Quantized Function Theory

Vern Paulsen (Joint work with Meghna Mittal)

August 19, 2010

- < ∃ >

Vern Paulsen (Joint work with Meghna Mittal) BIRS MVOT

Quantized Function Theory

- Overview
- Goals
- Rough Statement of Theorem
- Examples
- Operator Algebras of Functions, General Theory

(4回) (4回) (日)

æ

Quantized Function Theory, Redux

Our take on the work of Agler, Agler-McCarthy, Ambrozie-Timotin, Ball-Bolotnikov, Dritschel-McCullough, and the "row contractions" crowd. Our take on the work of Agler, Agler-McCarthy, Ambrozie-Timotin, Ball-Bolotnikov, Dritschel-McCullough, and the "row contractions" crowd. Given $G \subseteq \mathbb{C}^N$ open and $\mathcal{R} = \{F_k : G \to M_{m_k,n_k} : k \in I\}$ a set of analytic matrix-valued functions such that $\|F_k(z)\| < 1 \ \forall \ z \in G, k \in I$. We call this an **"analytic presentation of G"**, provided certain hypotheses are met. Our take on the work of Agler, Agler-McCarthy, Ambrozie-Timotin, Ball-Bolotnikov, Dritschel-McCullough, and the "row contractions" crowd. Given $G \subseteq \mathbb{C}^N$ open and $\mathcal{R} = \{F_k : G \to M_{m_k,n_k} : k \in I\}$ a set of analytic matrix-valued functions such that $\|F_k(z)\| < 1 \ \forall \ z \in G, k \in I$. We call this an "analytic presentation of **G**", provided certain hypotheses are met.

The "quantized" version of G.

Set

$$\mathcal{Q}(G) = \{T : \sigma(T) \subseteq G, \|F_k(T)\| \le 1 \ \forall \ k \in I\}$$

· < @ > < 문 > < 문 > · · 문

where $T = (T_1, T_2, ..., T_N)$ is a commuting N-tuple of operators on some Hilbert space.

The algebra of the quantization

Given $f: G \to \mathbb{C}$ analytic, define

$$\|f\|_{\mathcal{R}} = \sup\{\|f(T)\| : T \in \mathcal{Q}(G)\},\$$

<ロ> <同> <同> <同> < 同>

- < ≣ →

æ

Vern Paulsen (Joint work with Meghna Mittal) BIRS MVOT

The algebra of the quantization

Given $f: G \to \mathbb{C}$ analytic, define

$$\|f\|_{\mathcal{R}} = \sup\{\|f(T)\| : T \in \mathcal{Q}(G)\},\$$

$$H^{\infty}_{\mathcal{R}}(G) = \{ f \in H^{\infty}(G) : \|f\|_{\mathcal{R}} < \infty \}.$$

- ∢ ≣ ▶

æ

Similarly, define norms on $M_n(H^{\infty}_{\mathcal{R}}(G))$.

The algebra of the quantization

Given $f: G \to \mathbb{C}$ analytic, define

$$\|f\|_{\mathcal{R}} = \sup\{\|f(T)\| : T \in \mathcal{Q}(G)\},\$$

$$H^{\infty}_{\mathcal{R}}(G) = \{f \in H^{\infty}(G) : \|f\|_{\mathcal{R}} < \infty\}.$$

Similarly, define norms on $M_n(H^{\infty}_{\mathcal{R}}(G))$.

These are examples of "Abstract Operator Algebras of Functions". We prove theorems about $H^{\infty}_{\mathcal{R}}(G)$ by applying some new general theorems about such algebras.

Motivation for many terms to be defined in talk.

Vern Paulsen (Joint work with Meghna Mittal) BIRS MVOT

▲□→ < □→</p>

- < ≣ →

æ

Motivation for many terms to be defined in talk. Let G have a presentation $\mathcal{R} = \{F_k = (f_{k,i,j}) : G \to M_{m_k,n_k}, k \in I\}$ and let \mathcal{A} be the algebra of the presentation equipped with the *u*-norm. Then

1. $H^{\infty}_{\mathcal{R}}(G)$ is the BPW completion of \mathcal{A} ,

- 1. $H^{\infty}_{\mathcal{R}}(G)$ is the BPW completion of \mathcal{A} ,
- 2. $H^{\infty}_{\mathcal{R}}(G)$ is a local dual operator algebra,

- 1. $H^{\infty}_{\mathcal{R}}(G)$ is the BPW completion of \mathcal{A} ,
- 2. $H^{\infty}_{\mathcal{R}}(G)$ is a local dual operator algebra,
- 3. $H^{\infty}_{\mathcal{R}}(G)$ is the multiplier algebra of a vector-valued RKHS,

- 1. $H^{\infty}_{\mathcal{R}}(G)$ is the BPW completion of \mathcal{A} ,
- 2. $H^{\infty}_{\mathcal{R}}(G)$ is a local dual operator algebra,
- 3. $H^{\infty}_{\mathcal{R}}(G)$ is the multiplier algebra of a vector-valued RKHS,
- H[∞]_R(G) is wk*-RFD, and consequently, the *R*-norm is generally the sup over matrices in Q(G),

Motivation for many terms to be defined in talk. Let G have a presentation $\mathcal{R} = \{F_k = (f_{k,i,j}) : G \to M_{m_k,n_k}, k \in I\}$ and let \mathcal{A} be the algebra of the presentation equipped with the *u*-norm. Then

- 1. $H^{\infty}_{\mathcal{R}}(G)$ is the BPW completion of \mathcal{A} ,
- 2. $H^{\infty}_{\mathcal{R}}(G)$ is a local dual operator algebra,
- 3. $H^{\infty}_{\mathcal{R}}(G)$ is the multiplier algebra of a vector-valued RKHS,
- H[∞]_R(G) is wk*-RFD, and consequently, the *R*-norm is generally the sup over matrices in Q(G),
- 5. when *I* is a finite set, $P = (p_{i,j}) \in M_{m,n}(Hol(G))$, we have that $||P||_{\mathcal{R}} \leq 1$ if and only if there exist analytic functions $H_k : G \to B(\mathbb{C}^m, \mathcal{H}_k)$, such that $I - P(z)P(w)^* = \sum_{k=1}^{K} H_k(z)[(I_m - F_k(z)F_k(w)^*) \otimes I]H_k(w)^*$. "Agler-Ball-Bolotnikov factorization"

(《圖》 《문》 《문》 - 문

Operator Algebras of Functions, General Theory

Definition

Operator Algebras of Functions, General Theory

Definition

Given set X, A is an operator algebra of functions on X if

1. A is a subalgebra of the algebra of functions on X,

Operator Algebras of Functions, General Theory

Definition

- 1. A is a subalgebra of the algebra of functions on X,
- 2. *A* separates the points of *X* and contains the constant functions,

- 1. A is a subalgebra of the algebra of functions on X,
- 2. A separates the points of X and contains the constant functions,
- 3. for each $n M_n(A)$ is equipped with a norm $\|.\|_{M_n(A)}$, such that the set of norms satisfy the BRS axioms to be an abstract operator algebra,

- 1. A is a subalgebra of the algebra of functions on X,
- 2. A separates the points of X and contains the constant functions,
- 3. for each $n M_n(A)$ is equipped with a norm $\|.\|_{M_n(A)}$, such that the set of norms satisfy the BRS axioms to be an abstract operator algebra,
- for each x ∈ X, the evaluation functional, π_x : A → C, given by π_x(f) = f(x) is bounded.

