Quantized Function Theory

Vern Paulsen
(Joint work with Meghna Mittal)

August 19, 2010

Outline

- Quantized Function Theory
- Overview
- Goals
- Rough Statement of Theorem
- Examples
- Operator Algebras of Functions, General Theory
- Quantized Function Theory, Redux

Overview: Quantized Function Theory

Our take on the work of Agler, Agler-McCarthy, Ambrozie-Timotin, Ball-Bolotnikov, Dritschel-McCullough, and the "row contractions" crowd.

Overview: Quantized Function Theory

Our take on the work of Agler, Agler-McCarthy, Ambrozie-Timotin, Ball-Bolotnikov, Dritschel-McCullough, and the "row contractions" crowd.
Given $G \subseteq \mathbb{C}^{N}$ open and $\mathcal{R}=\left\{F_{k}: G \rightarrow M_{m_{k}, n_{k}}: k \in I\right\}$ a set of analytic matrix-valued functions such that $\left\|F_{k}(z)\right\|<1 \forall z \in G, k \in I$. We call this an "analytic presentation of $\mathbf{G}^{\prime \prime}$, provided certain hypotheses are met.

Overview: Quantized Function Theory

Our take on the work of Agler, Agler-McCarthy, Ambrozie-Timotin, Ball-Bolotnikov, Dritschel-McCullough, and the "row contractions" crowd.
Given $G \subseteq \mathbb{C}^{N}$ open and $\mathcal{R}=\left\{F_{k}: G \rightarrow M_{m_{k}, n_{k}}: k \in I\right\}$ a set of analytic matrix-valued functions such that
$\left\|F_{k}(z)\right\|<1 \forall z \in G, k \in I$. We call this an "analytic presentation of $\mathbf{G}^{\prime \prime}$, provided certain hypotheses are met.

The "quantized" version of G.

Set

$$
\mathcal{Q}(G)=\left\{T: \sigma(T) \subseteq G,\left\|F_{k}(T)\right\| \leq 1 \forall k \in I\right\}
$$

where $T=\left(T_{1}, T_{2}, \ldots, T_{N}\right)$ is a commuting N -tuple of operators on some Hilbert space.

The algebra of the quantization

Given $f: G \rightarrow \mathbb{C}$ analytic, define

$$
\|f\|_{\mathcal{R}}=\sup \{\|f(T)\|: T \in \mathcal{Q}(G)\}
$$

The algebra of the quantization

Given $f: G \rightarrow \mathbb{C}$ analytic, define

$$
\begin{aligned}
\|f\|_{\mathcal{R}} & =\sup \{\|f(T)\|: T \in \mathcal{Q}(G)\} \\
H_{\mathcal{R}}^{\infty}(G) & =\left\{f \in H^{\infty}(G):\|f\|_{\mathcal{R}}<\infty\right\}
\end{aligned}
$$

Similarly, define norms on $M_{n}\left(H_{\mathcal{R}}^{\infty}(G)\right)$.

The algebra of the quantization

Given $f: G \rightarrow \mathbb{C}$ analytic, define

$$
\|f\|_{\mathcal{R}}=\sup \{\|f(T)\|: T \in \mathcal{Q}(G)\}
$$

$$
H_{\mathcal{R}}^{\infty}(G)=\left\{f \in H^{\infty}(G):\|f\|_{\mathcal{R}}<\infty\right\} .
$$

Similarly, define norms on $M_{n}\left(H_{\mathcal{R}}^{\infty}(G)\right)$.
These are examples of "Abstract Operator Algebras of Functions". We prove theorems about $H_{\mathcal{R}}^{\infty}(G)$ by applying some new general theorems about such algebras.

Summary of Results

Motivation for many terms to be defined in talk.

Summary of Results

Motivation for many terms to be defined in talk.
Let G have a presentation $\mathcal{R}=\left\{F_{k}=\left(f_{k, i, j}\right): G \rightarrow M_{m_{k}, n_{k}}, k \in I\right\}$ and let \mathcal{A} be the algebra of the presentation equipped with the u-norm. Then

Summary of Results

Motivation for many terms to be defined in talk.
Let G have a presentation $\mathcal{R}=\left\{F_{k}=\left(f_{k, i, j}\right): G \rightarrow M_{m_{k}, n_{k}}, k \in I\right\}$ and let \mathcal{A} be the algebra of the presentation equipped with the u-norm. Then

1. $H_{\mathcal{R}}^{\infty}(G)$ is the BPW completion of \mathcal{A},

Summary of Results

Motivation for many terms to be defined in talk.
Let G have a presentation $\mathcal{R}=\left\{F_{k}=\left(f_{k, i, j}\right): G \rightarrow M_{m_{k}, n_{k}}, k \in I\right\}$ and let \mathcal{A} be the algebra of the presentation equipped with the u-norm. Then

1. $H_{\mathcal{R}}^{\infty}(G)$ is the BPW completion of \mathcal{A},
2. $H_{\mathcal{R}}^{\infty}(G)$ is a local dual operator algebra,

Summary of Results

Motivation for many terms to be defined in talk.
Let G have a presentation $\mathcal{R}=\left\{F_{k}=\left(f_{k, i, j}\right): G \rightarrow M_{m_{k}, n_{k}}, k \in I\right\}$ and let \mathcal{A} be the algebra of the presentation equipped with the u-norm. Then

1. $H_{\mathcal{R}}^{\infty}(G)$ is the BPW completion of \mathcal{A},
2. $H_{\mathcal{R}}^{\infty}(G)$ is a local dual operator algebra,
3. $H_{\mathcal{R}}^{\infty}(G)$ is the multiplier algebra of a vector-valued RKHS,

Summary of Results

Motivation for many terms to be defined in talk.
Let G have a presentation $\mathcal{R}=\left\{F_{k}=\left(f_{k, i, j}\right): G \rightarrow M_{m_{k}, n_{k}}, k \in I\right\}$ and let \mathcal{A} be the algebra of the presentation equipped with the u-norm. Then

1. $H_{\mathcal{R}}^{\infty}(G)$ is the BPW completion of \mathcal{A},
2. $H_{\mathcal{R}}^{\infty}(G)$ is a local dual operator algebra,
3. $H_{\mathcal{R}}^{\infty}(G)$ is the multiplier algebra of a vector-valued RKHS,
4. $H_{\mathcal{R}}^{\infty}(G)$ is wk*-RFD, and consequently, the \mathcal{R}-norm is generally the sup over matrices in $\mathcal{Q}(G)$,

Summary of Results

Motivation for many terms to be defined in talk.
Let G have a presentation $\mathcal{R}=\left\{F_{k}=\left(f_{k, i, j}\right): G \rightarrow M_{m_{k}, n_{k}}, k \in I\right\}$ and let \mathcal{A} be the algebra of the presentation equipped with the u-norm. Then

1. $H_{\mathcal{R}}^{\infty}(G)$ is the BPW completion of \mathcal{A},
2. $H_{\mathcal{R}}^{\infty}(G)$ is a local dual operator algebra,
3. $H_{\mathcal{R}}^{\infty}(G)$ is the multiplier algebra of a vector-valued RKHS,
4. $H_{\mathcal{R}}^{\infty}(G)$ is $w k^{*}$-RFD, and consequently, the \mathcal{R}-norm is generally the sup over matrices in $\mathcal{Q}(G)$,
5. when I is a finite set, $P=\left(p_{i, j}\right) \in M_{m, n}(\operatorname{Hol}(G))$, we have that $\|P\|_{\mathcal{R}} \leq 1$ if and only if there exist analytic functions $H_{k}: G \rightarrow B\left(\mathbb{C}^{m}, \mathcal{H}_{k}\right)$, such that
$I-P(z) P(w)^{*}=\sum_{k=1}^{K} H_{k}(z)\left[\left(I_{m}-F_{k}(z) F_{k}(w)^{*}\right) \otimes I\right] H_{k}(w)^{*}$.
"Agler-Ball-Bolotnikov factorization"

