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Overview: Quantized Function Theory

Our take on the work of Agler, Agler-McCarthy,
Ambrozie-Timotin, Ball-Bolotnikov, Dritschel-McCullough, and the
“row contractions” crowd.

Given G ⊆ CN open and R = {Fk : G → Mmk ,nk
: k ∈ I} a set of

analytic matrix-valued functions such that
‖Fk(z)‖ < 1 ∀ z ∈ G , k ∈ I . We call this an “analytic
presentation of G”, provided certain hypotheses are met.

The “quantized” version of G.

Set
Q(G ) = {T : σ(T ) ⊆ G , ‖Fk(T )‖ ≤ 1 ∀ k ∈ I}

where T = (T1,T2, ...,TN) is a commuting N-tuple of operators
on some Hilbert space.
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The algebra of the quantization

Given f : G → C analytic, define

‖f ‖R = sup{‖f (T )‖ : T ∈ Q(G )},

H∞R (G ) = {f ∈ H∞(G ) : ‖f ‖R <∞}.

Similarly, define norms on Mn(H∞R (G )).
These are examples of ”Abstract Operator Algebras of Functions”.
We prove theorems about H∞R (G ) by applying some new general
theorems about such algebras.
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Summary of Results

Motivation for many terms to be defined in talk.

Let G have a presentation R = {Fk = (fk,i ,j) : G → Mmk ,nk
, k ∈ I}

and let A be the algebra of the presentation equipped with the
u-norm. Then

1. H∞R (G ) is the BPW completion of A,
2. H∞R (G ) is a local dual operator algebra,

3. H∞R (G ) is the multiplier algebra of a vector-valued RKHS,

4. H∞R (G ) is wk*-RFD, and consequently, the R-norm is
generally the sup over matrices in Q(G ),

5. when I is a finite set, P = (pi ,j) ∈ Mm,n(Hol(G )), we have
that ‖P‖R ≤ 1 if and only if there exist analytic functions
Hk : G → B(Cm,Hk), such that
I−P(z)P(w)∗ =

∑K
k=1 Hk(z)[(Im−Fk(z)Fk(w)∗)⊗I ]Hk(w)∗.

“Agler-Ball-Bolotnikov factorization”
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Operator Algebras of Functions, General Theory

Definition
Given set X, A is an operator algebra of functions on X if

1. A is a subalgebra of the algebra of functions on X ,

2. A separates the points of X and contains the constant
functions,

3. for each n Mn(A) is equipped with a norm ‖.‖Mn(A), such
that the set of norms satisfy the BRS axioms to be an
abstract operator algebra,

4. for each x ∈ X , the evaluation functional, πx : A → C, given
by πx(f ) = f (x) is bounded.

Proposition

Let A be an operator algebra of functions on X , then A ⊆ `∞(X ),
and for every n and every (fi ,j) ∈ Mn(A), we have
‖(fij)‖∞ ≤ ‖(fij)‖Mn(A) and ‖πx‖cb = 1
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Note: Given a finite subset Y ⊆ X , IY = {f ∈ A : f |Y = 0} - ideal
A/IY - quotient op. alg. (∼= C|Y |), πY : A → A/IY - quotient map.

Definition
Let A be an operator algebra of functions. Then A is said to be

1. local if ∀ n and ∀ (fij) ∈ Mn(A), ‖(fij)‖ = supY ‖(πY (fij))‖.
2. Residually finite dimensional(RFD) if ∀ n and
∀ (fij) ∈ Mn(A), ‖(fij)‖ = sup{‖(π(fij))‖} where supremum is
taken over all cc homo. π : A → Mm and for all integers m.

Remark: Every finite dimensional C*-algebra is RFD, but there are
finite dimensional operator algebras that are not RFD.
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Proposition

Let A be an operator algebra of functions on X. Then AL = A
equipped with the matrix norms, ‖(fi ,j)‖L = supY ‖(πY (fi ,j))‖ is a
local operator algebra of functions on X.

Theorem
If A is a local operator algebra of functions then A is RFD.
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Definition
A function f : X → C is called a bounded pointwise(BPW) limit
of A, if there exists a net fλ ∈ A, fλ → f ptw and ‖fλ‖ ≤ C . We
let Ã denote the set of functions that are BPW limits from A.
An operator algebra of functions A is called BPW complete if
A = Ã, as sets.

Theorem
If we equip Ã with the family of norms given by
‖(fij)‖ = inf {C : ‖(f λij )‖A ≤ C , f λij → fij ptw }, then Ã is a BPW

complete local operator algebra of functions and AL ↪→ Ã
completely isometrically.

We call Ã the BPW completion of A.
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A = Ã, as sets.

Theorem
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If we equip Ã with the family of norms given by
‖(fij)‖ = inf {C : ‖(f λij )‖A ≤ C , f λij → fij ptw }, then Ã is a BPW
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Definition
Given a set X and a Hilbert space H, then we call a vector space
L of H-valued functions, an H-valued RKHS if it is equipped
with an inner product that makes it a Hilbert space and it has the
property that for every x ∈ X , the evaluation map Ex : L → H, is
a bounded, linear map.