Given set X, A is an operator algebra of functions on X if

- 1. A is a subalgebra of the algebra of functions on X,
- 2. A separates the points of X and contains the constant functions,
- 3. for each $n M_n(A)$ is equipped with a norm $\|.\|_{M_n(A)}$, such that the set of norms satisfy the BRS axioms to be an abstract operator algebra,
- for each x ∈ X, the evaluation functional, π_x : A → C, given by π_x(f) = f(x) is bounded.

Proposition

Let \mathcal{A} be an operator algebra of functions on X, then $\mathcal{A} \subseteq \ell^{\infty}(X)$, and for every n and every $(f_{i,j}) \in M_n(\mathcal{A})$, we have $\|(f_{ij})\|_{\infty} \leq \|(f_{ij})\|_{M_n(\mathcal{A})}$ and $\|\pi_x\|_{cb} = 1$ Note: Given a finite subset $Y \subseteq X$, $I_Y = \{f \in \mathcal{A} : f | Y = 0\}$ - ideal \mathcal{A}/I_Y - quotient op. alg. ($\cong \mathbb{C}^{|Y|}$), $\pi_Y : \mathcal{A} \to \mathcal{A}/I_Y$ - quotient map.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

æ

Note: Given a finite subset $Y \subseteq X$, $I_Y = \{f \in \mathcal{A} : f | Y = 0\}$ - ideal \mathcal{A}/I_Y - quotient op. alg. ($\cong \mathbb{C}^{|Y|}$), $\pi_Y : \mathcal{A} \to \mathcal{A}/I_Y$ - quotient map. Definition

Let \mathcal{A} be an operator algebra of functions. Then \mathcal{A} is said to be

2

Note: Given a finite subset $Y \subseteq X$, $I_Y = \{f \in \mathcal{A} : f|_Y = 0\}$ - ideal \mathcal{A}/I_Y - quotient op. alg. ($\cong \mathbb{C}^{|Y|}$), $\pi_Y : \mathcal{A} \to \mathcal{A}/I_Y$ - quotient map. Definition

Let \mathcal{A} be an operator algebra of functions. Then \mathcal{A} is said to be

1. local if \forall n and \forall $(f_{ij}) \in M_n(\mathcal{A}), ||(f_{ij})|| = \sup_Y ||(\pi_Y(f_{ij}))||$.

Note: Given a finite subset $Y \subseteq X$, $I_Y = \{f \in \mathcal{A} : f | Y = 0\}$ - ideal \mathcal{A}/I_Y - quotient op. alg. ($\cong \mathbb{C}^{|Y|}$), $\pi_Y : \mathcal{A} \to \mathcal{A}/I_Y$ - quotient map. Definition

Let \mathcal{A} be an operator algebra of functions. Then \mathcal{A} is said to be

- 1. local if \forall n and \forall $(f_{ij}) \in M_n(\mathcal{A}), ||(f_{ij})|| = \sup_{\mathbf{Y}} ||(\pi_{\mathbf{Y}}(f_{ij}))||$.
- 2. Residually finite dimensional(RFD) if \forall n and \forall $(f_{ij}) \in M_n(\mathcal{A}), ||(f_{ij})|| = \sup\{||(\pi(f_{ij}))||\}$ where supremum is taken over all cc homo. $\pi : \mathcal{A} \to M_m$ and for all integers m.

- (日) (日) (日) 日

Note: Given a finite subset $Y \subseteq X$, $I_Y = \{f \in \mathcal{A} : f | Y = 0\}$ - ideal \mathcal{A}/I_Y - quotient op. alg. ($\cong \mathbb{C}^{|Y|}$), $\pi_Y : \mathcal{A} \to \mathcal{A}/I_Y$ - quotient map. Definition

Let \mathcal{A} be an operator algebra of functions. Then \mathcal{A} is said to be

- 1. local if \forall n and \forall $(f_{ij}) \in M_n(\mathcal{A}), ||(f_{ij})|| = \sup_{\mathbf{Y}} ||(\pi_{\mathbf{Y}}(f_{ij}))||$.
- 2. Residually finite dimensional(RFD) if \forall n and \forall $(f_{ij}) \in M_n(\mathcal{A}), ||(f_{ij})|| = \sup\{||(\pi(f_{ij}))||\}$ where supremum is taken over all cc homo. $\pi : \mathcal{A} \to M_m$ and for all integers m.

Remark: Every finite dimensional C*-algebra is RFD, but there are finite dimensional operator algebras that are not RFD.

(4回) (1日) (日) 日

Proposition

Let \mathcal{A} be an operator algebra of functions on X. Then $\mathcal{A}_L = \mathcal{A}$ equipped with the matrix norms, $\|(f_{i,j})\|_L = \sup_Y \|(\pi_Y(f_{i,j}))\|$ is a local operator algebra of functions on X.

Proposition

Let \mathcal{A} be an operator algebra of functions on X. Then $\mathcal{A}_L = \mathcal{A}$ equipped with the matrix norms, $\|(f_{i,j})\|_L = \sup_Y \|(\pi_Y(f_{i,j}))\|$ is a local operator algebra of functions on X.

Theorem

If \mathcal{A} is a local operator algebra of functions then \mathcal{A} is RFD.

A function $f : X \to \mathbb{C}$ is called a **bounded pointwise(BPW)** limit of \mathcal{A} , if there exists a net $f_{\lambda} \in \mathcal{A}, f_{\lambda} \to f$ ptw and $||f_{\lambda}|| \leq C$. We let $\tilde{\mathcal{A}}$ denote the set of functions that are BPW limits from \mathcal{A} . An operator algebra of functions \mathcal{A} is called **BPW complete** if $\mathcal{A} = \tilde{\mathcal{A}}$, as sets.