Operator Algebras of Functions, General Theory

Definition

Given set X, \mathcal{A} is an operator algebra of functions on X if

Operator Algebras of Functions, General Theory

Definition

Given set X, \mathcal{A} is an operator algebra of functions on X if

1. \mathcal{A} is a subalgebra of the algebra of functions on X,

Operator Algebras of Functions, General Theory

Definition

Given set X, \mathcal{A} is an operator algebra of functions on X if

1. \mathcal{A} is a subalgebra of the algebra of functions on X,
2. \mathcal{A} separates the points of X and contains the constant functions,

Operator Algebras of Functions, General Theory

Definition

Given set X, \mathcal{A} is an operator algebra of functions on X if

1. \mathcal{A} is a subalgebra of the algebra of functions on X,
2. \mathcal{A} separates the points of X and contains the constant functions,
3. for each $n M_{n}(\mathcal{A})$ is equipped with a norm $\|\cdot\|_{M_{n}(\mathcal{A})}$, such that the set of norms satisfy the BRS axioms to be an abstract operator algebra,

Operator Algebras of Functions, General Theory

Definition

Given set X, \mathcal{A} is an operator algebra of functions on X if

1. \mathcal{A} is a subalgebra of the algebra of functions on X,
2. \mathcal{A} separates the points of X and contains the constant functions,
3. for each $n M_{n}(\mathcal{A})$ is equipped with a norm $\|\cdot\|_{M_{n}(\mathcal{A})}$, such that the set of norms satisfy the BRS axioms to be an abstract operator algebra,
4. for each $x \in X$, the evaluation functional, $\pi_{x}: \mathcal{A} \rightarrow \mathbb{C}$, given by $\pi_{x}(f)=f(x)$ is bounded.

Operator Algebras of Functions, General Theory

Definition

Given set X, \mathcal{A} is an operator algebra of functions on X if

1. \mathcal{A} is a subalgebra of the algebra of functions on X,
2. \mathcal{A} separates the points of X and contains the constant functions,
3. for each $n M_{n}(\mathcal{A})$ is equipped with a norm $\|\cdot\|_{M_{n}(\mathcal{A})}$, such that the set of norms satisfy the BRS axioms to be an abstract operator algebra,
4. for each $x \in X$, the evaluation functional, $\pi_{x}: \mathcal{A} \rightarrow \mathbb{C}$, given by $\pi_{x}(f)=f(x)$ is bounded.

Proposition

Let \mathcal{A} be an operator algebra of functions on X, then $\mathcal{A} \subseteq \ell^{\infty}(X)$, and for every n and every $\left(f_{i, j}\right) \in M_{n}(\mathcal{A})$, we have $\left\|\left(f_{i j}\right)\right\|_{\infty} \leq\left\|\left(f_{i j}\right)\right\|_{M_{n}(\mathcal{A})}$ and $\left\|\pi_{x}\right\|_{c b}=1$

Note: Given a finite subset $Y \subseteq X, I_{Y}=\left\{f \in \mathcal{A}:\left.f\right|_{Y}=0\right\}$ - ideal \mathcal{A} / I_{Y} - quotient op. alg. $\left(\cong \mathbb{C}^{|Y|}\right), \pi_{Y}: \mathcal{A} \rightarrow \mathcal{A} / I_{Y}$ - quotient map.

Note: Given a finite subset $Y \subseteq X, I_{Y}=\left\{f \in \mathcal{A}:\left.f\right|_{Y}=0\right\}$ - ideal \mathcal{A} / I_{Y} - quotient op. alg. $\left(\cong \mathbb{C}^{|Y|}\right), \pi_{Y}: \mathcal{A} \rightarrow \mathcal{A} / I_{Y}$ - quotient map.
Definition
Let \mathcal{A} be an operator algebra of functions. Then \mathcal{A} is said to be

Note: Given a finite subset $Y \subseteq X, I_{Y}=\left\{f \in \mathcal{A}:\left.f\right|_{Y}=0\right\}$ - ideal \mathcal{A} / I_{Y} - quotient op. alg. $\left(\cong \mathbb{C}^{|Y|}\right), \pi_{Y}: \mathcal{A} \rightarrow \mathcal{A} / I_{Y^{-}}$quotient map.
Definition
Let \mathcal{A} be an operator algebra of functions. Then \mathcal{A} is said to be 1. local if $\forall n$ and $\forall\left(f_{i j}\right) \in M_{n}(\mathcal{A}),\left\|\left(f_{i j}\right)\right\|=\sup _{Y}\left\|\left(\pi_{Y}\left(f_{i j}\right)\right)\right\|$.

Note: Given a finite subset $Y \subseteq X, I_{Y}=\left\{f \in \mathcal{A}:\left.f\right|_{Y}=0\right\}$ - ideal

Definition

Let \mathcal{A} be an operator algebra of functions. Then \mathcal{A} is said to be 1. local if $\forall n$ and $\forall\left(f_{i j}\right) \in M_{n}(\mathcal{A}),\left\|\left(f_{i j}\right)\right\|=\sup _{Y}\left\|\left(\pi_{Y}\left(f_{i j}\right)\right)\right\|$.
2. Residually finite dimensional(RFD) if $\forall n$ and $\forall\left(f_{i j}\right) \in M_{n}(\mathcal{A}),\left\|\left(f_{i j}\right)\right\|=\sup \left\{\left\|\left(\pi\left(f_{i j}\right)\right)\right\|\right\}$ where supremum is taken over all cc homo. $\pi: \mathcal{A} \rightarrow M_{m}$ and for all integers m.

Note: Given a finite subset $Y \subseteq X, I_{Y}=\left\{f \in \mathcal{A}:\left.f\right|_{Y}=0\right\}$ - ideal

Definition

Let \mathcal{A} be an operator algebra of functions. Then \mathcal{A} is said to be 1. local if $\forall n$ and $\forall\left(f_{i j}\right) \in M_{n}(\mathcal{A}),\left\|\left(f_{i j}\right)\right\|=\sup _{Y}\left\|\left(\pi_{Y}\left(f_{i j}\right)\right)\right\|$.
2. Residually finite dimensional(RFD) if $\forall n$ and $\forall\left(f_{i j}\right) \in M_{n}(\mathcal{A}),\left\|\left(f_{i j}\right)\right\|=\sup \left\{\left\|\left(\pi\left(f_{i j}\right)\right)\right\|\right\}$ where supremum is taken over all cc homo. $\pi: \mathcal{A} \rightarrow M_{m}$ and for all integers m.

Remark: Every finite dimensional C^{*}-algebra is RFD, but there are finite dimensional operator algebras that are not RFD.

Proposition

Let \mathcal{A} be an operator algebra of functions on X. Then $\mathcal{A}_{L}=\mathcal{A}$ equipped with the matrix norms, $\left\|\left(f_{i, j}\right)\right\|_{L}=\sup _{Y}\left\|\left(\pi_{Y}\left(f_{i, j}\right)\right)\right\|$ is a local operator algebra of functions on X.

Proposition

Let \mathcal{A} be an operator algebra of functions on X. Then $\mathcal{A}_{L}=\mathcal{A}$ equipped with the matrix norms, $\left\|\left(f_{i, j}\right)\right\|_{L}=\sup _{Y}\left\|\left(\pi_{Y}\left(f_{i, j}\right)\right)\right\|$ is a local operator algebra of functions on X.

Theorem
If \mathcal{A} is a local operator algebra of functions then \mathcal{A} is RFD.

Definition

A function $f: X \rightarrow \mathbb{C}$ is called a bounded pointwise(BPW) limit of \mathcal{A}, if there exists a net $f_{\lambda} \in \mathcal{A}, f_{\lambda} \rightarrow f$ ptw and $\left\|f_{\lambda}\right\| \leq C$. We let $\tilde{\mathcal{A}}$ denote the set of functions that are BPW limits from \mathcal{A}. An operator algebra of functions \mathcal{A} is called BPW complete if $\mathcal{A}=\tilde{\mathcal{A}}$, as sets.