A function f : X → C is called a (scalar)
multiplier provided that for every g ∈ L, the function fg ∈ L. We
let M(L) denote the operator algebra of multipliers.

Theorem
If A is an operator algebra of functions on the set X that is local
and BPW complete, i.e. A = Ã comp. isom., then

1. A is a dual operator algebra and if (f λij ) is a bounded net in

A, then (f λij )
wk∗→ (fij)⇔ (f λij )→ (fij) BPW.

2. ∃ H-valued RKHS, L such that A =M(L) complete
isometric, wk*-isomorphism.
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Quantized Function Theory, Redux

Definition
Let G ⊆ CN be an open set. If the following conditions hold:

1. there exists a set of matrix-valued functions,
Fk = (fk,i ,j) : G → Mmk ,nk

, k ∈ I whose components are
analytic functions,

2. for z ∈ G and k ∈ I , ‖Fk(z)‖ < 1,

3. the algebra A of functions on G generated by the constant
function and the component functions
{fk,i ,j : k ∈ I , 1 ≤ i ≤ mk , 1 ≤ j ≤ nk} separates points on G ,

then we call R = {Fk : k ∈ I} an analytic presentation of G and
we call A the algebra of the presentation.
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Definition
Given an analytic presentation of G and π : A → B(H) a
homomorphism of the algebra of the presentation, then we call π
an admissible representation provided that ‖(π(fk,i ,j))‖ ≤ 1 for
all k ∈ I and an admissible strict representation when these
inequalities are all strictly less than 1.

Definition
Let (fij) ∈ Mn(A), set ‖(fij)‖u = sup{‖(π(fi ,j))‖ : π admissible }
and set ‖(fi ,j)‖u0 = sup{‖(π(fi ,j)‖ : π strictly admissible }.
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Main Theorem

Theorem
Let G be an analytically presented domain with presentation
R = {Fk = (fk,i ,j) : G → Mmk ,nk

, k ∈ I} and let A be the algebra
of the presentation equipped with the u-norm. Then

1. Ã = H∞R (G ), completely isometrically, and ‖ · ‖R is the
localization of ‖ · ‖u,

2. H∞R (G ) is a BPW complete, local, dual operator algebra,

3. H∞R (G ) is a multiplier algebra, wk*-RFD,

4. for P = (pi ,j) ∈ Mm,n(Hol(G )), we have that ‖P‖R ≤ 1 if and
only if I −P(z)P(w)∗ is an R-limit. When I is finite, this is iff

I − P(z)P(w)∗ =
K∑

k=1

Lk(z)[(I − Fk(z)Fk(w)∗)⊗ IHk
]Lk(w)∗.
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What we don’t know

Part 1, above tells us that for f ∈ A, we have that ‖f ‖R is the
local norm derived from ‖f ‖u, but we do not know in general if
‖f ‖u = ‖f ‖u0 , if ‖f ‖R = ‖f ‖u or if ‖f ‖R = ‖f ‖u0 .

When the domain has a Fejer-like kernel, we can prove equality of
these norms.
Part 3, tells us that for f ∈ H∞R (G ), we have
‖f ‖R = sup{‖π(f )‖}, where the supremum is over all m and all
π : H∞R (G )→ Mm weak*-continuous.
But we can’t prove, in general, that ‖f ‖R = sup ‖f (T )‖ over
N-tuples T = (T1, ...,TN) of commuting matrices in Q(G ).
We don’t have useful characterizations of the pre-duals of H∞R (G ).
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Proof of the factorization result

Our proof of the factorization result(part 4) relies on first proving a
factorization result for A via abstract operator algebra methods.
We wish to mention that result, since it is another place where the
abstract theory of operator algebras plays a key role.

Definition
Let F0 denote the constant function. Then a block diagonal
matrix-valued function of the form D(z) = diag(Fk1 , ...,Fkm) where
ki ∈ I or ki = 0, for 1 ≤ i ≤ m is called admissible block
diagonal matrix over G.
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First Factorization Theorem

Theorem
Let P = (pij) ∈ Mm,n(A). Then the following are equivalent:

(i) ‖P‖u < 1,

(ii) (BP-type factorization) there exists an integer l, matrices of
scalars Cj , 1 ≤ j ≤ l with ‖Cj‖ < 1 and admissible block
diagonal matrices Dj(z), 1 ≤ j ≤ l , which are of compatible
sizes and are such that P(z) = C1D1(z) · · ·ClDl(z).