A function $f : X \to \mathbb{C}$ is called a **bounded pointwise(BPW)** limit of \mathcal{A} , if there exists a net $f_{\lambda} \in \mathcal{A}, f_{\lambda} \to f$ ptw and $||f_{\lambda}|| \leq C$. We let $\tilde{\mathcal{A}}$ denote the set of functions that are BPW limits from \mathcal{A} . An operator algebra of functions \mathcal{A} is called **BPW complete** if $\mathcal{A} = \tilde{\mathcal{A}}$, as sets.

Theorem

If we equip $\tilde{\mathcal{A}}$ with the family of norms given by $\|(f_{ij})\| = \inf\{C : \|(f_{ij}^{\lambda})\|_{\mathcal{A}} \leq C, f_{ij}^{\lambda} \to f_{ij} \text{ ptw }\}, \text{ then } \tilde{\mathcal{A}} \text{ is a BPW}$ complete local operator algebra of functions and $\mathcal{A}_{L} \hookrightarrow \tilde{\mathcal{A}}$ completely isometrically.

A function $f : X \to \mathbb{C}$ is called a **bounded pointwise(BPW)** limit of \mathcal{A} , if there exists a net $f_{\lambda} \in \mathcal{A}, f_{\lambda} \to f$ ptw and $||f_{\lambda}|| \leq C$. We let $\tilde{\mathcal{A}}$ denote the set of functions that are BPW limits from \mathcal{A} . An operator algebra of functions \mathcal{A} is called **BPW complete** if $\mathcal{A} = \tilde{\mathcal{A}}$, as sets.

Theorem

If we equip $\tilde{\mathcal{A}}$ with the family of norms given by $\|(f_{ij})\| = \inf\{C : \|(f_{ij}^{\lambda})\|_{\mathcal{A}} \leq C, f_{ij}^{\lambda} \to f_{ij} \text{ ptw }\}, \text{ then } \tilde{\mathcal{A}} \text{ is a BPW}$ complete local operator algebra of functions and $\mathcal{A}_L \hookrightarrow \tilde{\mathcal{A}}$ completely isometrically.

We call $\tilde{\mathcal{A}}$ the **BPW completion** of \mathcal{A} .

Given a set X and a Hilbert space \mathcal{H} , then we call a vector space \mathcal{L} of \mathcal{H} -valued functions, an \mathcal{H} -valued RKHS if it is equipped with an inner product that makes it a Hilbert space and it has the property that for every $x \in X$, the evaluation map $E_x : \mathcal{L} \to \mathcal{H}$, is a bounded, linear map.

Given a set X and a Hilbert space \mathcal{H} , then we call a vector space \mathcal{L} of \mathcal{H} -valued functions, an \mathcal{H} -valued RKHS if it is equipped with an inner product that makes it a Hilbert space and it has the property that for every $x \in X$, the evaluation map $E_x : \mathcal{L} \to \mathcal{H}$, is a bounded, linear map. A function $f : X \to \mathbb{C}$ is called a (scalar) multiplier provided that for every $g \in \mathcal{L}$, the function $fg \in \mathcal{L}$. We let $\mathcal{M}(\mathcal{L})$ denote the operator algebra of multipliers.

Given a set X and a Hilbert space \mathcal{H} , then we call a vector space \mathcal{L} of \mathcal{H} -valued functions, an \mathcal{H} -valued RKHS if it is equipped with an inner product that makes it a Hilbert space and it has the property that for every $x \in X$, the evaluation map $E_x : \mathcal{L} \to \mathcal{H}$, is a bounded, linear map. A function $f : X \to \mathbb{C}$ is called a (scalar) multiplier provided that for every $g \in \mathcal{L}$, the function $fg \in \mathcal{L}$. We let $\mathcal{M}(\mathcal{L})$ denote the operator algebra of multipliers.

Theorem

If A is an operator algebra of functions on the set X that is local and BPW complete, i.e. $A = \tilde{A}$ comp. isom., then

Given a set X and a Hilbert space \mathcal{H} , then we call a vector space \mathcal{L} of \mathcal{H} -valued functions, an \mathcal{H} -valued RKHS if it is equipped with an inner product that makes it a Hilbert space and it has the property that for every $x \in X$, the evaluation map $E_x : \mathcal{L} \to \mathcal{H}$, is a bounded, linear map. A function $f : X \to \mathbb{C}$ is called a (scalar) multiplier provided that for every $g \in \mathcal{L}$, the function $fg \in \mathcal{L}$. We let $\mathcal{M}(\mathcal{L})$ denote the operator algebra of multipliers.

Theorem

If A is an operator algebra of functions on the set X that is local and BPW complete, i.e. $A = \tilde{A}$ comp. isom., then

1. \mathcal{A} is a dual operator algebra and if (f_{ij}^{λ}) is a bounded net in \mathcal{A} , then $(f_{ij}^{\lambda}) \stackrel{wk*}{\to} (f_{ij}) \Leftrightarrow (f_{ij}^{\lambda}) \to (f_{ij})$ BPW.

Given a set X and a Hilbert space \mathcal{H} , then we call a vector space \mathcal{L} of \mathcal{H} -valued functions, an \mathcal{H} -valued RKHS if it is equipped with an inner product that makes it a Hilbert space and it has the property that for every $x \in X$, the evaluation map $E_x : \mathcal{L} \to \mathcal{H}$, is a bounded, linear map. A function $f : X \to \mathbb{C}$ is called a (scalar) multiplier provided that for every $g \in \mathcal{L}$, the function $fg \in \mathcal{L}$. We let $\mathcal{M}(\mathcal{L})$ denote the operator algebra of multipliers.

Theorem

If A is an operator algebra of functions on the set X that is local and BPW complete, i.e. $A = \tilde{A}$ comp. isom., then

1. \mathcal{A} is a dual operator algebra and if (f_{ij}^{λ}) is a bounded net in

$$\mathcal{A}, \ then \ (f_{ij}^{\lambda}) \stackrel{\scriptscriptstyle{\mathsf{W}}\!\scriptscriptstyle{\mathsf{K}}*}{
ightarrow} (f_{ij}) \Leftrightarrow (f_{ij}^{\lambda})
ightarrow (f_{ij}) \ BPW.$$

2. $\exists \mathcal{H}$ -valued RKHS, \mathcal{L} such that $\mathcal{A} = \mathcal{M}(\mathcal{L})$ complete isometric, wk*-isomorphism.
Definition Let $G \subseteq \mathbb{C}^N$ be an open set. If the following conditions hold:

-≣->

Let $G \subseteq \mathbb{C}^N$ be an open set. If the following conditions hold:

1. there exists a set of matrix-valued functions,

 $F_k = (f_{k,i,j}) : G \to M_{m_k,n_k}, k \in I$ whose components are analytic functions,

Let $G \subseteq \mathbb{C}^N$ be an open set. If the following conditions hold:

1. there exists a set of matrix-valued functions,

 $F_k = (f_{k,i,j}) : G \to M_{m_k,n_k}, k \in I$ whose components are analytic functions,

2. for $z \in G$ and $k \in I$, $||F_k(z)|| < 1$,

Let $G \subseteq \mathbb{C}^N$ be an open set. If the following conditions hold:

1. there exists a set of matrix-valued functions,

 $F_k = (f_{k,i,j}) : G \to M_{m_k,n_k}, k \in I$ whose components are analytic functions,

- 2. for $z \in G$ and $k \in I, ||F_k(z)|| < 1$,
- the algebra A of functions on G generated by the constant function and the component functions
 {f_{k,i,j} : k ∈ I, 1 ≤ i ≤ m_k, 1 ≤ j ≤ n_k} separates points on G,

Let $G \subseteq \mathbb{C}^N$ be an open set. If the following conditions hold:

1. there exists a set of matrix-valued functions,

 $F_k = (f_{k,i,j}) : G \to M_{m_k,n_k}, k \in I$ whose components are analytic functions,

- 2. for $z \in G$ and $k \in I$, $||F_k(z)|| < 1$,
- the algebra A of functions on G generated by the constant function and the component functions
 {*f*_{k,i,j} : *k* ∈ *I*, 1 ≤ *i* ≤ *m*_k, 1 ≤ *j* ≤ *n*_k} separates points on G,
 then we call R = {*F*_k : *k* ∈ *I*} an analytic presentation of G and

we call A the algebra of the presentation.

個 と く き と く き と … き

Given an analytic presentation of G and $\pi : \mathcal{A} \to B(\mathcal{H})$ a homomorphism of the algebra of the presentation, then we call π an **admissible representation** provided that $\|(\pi(f_{k,i,j}))\| \leq 1$ for all $k \in I$ and an **admissible strict representation** when these inequalities are all strictly less than 1.

Given an analytic presentation of G and $\pi : A \to B(\mathcal{H})$ a homomorphism of the algebra of the presentation, then we call π an **admissible representation** provided that $\|(\pi(f_{k,i,j}))\| \leq 1$ for all $k \in I$ and an **admissible strict representation** when these inequalities are all strictly less than 1.

Definition

Let $(f_{ij}) \in M_n(\mathcal{A})$, set $\|(f_{ij})\|_u = \sup\{\|(\pi(f_{i,j}))\| : \pi \text{ admissible }\}$ and set $\|(f_{i,j})\|_{u_0} = \sup\{\|(\pi(f_{i,j})\| : \pi \text{ strictly admissible }\}.$

Let G be an analytically presented domain with presentation $\mathcal{R} = \{F_k = (f_{k,i,j}) : G \to M_{m_k,n_k}, k \in I\}$ and let A be the algebra of the presentation equipped with the u-norm. Then

Let G be an analytically presented domain with presentation $\mathcal{R} = \{F_k = (f_{k,i,j}) : G \to M_{m_k,n_k}, k \in I\}$ and let A be the algebra of the presentation equipped with the u-norm. Then

- ▲ 글 ▶ - 글

1. $\tilde{\mathcal{A}} = H^{\infty}_{\mathcal{R}}(G)$, completely isometrically, and $\|\cdot\|_{\mathcal{R}}$ is the localization of $\|\cdot\|_{u}$,

Let G be an analytically presented domain with presentation $\mathcal{R} = \{F_k = (f_{k,i,j}) : G \to M_{m_k,n_k}, k \in I\}$ and let A be the algebra of the presentation equipped with the u-norm. Then

- 1. $\tilde{\mathcal{A}} = H^{\infty}_{\mathcal{R}}(G)$, completely isometrically, and $\|\cdot\|_{\mathcal{R}}$ is the localization of $\|\cdot\|_{u}$,
- 2. $H^{\infty}_{\mathcal{R}}(G)$ is a BPW complete, local, dual operator algebra,

Let G be an analytically presented domain with presentation $\mathcal{R} = \{F_k = (f_{k,i,j}) : G \to M_{m_k,n_k}, k \in I\}$ and let \mathcal{A} be the algebra of the presentation equipped with the u-norm. Then

- 1. $\tilde{\mathcal{A}} = H^{\infty}_{\mathcal{R}}(G)$, completely isometrically, and $\|\cdot\|_{\mathcal{R}}$ is the localization of $\|\cdot\|_{u}$,
- 2. $H^{\infty}_{\mathcal{R}}(G)$ is a BPW complete, local, dual operator algebra,

★御▶ ★理▶ ★理▶ → 理

3. $H^{\infty}_{\mathcal{R}}(G)$ is a multiplier algebra, wk*-RFD,

Let G be an analytically presented domain with presentation $\mathcal{R} = \{F_k = (f_{k,i,j}) : G \to M_{m_k,n_k}, k \in I\}$ and let \mathcal{A} be the algebra of the presentation equipped with the u-norm. Then

- 1. $\tilde{\mathcal{A}} = H^{\infty}_{\mathcal{R}}(G)$, completely isometrically, and $\|\cdot\|_{\mathcal{R}}$ is the localization of $\|\cdot\|_{u}$,
- 2. $H^{\infty}_{\mathcal{R}}(G)$ is a BPW complete, local, dual operator algebra,
- 3. $H^{\infty}_{\mathcal{R}}(G)$ is a multiplier algebra, wk*-RFD,
- 4. for $P = (p_{i,j}) \in M_{m,n}(Hol(G))$, we have that $||P||_{\mathcal{R}} \le 1$ if and only if $I P(z)P(w)^*$ is an \mathcal{R} -limit. When I is finite, this is iff

$$I - P(z)P(w)^* = \sum_{k=1}^{K} L_k(z)[(I - F_k(z)F_k(w)^*) \otimes I_{\mathcal{H}_k}]L_k(w)^*.$$

Part 1, above tells us that for $f \in A$, we have that $||f||_{\mathcal{R}}$ is the local norm derived from $||f||_{u}$, but we do not know in general if $||f||_{u} = ||f||_{u_0}$, if $||f||_{\mathcal{R}} = ||f||_{u}$ or if $||f||_{\mathcal{R}} = ||f||_{u_0}$.

< ≣ >

æ

Part 3, tells us that for $f \in H^{\infty}_{\mathcal{R}}(G)$, we have $\|f\|_{\mathcal{R}} = \sup\{\|\pi(f)\|\}$, where the supremum is over all *m* and all $\pi : H^{\infty}_{\mathcal{R}}(G) \to M_m$ weak*-continuous.