Definition

A function $f: X \rightarrow \mathbb{C}$ is called a bounded pointwise(BPW) limit of \mathcal{A}, if there exists a net $f_{\lambda} \in \mathcal{A}, f_{\lambda} \rightarrow f$ ptw and $\left\|f_{\lambda}\right\| \leq C$. We let $\tilde{\mathcal{A}}$ denote the set of functions that are BPW limits from \mathcal{A}. An operator algebra of functions \mathcal{A} is called BPW complete if $\mathcal{A}=\tilde{\mathcal{A}}$, as sets.

Theorem

If we equip $\tilde{\mathcal{A}}$ with the family of norms given by
$\left\|\left(f_{i j}\right)\right\|=\inf \left\{C:\left\|\left(f_{i j}^{\lambda}\right)\right\|_{\mathcal{A}} \leq C, f_{i j}^{\lambda} \rightarrow f_{i j} p t w\right\}$, then $\tilde{\mathcal{A}}$ is a BPW complete local operator algebra of functions and $\mathcal{A}_{L} \hookrightarrow \tilde{\mathcal{A}}$ completely isometrically.

Definition

A function $f: X \rightarrow \mathbb{C}$ is called a bounded pointwise(BPW) limit of \mathcal{A}, if there exists a net $f_{\lambda} \in \mathcal{A}, f_{\lambda} \rightarrow f$ ptw and $\left\|f_{\lambda}\right\| \leq C$. We let $\tilde{\mathcal{A}}$ denote the set of functions that are BPW limits from \mathcal{A}. An operator algebra of functions \mathcal{A} is called BPW complete if $\mathcal{A}=\tilde{\mathcal{A}}$, as sets.

Theorem

If we equip $\tilde{\mathcal{A}}$ with the family of norms given by
$\left\|\left(f_{i j}\right)\right\|=\inf \left\{C:\left\|\left(f_{i j}^{\lambda}\right)\right\|_{\mathcal{A}} \leq C, f_{i j}^{\lambda} \rightarrow f_{i j} p t w\right\}$, then $\tilde{\mathcal{A}}$ is a BPW complete local operator algebra of functions and $\mathcal{A}_{L} \hookrightarrow \tilde{\mathcal{A}}$ completely isometrically.
We call $\tilde{\mathcal{A}}$ the BPW completion of \mathcal{A}.

Definition

Given a set X and a Hilbert space \mathcal{H}, then we call a vector space \mathcal{L} of \mathcal{H}-valued functions, an \mathcal{H}-valued RKHS if it is equipped with an inner product that makes it a Hilbert space and it has the property that for every $x \in X$, the evaluation $\operatorname{map} E_{x}: \mathcal{L} \rightarrow \mathcal{H}$, is a bounded, linear map.

Definition

Given a set X and a Hilbert space \mathcal{H}, then we call a vector space \mathcal{L} of \mathcal{H}-valued functions, an \mathcal{H}-valued RKHS if it is equipped with an inner product that makes it a Hilbert space and it has the property that for every $x \in X$, the evaluation $\operatorname{map} E_{x}: \mathcal{L} \rightarrow \mathcal{H}$, is a bounded, linear map. A function $f: X \rightarrow \mathbb{C}$ is called a (scalar) multiplier provided that for every $g \in \mathcal{L}$, the function $f g \in \mathcal{L}$. We let $\mathcal{M}(\mathcal{L})$ denote the operator algebra of multipliers.

Definition

Given a set X and a Hilbert space \mathcal{H}, then we call a vector space \mathcal{L} of \mathcal{H}-valued functions, an \mathcal{H}-valued RKHS if it is equipped with an inner product that makes it a Hilbert space and it has the property that for every $x \in X$, the evaluation $\operatorname{map} E_{x}: \mathcal{L} \rightarrow \mathcal{H}$, is a bounded, linear map. A function $f: X \rightarrow \mathbb{C}$ is called a (scalar) multiplier provided that for every $g \in \mathcal{L}$, the function $f g \in \mathcal{L}$. We let $\mathcal{M}(\mathcal{L})$ denote the operator algebra of multipliers.

Theorem
If \mathcal{A} is an operator algebra of functions on the set X that is local and BPW complete, i.e. $\mathcal{A}=\tilde{\mathcal{A}}$ comp. isom., then

Definition

Given a set X and a Hilbert space \mathcal{H}, then we call a vector space \mathcal{L} of \mathcal{H}-valued functions, an \mathcal{H}-valued RKHS if it is equipped with an inner product that makes it a Hilbert space and it has the property that for every $x \in X$, the evaluation $\operatorname{map} E_{x}: \mathcal{L} \rightarrow \mathcal{H}$, is a bounded, linear map. A function $f: X \rightarrow \mathbb{C}$ is called a (scalar) multiplier provided that for every $g \in \mathcal{L}$, the function $f g \in \mathcal{L}$. We let $\mathcal{M}(\mathcal{L})$ denote the operator algebra of multipliers.

Theorem

If \mathcal{A} is an operator algebra of functions on the set X that is local and BPW complete, i.e. $\mathcal{A}=\tilde{\mathcal{A}}$ comp. isom., then

1. \mathcal{A} is a dual operator algebra and if $\left(f_{i j}^{\lambda}\right)$ is a bounded net in \mathcal{A}, then $\left(f_{i j}^{\lambda}\right) \xrightarrow{w k *}\left(f_{i j}\right) \Leftrightarrow\left(f_{i j}^{\lambda}\right) \rightarrow\left(f_{i j}\right) B P W$.

Definition

Given a set X and a Hilbert space \mathcal{H}, then we call a vector space \mathcal{L} of \mathcal{H}-valued functions, an \mathcal{H}-valued RKHS if it is equipped with an inner product that makes it a Hilbert space and it has the property that for every $x \in X$, the evaluation $\operatorname{map} E_{x}: \mathcal{L} \rightarrow \mathcal{H}$, is a bounded, linear map. A function $f: X \rightarrow \mathbb{C}$ is called a (scalar) multiplier provided that for every $g \in \mathcal{L}$, the function $f g \in \mathcal{L}$. We let $\mathcal{M}(\mathcal{L})$ denote the operator algebra of multipliers.

Theorem

If \mathcal{A} is an operator algebra of functions on the set X that is local and BPW complete, i.e. $\mathcal{A}=\tilde{\mathcal{A}}$ comp. isom., then

1. \mathcal{A} is a dual operator algebra and if $\left(f_{i j}^{\lambda}\right)$ is a bounded net in \mathcal{A}, then $\left(f_{i j}^{\lambda}\right) \xrightarrow{w k *}\left(f_{i j}\right) \Leftrightarrow\left(f_{i j}^{\lambda}\right) \rightarrow\left(f_{i j}\right) B P W$.
2. $\exists \mathcal{H}$-valued $R K H S, \mathcal{L}$ such that $\mathcal{A}=\mathcal{M}(\mathcal{L})$ complete isometric, wk*-isomorphism.