(iii) (Agler-type factorization) there exists a positive, invertible
matrix R ∈ Mm and matrices Pk ∈ Mm,rk (A), 0 ≤ k ≤ K ,
such that Im − P(z)P(w)∗ =
R + P0(z)P0(w)∗ +

∑K
k=1 Pk(z)(I − Fk(z)Fk(w)∗)(qk )Pk(w)∗

where rk = qkmk and z = (z1, ..., zN), w = (w1, ...,wN) ∈ G .
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Applications of Theorem

1. Agler: G = DN ,K = N. For 1 ≤ k ≤ N, define Fk : G → C
via Fk(z) = zk , where z = (z1, · · · , zN),

Q(DN) = {(T1, · · · ,TN) : ‖Ti‖ ≤ 1 ∀ 1 ≤ i ≤ N},
commuting, σ(T ) ⊆ DN .
Factorization theorem: ‖f ‖R ≤ 1⇔ ∃ K1, · · · ,KN , positive
definite functions such that

1−f (z)f (w) =
N∑

l=1

(1−zlwl)Kl(z ,w) =
N∑

l=1

(1−Fl(z)Fl(w))Kl(z ,w)

Moreover, R-norm obtained by supping over commuting
N-tuples of matrices.
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2. Drury, Arveson, et al: G = BN ⊆ CN , K = 1. Define
F : G →M1,N via F (z) = (z1, · · · , zn)

then

Q(BN) = {(T1, · · · ,TN) :
∑N

i=1 TiT
∗
i ≤ 1, σ(T ) ⊆ BN},

commuting.
Factorization theorem: ‖f ‖R ≤ 1⇔ ∃ K , positive definite

1−f (z)f (w) = (1−〈z ,w〉)K (z ,w) = (1−F (z)F (w)∗)K (z ,w)

and again obtained by supping over commuting N-tuples of
matrices.
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3. G = BN ,K = 2. Define F1 : BN → M1,N ,F2 : BN → MN,1

F1(z) = (z1, ..., zN),F2(z) = F1(z)t

Q(G ) = {T : σ(T ) ⊆ BN ,
∑N

i=1 TiT
∗
i ≤ 1,

∑N
i=1 T ∗i Ti ≤ 1},

so T a row and column contraction!
Factorization theorem: ‖f ‖R ≤ 1⇔ ∃ K1,H2, such that

1−f (z)f (w) = (1−〈z ,w〉)K1(z ,w)+H2(z)[(In−(ziwj)⊗IH]H2(w)∗

and again obtained on matrices.

Each of these factorization theorems also covered by
Ball-Bolotnikov theory, with slightly different hypotheses for Q(G ).
NEW: i) H∞R (G ) is a dual operator algebra,
ii) H∞R (G ) is the multiplier algebra of a vector-valued RKHS on G,
iii) these norms could all be acheived by taking the suprema over
commuting tuples of matrices satisfying the defining inequalities.
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4. Agler-McCarthy, Mittal: G = Ar = {z : r < |z | < 1},
K = 2. Define F1(z) = z , F2(z) = rz−1

Q(Ar ) = {T : ‖T‖ ≤ 1, ‖rT−1‖ ≤ 1, σ(T ) ⊆ Ar}.
Factorization theorem: ‖f ‖R ≤ 1⇔ ∃ K1, K2, positive
definite such that

1− f (z)f (w) = (1− zw)K1(z ,w) + (1− r2z−1w−1)K2(z ,w).

Mittal proves that this norm is also attained over matrices, finds
the extremals of the rational family Q(Ar ) and computes the
C*-envelope, C ∗e (A).
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5. Kalyuzhnyi-Verbovetzkii: G = {z ∈ CN : Re(zi ) > 0}, and
Fi : G → C,Fi (z) = zi−1

zi+1 ,

Q(G ) = {(T1, ...,TN) : Re(Ti ) ≥ 0, σ(T ) ⊆ G}.
Factorization theorem: ‖f ‖R ≤ 1⇔ ∃Ki positive definite such
that

(1− f (z)f (w)) =
N∑

i=1

(1− Fi (z)Fi (w))Ki (z ,w)

and obtained over N-tuples of matrices.
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6. Let G = D, set F1(z) = z2,F2(z) = z3.

Q(D) = {T : σ(T ) ⊆ D, ‖T 2‖ ≤ 1, ‖T 3‖ ≤ 1}
‖f ‖R ≤ 1 iff
(1− f (z)f (w)) = (1− z2w2)K1(z ,w) + (1− z3w3)K2(z ,w)

In this case z /∈ H∞R (D), but zk ∈ H∞R (D), k 6= 1.
π : H∞R (D)→ Mm wk*-cont and comp. contr. iff there exist
A,B ∈ Mm,A

3 = B2, ‖A‖ ≤ 1, ‖B‖ ≤ 1, σ(A) ⊆ D, σ(B) ⊆ D with
π(z2) = A, π(z3) = B.
By our theorem ‖f ‖R attained as the supremum over such
representations, since it is wk*-RFD.
Our theorem doesn’t show that ‖f ‖R is attained by taking the
supremum over matrices T ∈ Q(D).
The difference between Example 6 and Examples 1–5, is that in
1–5 the coordinate functions belong to H∞R (G ).
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7. Universal Operator Algebra for Operators of Numerical
Radius One:

Let G = D, and let Fθ(z) = z
2−e iθz

, 0 ≤ θ < 2π.

Note ‖Fθ(T )‖ ≤ 1 iff Re(e iθT ) ≤ 1. Hence,
Q(D) = {T : σ(T ) ⊆ D,w(T ) ≤ 1},
‖f ‖R ≤ 1 iff (1− f (z)f (w)) is a pointwise limit of sums of
terms of the form (1− Fθ(z)Fθ(w))K (z ,w)
again enough to sup over matrices.
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