discuss a particular one.

• This Tokuyama function has another description using an embedding of
Berenstein, Zelevinsky, Lusztig, Littelmann (BZL) of Bλ+ρ into cones.

We will describe an injection

c: {states of Sλ
Γ}� Bλ+ρ.

When all ti = t

β(s)=G(v, t)zwt(v), v= c(s),

and G(v, t) = 0 if v is not in the image of c. Thus the nonzero terms in the
crystal description coincide with the states of the ice.



A subtle shift of viewpoint

The nonzero terms in the crystal description coincide with the states of the sta-
tistical model. So we might think that the two descriptions are identical. How-
ever there is a subtle shift of viewpoint between the two pictures.

• The image of c is (in some sense) most but not all of Bλ+ρ.

• The tool sets are different in the two pictures since c is not bijective.

• The image of c is not stable under the Schützenberger involution of Bλ+ρ,
so that involution has no significance in the statistical picture.

• But the Yang-Baxter equation is not available in the crystal picture.

• An aggravating fact about the crystal picture is that the terms in the sum
are usually invariant under the Schützenberger involution, yet there are
some on the boundary of the BZL polytopes that are not invariant
under the involution. Using the involution to understand the sums leads
one to group these exceptional terms together in packets resulting
in Combinatorial Difficulties.

• These are surmountable but the Yang-Baxter equation is a welcome
alternative.



Associate a Gelfand-Tsetlin pattern with a State

• Identify states with strict Gelfand-Tsetlin Patterns.

i i i
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A Gelfand-Tsetlin Pattern
is a triangular array of partitions
of descending length whose rows
interleave.


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For each row, write down the column numbers of vertices in the above 3 configu-
rations (having a − above the vertex). Example:
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5 2 1 0
4 2 1
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The pattern is strict
meaning each row is
strictly decreasing.



Associate a tableaux with that Gelfand-Tsetlin P.

Striking all n’s, then all n− 1’s, etc. from a tableau gives a sequence of shapes.

1 1 2 3 4

2 3

3

⇒
1 1 2 3

2 3

3

⇒ 1 1 2

2
⇒ 1 1

{5, 2, 1, 0} {4, 2, 1} {3, 2} {2}

Taking those shapes and arranging them gives a Gelfand-Tsetlin pattern:














5 2 1 0
4 2 1

3 1
2















Thus

• States correspond to strict Gelfand-Tstelin patterns with top row λ+ ρ.

• Gelfand-Tsetlin patterns biject with tableaux with shape λ+ ρ.

• Not all patterns are strict so the map c is an injection but not a bijection.



Metaplectic Ice

• For Type A and arbitrary metaplectic covers, there are ice models.

• Key facts amount to commutativity of transfer matrices.

• Still the Yang-Baxter equation remains elusive for Type A.

But there is a model for the Whittaker function on the metaplectic double
cover of Sp4(F) where the Yang-Baxter equation plays a significant role.
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Use Delta ice on Blue rows
Use Gamma ice on Red rows
For the “cap vertices” use the
metaplectic weights:
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√

zi
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(for the i-th pair of rows)



Related Nonmetaplectic Work

• Related to U-Turn Ice and Alternating sign matrices of Kuperberg,
Okada and Hamel and King.

• Those models are related to work of Beineke, Brubaker and Frechette on
crystal models for Type C (nonmetaplectic).

• Thesis of Dmitriy Ivanov introduces Yang-Baxter equation in such
models introducing a novel caduceus relation which we will discuss.



The Caduceus

The so-called

Caduceus braid

bears a noted resemblance

to the fabled “staff of Hermes”
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We have attached a caduceus braid preparing to prove a functional equation
with respect to the first simple reflection in the Weyl group.

• The caduceus braid first appeared in the thesis of D. Ivanov.

• This multiplies Z(S) by (tzj + zi
−1)(zi + tzj)(tzi

−1 + zj
−1)(tzi + zj

−1).

• Using the Yang-Baxter equation, the caduceus moves to the right.



The Caduceus Identity

Lemma. For any ε1, ε2, ε3, ε4 we have
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
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
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
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= const×Z
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
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

where the constant is (tzi + zj
−1)(tzi + zj)(tzi

−1 + zj
−1)(tzj + zi

−1), independent of
the εi.

• Discarding the caduceus this way shows how the partition function
changes under the interchange of spectral parameters.

• We are aware of caduceus identities for three different sets of cap weights.
(The archetype is in Ivanov’s thesis.)