Part 3, tells us that for $f \in H^{\infty}_{\mathcal{R}}(G)$, we have $||f||_{\mathcal{R}} = \sup\{||\pi(f)||\}$, where the supremum is over all m and all $\pi : H^{\infty}_{\mathcal{R}}(G) \to M_m$ weak*-continuous. But we can't prove, in general, that $||f||_{\mathcal{R}} = \sup ||f(T)||$ over N-tuples $T = (T_1, ..., T_N)$ of commuting matrices in $\mathcal{Q}(G)$.

<ロ> (四) (四) (三) (三) (三)

Part 3, tells us that for $f \in H^{\infty}_{\mathcal{R}}(G)$, we have $\|f\|_{\mathcal{R}} = \sup\{\|\pi(f)\|\}$, where the supremum is over all *m* and all $\pi : H^{\infty}_{\mathcal{R}}(G) \to M_m$ weak*-continuous. But we can't prove, in general, that $\|f\|_{\mathcal{R}} = \sup\|f(T)\|$ over *N*-tuples $T = (T_1, ..., T_N)$ of commuting matrices in $\mathcal{Q}(G)$. We don't have useful characterizations of the pre-duals of $H^{\infty}_{\mathcal{R}}(G)$.

イロン イ部ン イヨン イヨン 三日

Our proof of the factorization result(part 4) relies on first proving a factorization result for \mathcal{A} via abstract operator algebra methods. We wish to mention that result, since it is another place where the abstract theory of operator algebras plays a key role.

Our proof of the factorization result(part 4) relies on first proving a factorization result for \mathcal{A} via abstract operator algebra methods. We wish to mention that result, since it is another place where the abstract theory of operator algebras plays a key role.

Definition

Let F_0 denote the constant function. Then a block diagonal matrix-valued function of the form $D(z) = diag(F_{k_1}, ..., F_{k_m})$ where $k_i \in I$ or $k_i = 0$, for $1 \le i \le m$ is called **admissible block** diagonal matrix over **G**.

Theorem Let $P = (p_{ij}) \in M_{m,n}(\mathcal{A})$. Then the following are equivalent: (i) $||P||_u < 1$,

Vern Paulsen (Joint work with Meghna Mittal) BIRS MVOT

æ

<**●** ► < **■** ►

Let $P = (p_{ij}) \in M_{m,n}(\mathcal{A})$. Then the following are equivalent: (i) $\|P\|_u < 1$,

(ii) (BP-type factorization) there exists an integer I, matrices of scalars C_j , $1 \le j \le I$ with $||C_j|| < 1$ and admissible block diagonal matrices $D_j(z), 1 \le j \le I$, which are of compatible sizes and are such that $P(z) = C_1 D_1(z) \cdots C_l D_l(z)$.

Let $P = (p_{ij}) \in M_{m,n}(\mathcal{A})$. Then the following are equivalent: (i) $||P||_u < 1$,

- (ii) (BP-type factorization) there exists an integer I, matrices of scalars C_j , $1 \le j \le I$ with $||C_j|| < 1$ and admissible block diagonal matrices $D_j(z)$, $1 \le j \le I$, which are of compatible sizes and are such that $P(z) = C_1 D_1(z) \cdots C_l D_l(z)$.
- (iii) (Agler-type factorization) there exists a positive, invertible matrix $R \in M_m$ and matrices $P_k \in M_{m,r_k}(\mathcal{A}), 0 \le k \le K$, such that $I_m - P(z)P(w)^* =$ $R + P_0(z)P_0(w)^* + \sum_{k=1}^{K} P_k(z)(I - F_k(z)F_k(w)^*)^{(q_k)}P_k(w)^*$ where $r_k = q_k m_k$ and $z = (z_1, ..., z_N), w = (w_1, ..., w_N) \in G$.

1. Agler: $G = \mathbb{D}^N, K = N$. For $1 \le k \le N$, define $F_k : G \to \mathbb{C}$ via $F_k(z) = z_k$, where $z = (z_1, \cdots, z_N)$,

イロン イ部ン イヨン イヨン 三日

Applications of Theorem

1. **Agler:** $G = \mathbb{D}^N, K = N$. For $1 \le k \le N$, define $F_k : G \to \mathbb{C}$ via $F_k(z) = z_k$, where $z = (z_1, \dots, z_N)$, $\mathcal{Q}(\mathbb{D}^N) = \{(T_1, \dots, T_N) : ||T_i|| \le 1 \forall 1 \le i \le N\}$, commuting, $\sigma(T) \subseteq \mathbb{D}^N$.

- * @ * * 注 * * 注 * - 注

Applications of Theorem

1. **Agler:** $G = \mathbb{D}^N, K = N$. For $1 \le k \le N$, define $F_k : G \to \mathbb{C}$ via $F_k(z) = z_k$, where $z = (z_1, \dots, z_N)$, $\mathcal{Q}(\mathbb{D}^N) = \{(T_1, \dots, T_N) : ||T_i|| \le 1 \forall 1 \le i \le N\}$, commuting, $\sigma(T) \subseteq \mathbb{D}^N$. <u>Factorization theorem:</u> $||f||_{\mathcal{R}} \le 1 \Leftrightarrow \exists K_1, \dots, K_N$, positive definite functions such that

$$1-f(z)\overline{f(w)} = \sum_{l=1}^{N} (1-z_l \overline{w_l}) K_l(z,w) = \sum_{l=1}^{N} (1-F_l(z) \overline{F_l(w)}) K_l(z,w)$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Applications of Theorem

1. **Agler:** $G = \mathbb{D}^N, K = N$. For $1 \le k \le N$, define $F_k : G \to \mathbb{C}$ via $F_k(z) = z_k$, where $z = (z_1, \dots, z_N)$, $\mathcal{Q}(\mathbb{D}^N) = \{(T_1, \dots, T_N) : ||T_i|| \le 1 \forall 1 \le i \le N\}$, commuting, $\sigma(T) \subseteq \mathbb{D}^N$. <u>Factorization theorem:</u> $||f||_{\mathcal{R}} \le 1 \Leftrightarrow \exists K_1, \dots, K_N$, positive definite functions such that

$$1-f(z)\overline{f(w)} = \sum_{l=1}^{N} (1-z_l \overline{w_l}) K_l(z,w) = \sum_{l=1}^{N} (1-F_l(z) \overline{F_l(w)}) K_l(z,w)$$

- * @ > * 注 > * 注 > - 注

Moreover, \mathcal{R} -norm obtained by supping over commuting N-tuples of matrices.