Quantized Function Theory, Redux

Definition

Let $G \subseteq \mathbb{C}^{N}$ be an open set. If the following conditions hold:

Quantized Function Theory, Redux

Definition

Let $G \subseteq \mathbb{C}^{N}$ be an open set. If the following conditions hold:

1. there exists a set of matrix-valued functions, $F_{k}=\left(f_{k, i, j}\right): G \rightarrow M_{m_{k}, n_{k}}, k \in I$ whose components are analytic functions,

Quantized Function Theory, Redux

Definition

Let $G \subseteq \mathbb{C}^{N}$ be an open set. If the following conditions hold:

1. there exists a set of matrix-valued functions, $F_{k}=\left(f_{k, i, j}\right): G \rightarrow M_{m_{k}, n_{k}}, k \in I$ whose components are analytic functions,
2. for $z \in G$ and $k \in I,\left\|F_{k}(z)\right\|<1$,

Quantized Function Theory, Redux

Definition

Let $G \subseteq \mathbb{C}^{N}$ be an open set. If the following conditions hold:

1. there exists a set of matrix-valued functions, $F_{k}=\left(f_{k, i, j}\right): G \rightarrow M_{m_{k}, n_{k}}, k \in I$ whose components are analytic functions,
2. for $z \in G$ and $k \in I,\left\|F_{k}(z)\right\|<1$,
3. the algebra \mathcal{A} of functions on G generated by the constant function and the component functions
$\left\{f_{k, i, j}: k \in I, 1 \leq i \leq m_{k}, 1 \leq j \leq n_{k}\right\}$ separates points on G,

Quantized Function Theory, Redux

Definition

Let $G \subseteq \mathbb{C}^{N}$ be an open set. If the following conditions hold:

1. there exists a set of matrix-valued functions, $F_{k}=\left(f_{k, i, j}\right): G \rightarrow M_{m_{k}, n_{k}}, k \in I$ whose components are analytic functions,
2. for $z \in G$ and $k \in I,\left\|F_{k}(z)\right\|<1$,
3. the algebra \mathcal{A} of functions on G generated by the constant function and the component functions
$\left\{f_{k, i, j}: k \in I, 1 \leq i \leq m_{k}, 1 \leq j \leq n_{k}\right\}$ separates points on G,
then we call $\mathcal{R}=\left\{F_{k}: k \in I\right\}$ an analytic presentation of \mathbf{G} and we call \mathcal{A} the algebra of the presentation.

Definition

Given an analytic presentation of G and $\pi: \mathcal{A} \rightarrow B(\mathcal{H})$ a homomorphism of the algebra of the presentation, then we call π an admissible representation provided that $\left\|\left(\pi\left(f_{k, i, j}\right)\right)\right\| \leq 1$ for all $k \in I$ and an admissible strict representation when these inequalities are all strictly less than 1.

Definition

Given an analytic presentation of G and $\pi: \mathcal{A} \rightarrow B(\mathcal{H})$ a homomorphism of the algebra of the presentation, then we call π an admissible representation provided that $\left\|\left(\pi\left(f_{k, i, j}\right)\right)\right\| \leq 1$ for all $k \in I$ and an admissible strict representation when these inequalities are all strictly less than 1.

Definition
Let $\left(f_{i j}\right) \in M_{n}(\mathcal{A})$, set $\left\|\left(f_{i j}\right)\right\|_{u}=\sup \left\{\left\|\left(\pi\left(f_{i, j}\right)\right)\right\|: \pi\right.$ admissible $\}$ and set $\left\|\left(f_{i, j}\right)\right\|_{u_{0}}=\sup \left\{\|\left(\pi\left(f_{i, j}\right) \|: \pi\right.\right.$ strictly admissible $\}$.

Main Theorem

Theorem

Let G be an analytically presented domain with presentation $\mathcal{R}=\left\{F_{k}=\left(f_{k, i, j}\right): G \rightarrow M_{m_{k}, n_{k}}, k \in I\right\}$ and let \mathcal{A} be the algebra of the presentation equipped with the u-norm. Then

Main Theorem

Theorem

Let G be an analytically presented domain with presentation $\mathcal{R}=\left\{F_{k}=\left(f_{k, i, j}\right): G \rightarrow M_{m_{k}, n_{k}}, k \in I\right\}$ and let \mathcal{A} be the algebra of the presentation equipped with the u-norm. Then

1. $\tilde{\mathcal{A}}=H_{\mathcal{R}}^{\infty}(G)$, completely isometrically, and $\|\cdot\|_{\mathcal{R}}$ is the localization of $\|\cdot\|_{u}$,

Main Theorem

Theorem

Let G be an analytically presented domain with presentation $\mathcal{R}=\left\{F_{k}=\left(f_{k, i, j}\right): G \rightarrow M_{m_{k}, n_{k}}, k \in I\right\}$ and let \mathcal{A} be the algebra of the presentation equipped with the u-norm. Then

1. $\tilde{\mathcal{A}}=H_{\mathcal{R}}^{\infty}(G)$, completely isometrically, and $\|\cdot\|_{\mathcal{R}}$ is the localization of $\|\cdot\|_{u}$,
2. $H_{\mathcal{R}}^{\infty}(G)$ is a BPW complete, local, dual operator algebra,

Main Theorem

Theorem

Let G be an analytically presented domain with presentation $\mathcal{R}=\left\{F_{k}=\left(f_{k, i, j}\right): G \rightarrow M_{m_{k}, n_{k}}, k \in I\right\}$ and let \mathcal{A} be the algebra of the presentation equipped with the u-norm. Then

1. $\tilde{\mathcal{A}}=H_{\mathcal{R}}^{\infty}(G)$, completely isometrically, and $\|\cdot\|_{\mathcal{R}}$ is the localization of $\|\cdot\|_{u}$,
2. $H_{\mathcal{R}}^{\infty}(G)$ is a BPW complete, local, dual operator algebra,
3. $H_{\mathcal{R}}^{\infty}(G)$ is a multiplier algebra, $w k^{*}$-RFD,

Main Theorem

Theorem

Let G be an analytically presented domain with presentation $\mathcal{R}=\left\{F_{k}=\left(f_{k, i, j}\right): G \rightarrow M_{m_{k}, n_{k}}, k \in I\right\}$ and let \mathcal{A} be the algebra of the presentation equipped with the u-norm. Then

1. $\tilde{\mathcal{A}}=H_{\mathcal{R}}^{\infty}(G)$, completely isometrically, and $\|\cdot\|_{\mathcal{R}}$ is the localization of $\|\cdot\|_{u}$,
2. $H_{\mathcal{R}}^{\infty}(G)$ is a BPW complete, local, dual operator algebra,
3. $H_{\mathcal{R}}^{\infty}(G)$ is a multiplier algebra, $w k^{*}$-RFD,
4. for $P=\left(p_{i, j}\right) \in M_{m, n}(\operatorname{Hol}(G))$, we have that $\|P\|_{\mathcal{R}} \leq 1$ if and only if I $-P(z) P(w)^{*}$ is an \mathcal{R}-limit. When I is finite, this is iff

$$
I-P(z) P(w)^{*}=\sum_{k=1}^{K} L_{k}(z)\left[\left(I-F_{k}(z) F_{k}(w)^{*}\right) \otimes I_{\mathcal{H}_{k}}\right] L_{k}(w)^{*}
$$

What we don't know

Part 1 , above tells us that for $f \in \mathcal{A}$, we have that $\|f\|_{\mathcal{R}}$ is the local norm derived from $\|f\|_{u}$, but we do not know in general if $\|f\|_{u}=\|f\|_{u_{0}}$, if $\|f\|_{\mathcal{R}}=\|f\|_{u}$ or if $\|f\|_{\mathcal{R}}=\|f\|_{u_{0}}$.

What we don't know

Part 1, above tells us that for $f \in \mathcal{A}$, we have that $\|f\|_{\mathcal{R}}$ is the local norm derived from $\|f\|_{u}$, but we do not know in general if $\|f\|_{u}=\|f\|_{u_{0}}$, if $\|f\|_{\mathcal{R}}=\|f\|_{u}$ or if $\|f\|_{\mathcal{R}}=\|f\|_{u_{0}}$.
When the domain has a Fejer-like kernel, we can prove equality of these norms.

What we don't know

Part 1, above tells us that for $f \in \mathcal{A}$, we have that $\|f\|_{\mathcal{R}}$ is the local norm derived from $\|f\|_{u}$, but we do not know in general if $\|f\|_{u}=\|f\|_{u_{0}}$, if $\|f\|_{\mathcal{R}}=\|f\|_{u}$ or if $\|f\|_{\mathcal{R}}=\|f\|_{u_{0}}$.
When the domain has a Fejer-like kernel, we can prove equality of these norms.
Part 3, tells us that for $f \in H_{\mathcal{R}}^{\infty}(G)$, we have $\|f\|_{\mathcal{R}}=\sup \{\|\pi(f)\|\}$, where the supremum is over all m and all $\pi: H_{\mathcal{R}}^{\infty}(G) \rightarrow M_{m}$ weak*-continuous.