2. **Drury, Arveson, et al:** $G = \mathbb{B}^N \subseteq \mathbb{C}^N$, K = 1. Define $F : G \to \mathbb{M}_{1,N}$ via $F(z) = (z_1, \cdots, z_n)$

Vern Paulsen (Joint work with Meghna Mittal) BIRS MVOT

・ロト ・回ト ・ヨト ・ヨト

æ

2. **Drury, Arveson, et al:** $G = \mathbb{B}^N \subseteq \mathbb{C}^N$, K = 1. Define $F : G \to \mathbb{M}_{1,N}$ via $F(z) = (z_1, \dots, z_n)$ then $\mathcal{Q}(\mathbb{B}^N) = \{(T_1, \dots, T_N) : \sum_{i=1}^N T_i T_i^* \leq 1, \sigma(T) \subseteq \mathbb{B}^N\},$ commuting.

- ▲ 글 ▶ - 글

2. **Drury, Arveson, et al:** $G = \mathbb{B}^N \subseteq \mathbb{C}^N$, K = 1. Define $F : G \to \mathbb{M}_{1,N}$ via $F(z) = (z_1, \dots, z_n)$ then $\mathcal{Q}(\mathbb{B}^N) = \{(T_1, \dots, T_N) : \sum_{i=1}^N T_i T_i^* \le 1, \sigma(T) \subseteq \mathbb{B}^N\},$ commuting. Factorization theorem: $||f||_{\mathcal{R}} \le 1 \Leftrightarrow \exists K$, positive definite

$$1-f(z)\overline{f(w)} = (1-\langle z,w\rangle)K(z,w) = (1-F(z)F(w)^*)K(z,w)$$

and again obtained by supping over commuting N-tuples of matrices.

3. $G = \mathbb{B}^N, K = 2$. Define $F_1 : \mathbb{B}^N \to M_{1,N}, F_2 : \mathbb{B}^N \to M_{N,1}$

Vern Paulsen (Joint work with Meghna Mittal) BIRS MVOT

3. $G = \mathbb{B}^N, K = 2$. Define $F_1 : \mathbb{B}^N \to M_{1,N}, F_2 : \mathbb{B}^N \to M_{N,1}$ $F_1(z) = (z_1, ..., z_N), F_2(z) = F_1(z)^t$

Vern Paulsen (Joint work with Meghna Mittal) BIRS MVOT

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

3.
$$G = \mathbb{B}^N, K = 2$$
. Define $F_1 : \mathbb{B}^N \to M_{1,N}, F_2 : \mathbb{B}^N \to M_{N,1}$
 $F_1(z) = (z_1, ..., z_N), F_2(z) = F_1(z)^t$
 $Q(G) = \{T : \sigma(T) \subseteq \mathbb{B}^N, \sum_{i=1}^N T_i T_i^* \leq 1, \sum_{i=1}^N T_i^* T_i \leq 1\},$
so T a row and column contraction!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Vern Paulsen (Joint work with Meghna Mittal) BIRS MVOT

3.
$$G = \mathbb{B}^N, K = 2$$
. Define $F_1 : \mathbb{B}^N \to M_{1,N}, F_2 : \mathbb{B}^N \to M_{N,1}$
 $F_1(z) = (z_1, ..., z_N), F_2(z) = F_1(z)^t$
 $\mathcal{Q}(G) = \{T : \sigma(T) \subseteq \mathbb{B}^N, \sum_{i=1}^N T_i T_i^* \leq 1, \sum_{i=1}^N T_i^* T_i \leq 1\},$
so T a row and column contraction!
Factorization theorem: $\|f\|_{\mathcal{R}} \leq 1 \Leftrightarrow \exists K_1, H_2$, such that

$$1-f(z)f(w) = (1-\langle z,w\rangle)K_1(z,w) + H_2(z)[(I_n-(z_i\overline{w_j})\otimes I_{\mathcal{H}}]H_2(w)^*$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

and again obtained on matrices.

3.
$$G = \mathbb{B}^N, K = 2$$
. Define $F_1 : \mathbb{B}^N \to M_{1,N}, F_2 : \mathbb{B}^N \to M_{N,1}$
 $F_1(z) = (z_1, ..., z_N), F_2(z) = F_1(z)^t$
 $Q(G) = \{T : \sigma(T) \subseteq \mathbb{B}^N, \sum_{i=1}^N T_i T_i^* \le 1, \sum_{i=1}^N T_i^* T_i \le 1\},$
so T a row and column contraction!
Factorization theorem: $\|f\|_{\mathcal{R}} \le 1 \Leftrightarrow \exists K_1, H_2$, such that

$$1-f(z)\overline{f(w)} = (1-\langle z,w\rangle)K_1(z,w) + H_2(z)[(I_n-(z_i\overline{w_j})\otimes I_{\mathcal{H}}]H_2(w)^*$$

and again obtained on matrices.

Each of these factorization theorems also covered by Ball-Bolotnikov theory, with slightly different hypotheses for Q(G).

3.
$$G = \mathbb{B}^N, K = 2$$
. Define $F_1 : \mathbb{B}^N \to M_{1,N}, F_2 : \mathbb{B}^N \to M_{N,1}$
 $F_1(z) = (z_1, ..., z_N), F_2(z) = F_1(z)^t$
 $Q(G) = \{T : \sigma(T) \subseteq \mathbb{B}^N, \sum_{i=1}^N T_i T_i^* \le 1, \sum_{i=1}^N T_i^* T_i \le 1\},$
so T a row and column contraction!
Factorization theorem: $||f||_{\mathcal{R}} \le 1 \Leftrightarrow \exists K_1, H_2$, such that

$$1-f(z)\overline{f(w)} = (1-\langle z,w\rangle)K_1(z,w) + H_2(z)[(I_n-(z_i\overline{w_j})\otimes I_{\mathcal{H}}]H_2(w)^*$$

and again obtained on matrices.

Each of these factorization theorems also covered by Ball-Bolotnikov theory, with slightly different hypotheses for $\mathcal{Q}(G)$. NEW: i) $H^{\infty}_{\mathcal{R}}(G)$ is a dual operator algebra,

3.
$$G = \mathbb{B}^N, K = 2$$
. Define $F_1 : \mathbb{B}^N \to M_{1,N}, F_2 : \mathbb{B}^N \to M_{N,1}$
 $F_1(z) = (z_1, ..., z_N), F_2(z) = F_1(z)^t$
 $Q(G) = \{T : \sigma(T) \subseteq \mathbb{B}^N, \sum_{i=1}^N T_i T_i^* \le 1, \sum_{i=1}^N T_i^* T_i \le 1\},$
so T a row and column contraction!
Factorization theorem: $||f||_{\mathcal{R}} \le 1 \Leftrightarrow \exists K_1, H_2$, such that

$$1-f(z)\overline{f(w)} = (1-\langle z,w\rangle)K_1(z,w)+H_2(z)[(I_n-(z_i\overline{w_j})\otimes I_{\mathcal{H}}]H_2(w)^*$$

and again obtained on matrices.

Each of these factorization theorems also covered by Ball-Bolotnikov theory, with slightly different hypotheses for Q(G). NEW: i) $H^{\infty}_{\mathcal{R}}(G)$ is a dual operator algebra, ii) $H^{\infty}_{\mathcal{R}}(G)$ is the multiplier algebra of a vector-valued RKHS on G,
3.
$$G = \mathbb{B}^N, K = 2$$
. Define $F_1 : \mathbb{B}^N \to M_{1,N}, F_2 : \mathbb{B}^N \to M_{N,1}$
 $F_1(z) = (z_1, ..., z_N), F_2(z) = F_1(z)^t$
 $Q(G) = \{T : \sigma(T) \subseteq \mathbb{B}^N, \sum_{i=1}^N T_i T_i^* \le 1, \sum_{i=1}^N T_i^* T_i \le 1\},$
so T a row and column contraction!
Factorization theorem: $||f||_{\mathcal{R}} \le 1 \Leftrightarrow \exists K_1, H_2$, such that

$$1-f(z)\overline{f(w)} = (1-\langle z,w\rangle)K_1(z,w)+H_2(z)[(I_n-(z_i\overline{w_j})\otimes I_{\mathcal{H}}]H_2(w)^*$$

and again obtained on matrices.

Each of these factorization theorems also covered by Ball-Bolotnikov theory, with slightly different hypotheses for $\mathcal{Q}(G)$. NEW: i) $H^{\infty}_{\mathcal{R}}(G)$ is a dual operator algebra, ii) $H^{\infty}_{\mathcal{R}}(G)$ is the multiplier algebra of a vector-valued RKHS on G, iii) these norms could all be acheived by taking the suprema over commuting tuples of matrices satisfying the defining inequalities. 4. Agler-McCarthy, Mittal: $G = A_r = \{z : r < |z| < 1\}, K = 2$. Define $F_1(z) = z, F_2(z) = rz^{-1}$

Vern Paulsen (Joint work with Meghna Mittal) BIRS MVOT

イロン イボン イヨン イヨン 三日

4. Agler-McCarthy, Mittal: $G = A_r = \{z : r < |z| < 1\}, K = 2$. Define $F_1(z) = z, F_2(z) = rz^{-1}$ $Q(A_r) = \{T : ||T|| \le 1, ||rT^{-1}|| \le 1, \sigma(T) \subseteq A_r\}.$

Vern Paulsen (Joint work with Meghna Mittal) BIRS MVOT

· < @ > < 글 > < 글 > · · 글

4. **Agler-McCarthy, Mittal:** $G = \mathbb{A}_r = \{z : r < |z| < 1\},\$ K = 2. Define $F_1(z) = z$, $F_2(z) = rz^{-1}$ $\mathcal{Q}(\mathbb{A}_r) = \{T : ||T|| \le 1, ||rT^{-1}|| \le 1, \sigma(T) \subseteq \mathbb{A}_r\}.$ <u>Factorization theorem:</u> $||f||_{\mathcal{R}} \le 1 \Leftrightarrow \exists K_1, K_2$, positive definite such that

$$1-f(z)\overline{f(w)}=(1-z\overline{w})K_1(z,w)+(1-r^2z^{-1}\overline{w}^{-1})K_2(z,w).$$

- 《圖》 《臣》 《臣》 三臣

4. Agler-McCarthy, Mittal: $G = \mathbb{A}_r = \{z : r < |z| < 1\},\$ K = 2. Define $F_1(z) = z$, $F_2(z) = rz^{-1}$ $\mathcal{Q}(\mathbb{A}_r) = \{T : ||T|| \le 1, ||rT^{-1}|| \le 1, \sigma(T) \subseteq \mathbb{A}_r\}.$ <u>Factorization theorem:</u> $||f||_{\mathcal{R}} \le 1 \Leftrightarrow \exists K_1, K_2$, positive definite such that

$$1-f(z)\overline{f(w)}=(1-z\overline{w})K_1(z,w)+(1-r^2z^{-1}\overline{w}^{-1})K_2(z,w).$$

- (日) (日) (日) 日

Mittal proves that this norm is also attained over matrices, finds the extremals of the rational family $\mathcal{Q}(\mathbb{A}_r)$ and computes the C*-envelope, $C_e^*(\mathcal{A})$. 5. Kalyuzhnyi-Verbovetzkii: $G = \{z \in \mathbb{C}^N : Re(z_i) > 0\}$, and $F_i : G \to \mathbb{C}, F_i(z) = \frac{z_i - 1}{z_i + 1}$,

(4回) (4回) (4回)

æ

5. Kalyuzhnyi-Verbovetzkii: $G = \{z \in \mathbb{C}^N : Re(z_i) > 0\}$, and $F_i : G \to \mathbb{C}, F_i(z) = \frac{z_i - 1}{z_i + 1},$ $\mathcal{Q}(G) = \{(T_1, ..., T_N) : Re(T_i) \ge 0, \sigma(T) \subseteq G\}.$

(《圖》 《문》 《문》 - 문

5. Kalyuzhnyi-Verbovetzkii: $G = \{z \in \mathbb{C}^N : Re(z_i) > 0\}$, and $F_i : G \to \mathbb{C}, F_i(z) = \frac{z_i - 1}{z_i + 1},$ $Q(G) = \{(T_1, ..., T_N) : Re(T_i) \ge 0, \sigma(T) \subseteq G\}.$ <u>Factorization theorem:</u> $\|f\|_{\mathcal{R}} \le 1 \Leftrightarrow \exists K_i$ positive definite such that

$$(1-f(z)\overline{f(w)}) = \sum_{i=1}^{N} (1-F_i(z)\overline{F_i(w)})K_i(z,w)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

and obtained over N-tuples of matrices.