What we don't know

Part 1, above tells us that for $f \in \mathcal{A}$, we have that $\|f\|_{\mathcal{R}}$ is the local norm derived from $\|f\|_{u}$, but we do not know in general if $\|f\|_{u}=\|f\|_{u_{0}}$, if $\|f\|_{\mathcal{R}}=\|f\|_{u}$ or if $\|f\|_{\mathcal{R}}=\|f\|_{u_{0}}$.
When the domain has a Fejer-like kernel, we can prove equality of these norms.
Part 3, tells us that for $f \in H_{\mathcal{R}}^{\infty}(G)$, we have $\|f\|_{\mathcal{R}}=\sup \{\|\pi(f)\|\}$, where the supremum is over all m and all $\pi: H_{\mathcal{R}}^{\infty}(G) \rightarrow M_{m}$ weak*-continuous.
But we can't prove, in general, that $\|f\|_{\mathcal{R}}=\sup \|f(T)\|$ over N-tuples $T=\left(T_{1}, \ldots, T_{N}\right)$ of commuting matrices in $\mathcal{Q}(G)$.

What we don't know

Part 1, above tells us that for $f \in \mathcal{A}$, we have that $\|f\|_{\mathcal{R}}$ is the local norm derived from $\|f\|_{u}$, but we do not know in general if $\|f\|_{u}=\|f\|_{u_{0}}$, if $\|f\|_{\mathcal{R}}=\|f\|_{u}$ or if $\|f\|_{\mathcal{R}}=\|f\|_{u_{0}}$.
When the domain has a Fejer-like kernel, we can prove equality of these norms.
Part 3, tells us that for $f \in H_{\mathcal{R}}^{\infty}(G)$, we have $\|f\|_{\mathcal{R}}=\sup \{\|\pi(f)\|\}$, where the supremum is over all m and all $\pi: H_{\mathcal{R}}^{\infty}(G) \rightarrow M_{m}$ weak*-continuous.
But we can't prove, in general, that $\|f\|_{\mathcal{R}}=\sup \|f(T)\|$ over N-tuples $T=\left(T_{1}, \ldots, T_{N}\right)$ of commuting matrices in $\mathcal{Q}(G)$.
We don't have useful characterizations of the pre-duals of $H_{\mathcal{R}}^{\infty}(G)$.

Proof of the factorization result

Our proof of the factorization result(part 4) relies on first proving a factorization result for \mathcal{A} via abstract operator algebra methods. We wish to mention that result, since it is another place where the abstract theory of operator algebras plays a key role.

Proof of the factorization result

Our proof of the factorization result(part 4) relies on first proving a factorization result for \mathcal{A} via abstract operator algebra methods. We wish to mention that result, since it is another place where the abstract theory of operator algebras plays a key role.

Definition

Let F_{0} denote the constant function. Then a block diagonal matrix-valued function of the form $D(z)=\operatorname{diag}\left(F_{k_{1}}, \ldots, F_{k_{m}}\right)$ where $k_{i} \in I$ or $k_{i}=0$, for $1 \leq i \leq m$ is called admissible block diagonal matrix over G.

First Factorization Theorem

Theorem
Let $P=\left(p_{i j}\right) \in M_{m, n}(\mathcal{A})$. Then the following are equivalent: (i) $\|P\|_{u}<1$,

First Factorization Theorem

Theorem
Let $P=\left(p_{i j}\right) \in M_{m, n}(\mathcal{A})$. Then the following are equivalent:
(i) $\|P\|_{u}<1$,
(ii) (BP-type factorization) there exists an integer I, matrices of scalars $C_{j}, 1 \leq j \leq I$ with $\left\|C_{j}\right\|<1$ and admissible block diagonal matrices $D_{j}(z), 1 \leq j \leq 1$, which are of compatible sizes and are such that $P(z)=C_{1} D_{1}(z) \cdots C_{l} D_{l}(z)$.

First Factorization Theorem

Theorem

Let $P=\left(p_{i j}\right) \in M_{m, n}(\mathcal{A})$. Then the following are equivalent:
(i) $\|P\|_{u}<1$,
(ii) (BP-type factorization) there exists an integer I, matrices of scalars $C_{j}, 1 \leq j \leq I$ with $\left\|C_{j}\right\|<1$ and admissible block diagonal matrices $D_{j}(z), 1 \leq j \leq 1$, which are of compatible sizes and are such that $P(z)=C_{1} D_{1}(z) \cdots C_{l} D_{l}(z)$.
(iii) (Agler-type factorization) there exists a positive, invertible matrix $R \in M_{m}$ and matrices $P_{k} \in M_{m, r_{k}}(\mathcal{A}), 0 \leq k \leq K$, such that $I_{m}-P(z) P(w)^{*}=$ $R+P_{0}(z) P_{0}(w)^{*}+\sum_{k=1}^{K} P_{k}(z)\left(I-F_{k}(z) F_{k}(w)^{*}\right)^{\left(q_{k}\right)} P_{k}(w)^{*}$ where $r_{k}=q_{k} m_{k}$ and $z=\left(z_{1}, \ldots, z_{N}\right), w=\left(w_{1}, \ldots, w_{N}\right) \in G$.

Applications of Theorem

1. Agler: $G=\mathbb{D}^{N}, K=N$. For $1 \leq k \leq N$, define $F_{k}: G \rightarrow \mathbb{C}$ via $F_{k}(z)=z_{k}$, where $z=\left(z_{1}, \cdots, z_{N}\right)$,

Applications of Theorem

1. Agler: $G=\mathbb{D}^{N}, K=N$. For $1 \leq k \leq N$, define $F_{k}: G \rightarrow \mathbb{C}$ via $F_{k}(z)=z_{k}$, where $z=\left(z_{1}, \cdots, z_{N}\right)$,
$\mathcal{Q}\left(\mathbb{D}^{N}\right)=\left\{\left(T_{1}, \cdots, T_{N}\right):\left\|T_{i}\right\| \leq 1 \forall 1 \leq i \leq N\right\}$, commuting, $\sigma(T) \subseteq \mathbb{D}^{N}$.

Applications of Theorem

1. Agler: $G=\mathbb{D}^{N}, K=N$. For $1 \leq k \leq N$, define $F_{k}: G \rightarrow \mathbb{C}$ via $F_{k}(z)=z_{k}$, where $z=\left(z_{1}, \cdots, z_{N}\right)$,
$\mathcal{Q}\left(\mathbb{D}^{N}\right)=\left\{\left(T_{1}, \cdots, T_{N}\right):\left\|T_{i}\right\| \leq 1 \forall 1 \leq i \leq N\right\}$, commuting, $\sigma(T) \subseteq \mathbb{D}^{N}$.
Factorization theorem: $\|f\|_{\mathcal{R}} \leq 1 \Leftrightarrow \exists K_{1}, \cdots, K_{N}$, positive definite functions such that

$$
1-f(z) \overline{f(w)}=\sum_{l=1}^{N}\left(1-z_{l} \overline{w_{l}}\right) K_{l}(z, w)=\sum_{l=1}^{N}\left(1-F_{l}(z) \overline{F_{l}(w)}\right) K_{l}(z, w)
$$

Applications of Theorem

1. Agler: $G=\mathbb{D}^{N}, K=N$. For $1 \leq k \leq N$, define $F_{k}: G \rightarrow \mathbb{C}$ via $F_{k}(z)=z_{k}$, where $z=\left(z_{1}, \cdots, z_{N}\right)$,
$\mathcal{Q}\left(\mathbb{D}^{N}\right)=\left\{\left(T_{1}, \cdots, T_{N}\right):\left\|T_{i}\right\| \leq 1 \forall 1 \leq i \leq N\right\}$, commuting, $\sigma(T) \subseteq \mathbb{D}^{N}$.
Factorization theorem: $\|f\|_{\mathcal{R}} \leq 1 \Leftrightarrow \exists K_{1}, \cdots, K_{N}$, positive definite functions such that

$$
1-f(z) \overline{f(w)}=\sum_{l=1}^{N}\left(1-z_{l} \overline{w_{l}}\right) K_{l}(z, w)=\sum_{l=1}^{N}\left(1-F_{l}(z) \overline{F_{l}(w)}\right) K_{l}(z, w)
$$

Moreover, \mathcal{R}-norm obtained by supping over commuting N -tuples of matrices.
2. Drury, Arveson, et al: $G=\mathbb{B}^{N} \subseteq \mathbb{C}^{N}, K=1$. Define $F: G \rightarrow \mathbb{M}_{1, N}$ via $F(z)=\left(z_{1}, \cdots, z_{n}\right)$
2. Drury, Arveson, et al: $G=\mathbb{B}^{N} \subseteq \mathbb{C}^{N}, K=1$. Define $F: G \rightarrow \mathbb{M}_{1, N}$ via $F(z)=\left(z_{1}, \cdots, z_{n}\right)$ then $\mathcal{Q}\left(\mathbb{B}^{N}\right)=\left\{\left(T_{1}, \cdots, T_{N}\right): \sum_{i=1}^{N} T_{i} T_{i}^{*} \leq 1, \sigma(T) \subseteq \mathbb{B}^{N}\right\}$, commuting.
2. Drury, Arveson, et al: $G=\mathbb{B}^{N} \subseteq \mathbb{C}^{N}, K=1$. Define $F: G \rightarrow \mathbb{M}_{1, N}$ via $F(z)=\left(z_{1}, \cdots, z_{n}\right)$ then $\mathcal{Q}\left(\mathbb{B}^{N}\right)=\left\{\left(T_{1}, \cdots, T_{N}\right): \sum_{i=1}^{N} T_{i} T_{i}^{*} \leq 1, \sigma(T) \subseteq \mathbb{B}^{N}\right\}$, commuting.
Factorization theorem: $\|f\|_{\mathcal{R}} \leq 1 \Leftrightarrow \exists K$, positive definite $1-f(z) \overline{f(w)}=(1-\langle z, w\rangle) K(z, w)=\left(1-F(z) F(w)^{*}\right) K(z, w)$ and again obtained by supping over commuting N -tuples of matrices.
3. $G=\mathbb{B}^{N}, K=2$. Define $F_{1}: \mathbb{B}^{N} \rightarrow M_{1, N}, F_{2}: \mathbb{B}^{N} \rightarrow M_{N, 1}$
3. $G=\mathbb{B}^{N}, K=2$. Define $F_{1}: \mathbb{B}^{N} \rightarrow M_{1, N}, F_{2}: \mathbb{B}^{N} \rightarrow M_{N, 1}$ $F_{1}(z)=\left(z_{1}, \ldots, z_{N}\right), F_{2}(z)=F_{1}(z)^{t}$
3. $G=\mathbb{B}^{N}, K=2$. Define $F_{1}: \mathbb{B}^{N} \rightarrow M_{1, N}, F_{2}: \mathbb{B}^{N} \rightarrow M_{N, 1}$ $F_{1}(z)=\left(z_{1}, \ldots, z_{N}\right), F_{2}(z)=F_{1}(z)^{t}$ $\mathcal{Q}(G)=\left\{T: \sigma(T) \subseteq \mathbb{B}^{N}, \sum_{i=1}^{N} T_{i} T_{i}^{*} \leq 1, \sum_{i=1}^{N} T_{i}^{*} T_{i} \leq 1\right\}$, so T a row and column contraction!
3. $G=\mathbb{B}^{N}, K=2$. Define $F_{1}: \mathbb{B}^{N} \rightarrow M_{1, N}, F_{2}: \mathbb{B}^{N} \rightarrow M_{N, 1}$ $F_{1}(z)=\left(z_{1}, \ldots, z_{N}\right), F_{2}(z)=F_{1}(z)^{t}$
$\mathcal{Q}(G)=\left\{T: \sigma(T) \subseteq \mathbb{B}^{N}, \sum_{i=1}^{N} T_{i} T_{i}^{*} \leq 1, \sum_{i=1}^{N} T_{i}^{*} T_{i} \leq 1\right\}$,
so T a row and column contraction!
Factorization theorem: $\|f\|_{\mathcal{R}} \leq 1 \Leftrightarrow \exists K_{1}, H_{2}$, such that
$1-f(z) \overline{f(w)}=(1-\langle z, w\rangle) K_{1}(z, w)+H_{2}(z)\left[\left(I_{n}-\left(z_{i} \overline{w_{j}}\right) \otimes \mathcal{H}_{\mathcal{H}}\right] H_{2}(w)^{*}\right.$
and again obtained on matrices.
3. $G=\mathbb{B}^{N}, K=2$. Define $F_{1}: \mathbb{B}^{N} \rightarrow M_{1, N}, F_{2}: \mathbb{B}^{N} \rightarrow M_{N, 1}$ $F_{1}(z)=\left(z_{1}, \ldots, z_{N}\right), F_{2}(z)=F_{1}(z)^{t}$ $\mathcal{Q}(G)=\left\{T: \sigma(T) \subseteq \mathbb{B}^{N}, \sum_{i=1}^{N} T_{i} T_{i}^{*} \leq 1, \sum_{i=1}^{N} T_{i}^{*} T_{i} \leq 1\right\}$,
so T a row and column contraction!
Factorization theorem: $\|f\|_{\mathcal{R}} \leq 1 \Leftrightarrow \exists K_{1}, H_{2}$, such that
$1-f(z) \overline{f(w)}=(1-\langle z, w\rangle) K_{1}(z, w)+H_{2}(z)\left[\left(I_{n}-\left(z_{i} \overline{w_{j}}\right) \otimes \mathcal{H}_{\mathcal{H}}\right] H_{2}(w)^{*}\right.$
and again obtained on matrices.
Each of these factorization theorems also covered by Ball-Bolotnikov theory, with slightly different hypotheses for $\mathcal{Q}(G)$.
3. $G=\mathbb{B}^{N}, K=2$. Define $F_{1}: \mathbb{B}^{N} \rightarrow M_{1, N}, F_{2}: \mathbb{B}^{N} \rightarrow M_{N, 1}$ $F_{1}(z)=\left(z_{1}, \ldots, z_{N}\right), F_{2}(z)=F_{1}(z)^{t}$ $\mathcal{Q}(G)=\left\{T: \sigma(T) \subseteq \mathbb{B}^{N}, \sum_{i=1}^{N} T_{i} T_{i}^{*} \leq 1, \sum_{i=1}^{N} T_{i}^{*} T_{i} \leq 1\right\}$,
so T a row and column contraction!
Factorization theorem: $\|f\|_{\mathcal{R}} \leq 1 \Leftrightarrow \exists K_{1}, H_{2}$, such that
$1-f(z) \overline{f(w)}=(1-\langle z, w\rangle) K_{1}(z, w)+H_{2}(z)\left[\left(I_{n}-\left(z_{i} \overline{w_{j}}\right) \otimes \mathcal{H}_{\mathcal{H}}\right] H_{2}(w)^{*}\right.$
and again obtained on matrices.
Each of these factorization theorems also covered by Ball-Bolotnikov theory, with slightly different hypotheses for $\mathcal{Q}(G)$. NEW: i) $H_{\mathcal{R}}^{\infty}(G)$ is a dual operator algebra,
3. $G=\mathbb{B}^{N}, K=2$. Define $F_{1}: \mathbb{B}^{N} \rightarrow M_{1, N}, F_{2}: \mathbb{B}^{N} \rightarrow M_{N, 1}$ $F_{1}(z)=\left(z_{1}, \ldots, z_{N}\right), F_{2}(z)=F_{1}(z)^{t}$ $\mathcal{Q}(G)=\left\{T: \sigma(T) \subseteq \mathbb{B}^{N}, \sum_{i=1}^{N} T_{i} T_{i}^{*} \leq 1, \sum_{i=1}^{N} T_{i}^{*} T_{i} \leq 1\right\}$,
so T a row and column contraction!
Factorization theorem: $\|f\|_{\mathcal{R}} \leq 1 \Leftrightarrow \exists K_{1}, H_{2}$, such that
$1-f(z) \overline{f(w)}=(1-\langle z, w\rangle) K_{1}(z, w)+H_{2}(z)\left[\left(I_{n}-\left(z_{i} \overline{W_{j}}\right) \otimes \mathcal{H}_{\mathcal{H}}\right] H_{2}(w)^{*}\right.$
and again obtained on matrices.
Each of these factorization theorems also covered by Ball-Bolotnikov theory, with slightly different hypotheses for $\mathcal{Q}(G)$. NEW: i) $H_{\mathcal{R}}^{\infty}(G)$ is a dual operator algebra,
ii) $H_{\mathcal{R}}^{\infty}(G)$ is the multiplier algebra of a vector-valued RKHS on G,
3. $G=\mathbb{B}^{N}, K=2$. Define $F_{1}: \mathbb{B}^{N} \rightarrow M_{1, N}, F_{2}: \mathbb{B}^{N} \rightarrow M_{N, 1}$ $F_{1}(z)=\left(z_{1}, \ldots, z_{N}\right), F_{2}(z)=F_{1}(z)^{t}$ $\mathcal{Q}(G)=\left\{T: \sigma(T) \subseteq \mathbb{B}^{N}, \sum_{i=1}^{N} T_{i} T_{i}^{*} \leq 1, \sum_{i=1}^{N} T_{i}^{*} T_{i} \leq 1\right\}$,
so T a row and column contraction!
Factorization theorem: $\|f\|_{\mathcal{R}} \leq 1 \Leftrightarrow \exists K_{1}, H_{2}$, such that
$1-f(z) \overline{f(w)}=(1-\langle z, w\rangle) K_{1}(z, w)+H_{2}(z)\left[\left(I_{n}-\left(z_{i} \overline{w_{j}}\right) \otimes \mathcal{H}_{\mathcal{H}}\right] H_{2}(w)^{*}\right.$
and again obtained on matrices.
Each of these factorization theorems also covered by Ball-Bolotnikov theory, with slightly different hypotheses for $\mathcal{Q}(G)$. NEW: i) $H_{\mathcal{R}}^{\infty}(G)$ is a dual operator algebra,
ii) $H_{\mathcal{R}}^{\infty}(G)$ is the multiplier algebra of a vector-valued RKHS on G,
iii) these norms could all be acheived by taking the suprema over commuting tuples of matrices satisfying the defining inequalities.
4. Agler-McCarthy, Mittal: $G=\mathbb{A}_{r}=\{z: r<|z|<1\}$, $K=2$. Define $F_{1}(z)=z, F_{2}(z)=r z^{-1}$
4. Agler-McCarthy, Mittal: $G=\mathbb{A}_{r}=\{z: r<|z|<1\}$, $K=2$. Define $F_{1}(z)=z, F_{2}(z)=r z^{-1}$ $\mathcal{Q}\left(\mathbb{A}_{r}\right)=\left\{T:\|T\| \leq 1,\left\|r T^{-1}\right\| \leq 1, \sigma(T) \subseteq \mathbb{A}_{r}\right\}$.
4. Agler-McCarthy, Mittal: $G=\mathbb{A}_{r}=\{z: r<|z|<1\}$, $K=2$. Define $F_{1}(z)=z, F_{2}(z)=r z^{-1}$ $\mathcal{Q}\left(\mathbb{A}_{r}\right)=\left\{T:\|T\| \leq 1,\left\|r T^{-1}\right\| \leq 1, \sigma(T) \subseteq \mathbb{A}_{r}\right\}$.
Factorization theorem: $\|f\|_{\mathcal{R}} \leq 1 \Leftrightarrow \exists K_{1}, K_{2}$, positive definite such that