6. Let
$$G = \mathbb{D}$$
, set $F_1(z) = z^2$, $F_2(z) = z^3$.

Vern Paulsen (Joint work with Meghna Mittal) BIRS MVOT

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

6. Let $G = \mathbb{D}$, set $F_1(z) = z^2$, $F_2(z) = z^3$. $\mathcal{Q}(\mathbb{D}) = \{T : \sigma(T) \subseteq \mathbb{D}, \|T^2\| \le 1, \|T^3\| \le 1\}$

Vern Paulsen (Joint work with Meghna Mittal) BIRS MVOT

6. Let $G = \mathbb{D}$, set $F_1(z) = z^2$, $F_2(z) = z^3$. $Q(\mathbb{D}) = \{T : \sigma(T) \subseteq \mathbb{D}, ||T^2|| \le 1, ||T^3|| \le 1\}$ $||f||_{\mathcal{R}} \le 1$ iff $(1 - f(z)\overline{f(w)}) = (1 - z^2\overline{w}^2)K_1(z, w) + (1 - z^3\overline{w}^3)K_2(z, w)$

Vern Paulsen (Joint work with Meghna Mittal) BIRS MVOT

6. Let
$$G = \mathbb{D}$$
, set $F_1(z) = z^2$, $F_2(z) = z^3$.
 $Q(\mathbb{D}) = \{T : \sigma(T) \subseteq \mathbb{D}, ||T^2|| \le 1, ||T^3|| \le 1\}$
 $||f||_{\mathcal{R}} \le 1$ iff
 $(1 - f(z)\overline{f(w)}) = (1 - z^2\overline{w}^2)K_1(z, w) + (1 - z^3\overline{w}^3)K_2(z, w)$

・ロト ・回ト ・ヨト

- ★ 臣 ▶ - - 臣

In this case $z \notin H^{\infty}_{\mathcal{R}}(\mathbb{D})$, but $z^k \in H^{\infty}_{\mathcal{R}}(\mathbb{D}), k \neq 1$.

Vern Paulsen (Joint work with Meghna Mittal) BIRS MVOT

6. Let
$$G = \mathbb{D}$$
, set $F_1(z) = z^2$, $F_2(z) = z^3$.
 $Q(\mathbb{D}) = \{T : \sigma(T) \subseteq \mathbb{D}, ||T^2|| \le 1, ||T^3|| \le 1\}$
 $||f||_{\mathcal{R}} \le 1$ iff
 $(1 - f(z)\overline{f(w)}) = (1 - z^2\overline{w}^2)K_1(z, w) + (1 - z^3\overline{w}^3)K_2(z, w)$

2

6. Let
$$G = \mathbb{D}$$
, set $F_1(z) = z^2$, $F_2(z) = z^3$.
 $Q(\mathbb{D}) = \{T : \sigma(T) \subseteq \mathbb{D}, ||T^2|| \le 1, ||T^3|| \le 1\}$
 $||f||_{\mathcal{R}} \le 1$ iff
 $(1 - f(z)\overline{f(w)}) = (1 - z^2\overline{w}^2)K_1(z, w) + (1 - z^3\overline{w}^3)K_2(z, w)$

- 4 同 ト 4 ヨ ト - 4 ヨ ト - -

By our theorem $||f||_{\mathcal{R}}$ attained as the supremum over such representations, since it is wk*-RFD.

6. Let
$$G = \mathbb{D}$$
, set $F_1(z) = z^2$, $F_2(z) = z^3$.
 $Q(\mathbb{D}) = \{T : \sigma(T) \subseteq \mathbb{D}, ||T^2|| \le 1, ||T^3|| \le 1\}$
 $||f||_{\mathcal{R}} \le 1$ iff
 $(1 - f(z)\overline{f(w)}) = (1 - z^2\overline{w}^2)K_1(z, w) + (1 - z^3\overline{w}^3)K_2(z, w)$

By our theorem $||f||_{\mathcal{R}}$ attained as the supremum over such representations, since it is wk*-RFD.

Our theorem doesn't show that $||f||_{\mathcal{R}}$ is attained by taking the supremum over *matrices* $T \in \mathcal{Q}(\mathbb{D})$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ - □ □

6. Let
$$G = \mathbb{D}$$
, set $F_1(z) = z^2$, $F_2(z) = z^3$.
 $Q(\mathbb{D}) = \{T : \sigma(T) \subseteq \mathbb{D}, ||T^2|| \le 1, ||T^3|| \le 1\}$
 $||f||_{\mathcal{R}} \le 1$ iff
 $(1 - f(z)\overline{f(w)}) = (1 - z^2\overline{w}^2)K_1(z, w) + (1 - z^3\overline{w}^3)K_2(z, w)$

By our theorem $||f||_{\mathcal{R}}$ attained as the supremum over such representations, since it is wk*-RFD.

Our theorem doesn't show that $||f||_{\mathcal{R}}$ is attained by taking the supremum over *matrices* $T \in \mathcal{Q}(\mathbb{D})$.

The difference between Example 6 and Examples 1–5, is that in 1–5 the coordinate functions belong to $H^{\infty}_{\mathcal{R}}(G)$.

- 〈 同 〉 〈 臣 〉 〈 臣 〉 ― 臣

・ロト ・回ト ・ヨト

< ≣ >

æ

(日) (四) (王) (王) (王)

Let $G = \mathbb{D}$, and let $F_{\theta}(z) = \frac{z}{2-e^{i\theta}z}, 0 \le \theta < 2\pi$.

· < @ > < 글 > < 글 > · · 글

Let $G = \mathbb{D}$, and let $F_{\theta}(z) = \frac{z}{2-e^{i\theta}z}, 0 \le \theta < 2\pi$. Note $\|F_{\theta}(T)\| \le 1$ iff $Re(e^{i\theta}T) \le 1$.

・ロト ・回ト ・ヨト

< ≣ >

æ

Let
$$G = \mathbb{D}$$
, and let $F_{\theta}(z) = \frac{z}{2-e^{i\theta}z}, 0 \le \theta < 2\pi$.
Note $\|F_{\theta}(T)\| \le 1$ iff $Re(e^{i\theta}T) \le 1$. Hence,
 $\mathcal{Q}(\mathbb{D}) = \{T : \sigma(T) \subseteq \mathbb{D}, w(T) \le 1\},$

Let $G = \mathbb{D}$, and let $F_{\theta}(z) = \frac{z}{2-e^{i\theta}z}, 0 \le \theta < 2\pi$. Note $||F_{\theta}(T)|| \le 1$ iff $Re(e^{i\theta}T) \le 1$. Hence, $\mathcal{Q}(\mathbb{D}) = \{T : \sigma(T) \subseteq \mathbb{D}, w(T) \le 1\},$ $||f||_{\mathcal{R}} \le 1$ iff $(1 - f(z)\overline{f(w)})$ is a pointwise limit of sums of terms of the form $(1 - F_{\theta}(z)\overline{F_{\theta}(w)})K(z, w)$ again enough to sup over matrices.

- 〈 同 〉 〈 臣 〉 〈 臣 〉 ― 臣