$$
1-f(z) \overline{f(w)}=(1-z \bar{w}) K_{1}(z, w)+\left(1-r^{2} z^{-1} \bar{w}^{-1}\right) K_{2}(z, w) .
$$

4. Agler-McCarthy, Mittal: $G=\mathbb{A}_{r}=\{z: r<|z|<1\}$, $K=2$. Define $F_{1}(z)=z, F_{2}(z)=r z^{-1}$ $\mathcal{Q}\left(\mathbb{A}_{r}\right)=\left\{T:\|T\| \leq 1,\left\|r T^{-1}\right\| \leq 1, \sigma(T) \subseteq \mathbb{A}_{r}\right\}$.
Factorization theorem: $\|f\|_{\mathcal{R}} \leq 1 \Leftrightarrow \exists K_{1}, K_{2}$, positive definite such that

$$
1-f(z) \overline{f(w)}=(1-z \bar{w}) K_{1}(z, w)+\left(1-r^{2} z^{-1} \bar{w}^{-1}\right) K_{2}(z, w) .
$$

Mittal proves that this norm is also attained over matrices, finds the extremals of the rational family $\mathcal{Q}\left(\mathbb{A}_{r}\right)$ and computes the C^{*}-envelope, $C_{e}^{*}(\mathcal{A})$.
5. Kalyuzhnyi-Verbovetzkii: $G=\left\{z \in \mathbb{C}^{N}: \operatorname{Re}\left(z_{i}\right)>0\right\}$, and $F_{i}: G \rightarrow \mathbb{C}, F_{i}(z)=\frac{z_{i}-1}{z_{i}+1}$,
5. Kalyuzhnyi-Verbovetzkii: $G=\left\{z \in \mathbb{C}^{N}: \operatorname{Re}\left(z_{i}\right)>0\right\}$, and $F_{i}: G \rightarrow \mathbb{C}, F_{i}(z)=\frac{z_{i}-1}{z_{i}+1}$, $\mathcal{Q}(G)=\left\{\left(T_{1}, \ldots, T_{N}\right): \operatorname{Re}\left(T_{i}\right) \geq 0, \sigma(T) \subseteq G\right\}$.
5. Kalyuzhnyi-Verbovetzkii: $G=\left\{z \in \mathbb{C}^{N}: \operatorname{Re}\left(z_{i}\right)>0\right\}$, and $F_{i}: G \rightarrow \mathbb{C}, F_{i}(z)=\frac{z_{i}-1}{z_{i}+1}$,
$\mathcal{Q}(G)=\left\{\left(T_{1}, \ldots, T_{N}\right): \operatorname{Re}\left(T_{i}\right) \geq 0, \sigma(T) \subseteq G\right\}$.
Factorization theorem: $\|f\|_{\mathcal{R}} \leq 1 \Leftrightarrow \exists K_{i}$ positive definite such that

$$
(1-f(z) \overline{f(w)})=\sum_{i=1}^{N}\left(1-F_{i}(z) \overline{F_{i}(w)}\right) K_{i}(z, w)
$$

and obtained over N -tuples of matrices.
6. Let $G=\mathbb{D}$, set $F_{1}(z)=z^{2}, F_{2}(z)=z^{3}$.
6. Let $G=\mathbb{D}$, set $F_{1}(z)=z^{2}, F_{2}(z)=z^{3}$. $\mathcal{Q}(\mathbb{D})=\left\{T: \sigma(T) \subseteq \mathbb{D},\left\|T^{2}\right\| \leq 1,\left\|T^{3}\right\| \leq 1\right\}$
6. Let $G=\mathbb{D}$, set $F_{1}(z)=z^{2}, F_{2}(z)=z^{3}$. $\mathcal{Q}(\mathbb{D})=\left\{T: \sigma(T) \subseteq \mathbb{D},\left\|T^{2}\right\| \leq 1,\left\|T^{3}\right\| \leq 1\right\}$

$$
\|f\|_{\mathcal{R}} \leq 1 \mathrm{iff}
$$

$$
(1-f(z) \overline{f(w)})=\left(1-z^{2} \bar{w}^{2}\right) K_{1}(z, w)+\left(1-z^{3} \bar{w}^{3}\right) K_{2}(z, w)
$$

6. Let $G=\mathbb{D}$, set $F_{1}(z)=z^{2}, F_{2}(z)=z^{3}$.

$$
\mathcal{Q}(\mathbb{D})=\left\{T: \sigma(T) \subseteq \mathbb{D},\left\|T^{2}\right\| \leq 1,\left\|T^{3}\right\| \leq 1\right\}
$$

$$
\|f\|_{\mathcal{R}} \leq 1 \text { iff }
$$

$$
(1-f(z) \overline{f(w)})=\left(1-z^{2} \bar{w}^{2}\right) K_{1}(z, w)+\left(1-z^{3} \bar{w}^{3}\right) K_{2}(z, w)
$$

In this case $z \notin H_{\mathcal{R}}^{\infty}(\mathbb{D})$, but $z^{k} \in H_{\mathcal{R}}^{\infty}(\mathbb{D}), k \neq 1$.

$$
\begin{aligned}
& \text { 6. Let } G=\mathbb{D} \text {, set } F_{1}(z)=z^{2}, F_{2}(z)=z^{3} \text {. } \\
& \mathcal{Q}(\mathbb{D})=\left\{T: \sigma(T) \subseteq \mathbb{D},\left\|T^{2}\right\| \leq 1,\left\|T^{3}\right\| \leq 1\right\} \\
& \|f\|_{\mathcal{R}} \leq 1 \text { iff } \\
& (1-f(z) \overline{f(w)})=\left(1-z^{2} \bar{w}^{2}\right) K_{1}(z, w)+\left(1-z^{3} \bar{w}^{3}\right) K_{2}(z, w)
\end{aligned}
$$

In this case $z \notin H_{\mathcal{R}}^{\infty}(\mathbb{D})$, but $z^{k} \in H_{\mathcal{R}}^{\infty}(\mathbb{D}), k \neq 1$. $\pi: H_{\mathcal{R}}^{\infty}(\mathbb{D}) \rightarrow M_{m}$ wk*-cont and comp. contr. iff there exist $A, B \in M_{m}, A^{3}=B^{2},\|A\| \leq 1,\|B\| \leq 1, \sigma(A) \subseteq \mathbb{D}, \sigma(B) \subseteq \mathbb{D}$ with $\pi\left(z^{2}\right)=A, \pi\left(z^{3}\right)=B$.
6. Let $G=\mathbb{D}$, set $F_{1}(z)=z^{2}, F_{2}(z)=z^{3}$.

$$
\mathcal{Q}(\mathbb{D})=\left\{T: \sigma(T) \subseteq \mathbb{D},\left\|T^{2}\right\| \leq 1,\left\|T^{3}\right\| \leq 1\right\}
$$

$$
\|f\|_{\mathcal{R}} \leq 1 \text { iff }
$$

$$
(1-f(z) \overline{f(w)})=\left(1-z^{2} \bar{w}^{2}\right) K_{1}(z, w)+\left(1-z^{3} \bar{w}^{3}\right) K_{2}(z, w)
$$

In this case $z \notin H_{\mathcal{R}}^{\infty}(\mathbb{D})$, but $z^{k} \in H_{\mathcal{R}}^{\infty}(\mathbb{D}), k \neq 1$.
$\pi: H_{\mathcal{R}}^{\infty}(\mathbb{D}) \rightarrow M_{m}$ wk*-cont and comp. contr. iff there exist
$A, B \in M_{m}, A^{3}=B^{2},\|A\| \leq 1,\|B\| \leq 1, \sigma(A) \subseteq \mathbb{D}, \sigma(B) \subseteq \mathbb{D}$ with $\pi\left(z^{2}\right)=A, \pi\left(z^{3}\right)=B$.
By our theorem $\|f\|_{\mathcal{R}}$ attained as the supremum over such representations, since it is $w k^{*}$-RFD.
6. Let $G=\mathbb{D}$, set $F_{1}(z)=z^{2}, F_{2}(z)=z^{3}$.

$$
\mathcal{Q}(\mathbb{D})=\left\{T: \sigma(T) \subseteq \mathbb{D},\left\|T^{2}\right\| \leq 1,\left\|T^{3}\right\| \leq 1\right\}
$$

$$
\|f\|_{\mathcal{R}} \leq 1 \text { iff }
$$

$$
(1-f(z) \overline{f(w)})=\left(1-z^{2} \bar{w}^{2}\right) K_{1}(z, w)+\left(1-z^{3} \bar{w}^{3}\right) K_{2}(z, w)
$$

In this case $z \notin H_{\mathcal{R}}^{\infty}(\mathbb{D})$, but $z^{k} \in H_{\mathcal{R}}^{\infty}(\mathbb{D}), k \neq 1$.
$\pi: H_{\mathcal{R}}^{\infty}(\mathbb{D}) \rightarrow M_{m}$ wk*-cont and comp. contr. iff there exist
$A, B \in M_{m}, A^{3}=B^{2},\|A\| \leq 1,\|B\| \leq 1, \sigma(A) \subseteq \mathbb{D}, \sigma(B) \subseteq \mathbb{D}$ with $\pi\left(z^{2}\right)=A, \pi\left(z^{3}\right)=B$.
By our theorem $\|f\|_{\mathcal{R}}$ attained as the supremum over such representations, since it is wk*-RFD.
Our theorem doesn't show that $\|f\|_{\mathcal{R}}$ is attained by taking the supremum over matrices $T \in \mathcal{Q}(\mathbb{D})$.
6. Let $G=\mathbb{D}$, set $F_{1}(z)=z^{2}, F_{2}(z)=z^{3}$.

$$
\begin{aligned}
& \mathcal{Q}(\mathbb{D})=\left\{T: \sigma(T) \subseteq \mathbb{D},\left\|T^{2}\right\| \leq 1,\left\|T^{3}\right\| \leq 1\right\} \\
& \|f\|_{\mathcal{R}} \leq 1 \text { iff } \\
& (1-f(z) \overline{f(w)})=\left(1-z^{2} \bar{w}^{2}\right) K_{1}(z, w)+\left(1-z^{3} \bar{w}^{3}\right) K_{2}(z, w)
\end{aligned}
$$

In this case $z \notin H_{\mathcal{R}}^{\infty}(\mathbb{D})$, but $z^{k} \in H_{\mathcal{R}}^{\infty}(\mathbb{D}), k \neq 1$.
$\pi: H_{\mathcal{R}}^{\infty}(\mathbb{D}) \rightarrow M_{m}$ wk*-cont and comp. contr. iff there exist
$A, B \in M_{m}, A^{3}=B^{2},\|A\| \leq 1,\|B\| \leq 1, \sigma(A) \subseteq \mathbb{D}, \sigma(B) \subseteq \mathbb{D}$ with $\pi\left(z^{2}\right)=A, \pi\left(z^{3}\right)=B$.
By our theorem $\|f\|_{\mathcal{R}}$ attained as the supremum over such representations, since it is w^{*}-RFD.
Our theorem doesn't show that $\|f\|_{\mathcal{R}}$ is attained by taking the supremum over matrices $T \in \mathcal{Q}(\mathbb{D})$.
The difference between Example 6 and Examples 1-5, is that in $1-5$ the coordinate functions belong to $H_{\mathcal{R}}^{\infty}(G)$.
7. Universal Operator Algebra for Operators of Numerical Radius One:
7. Universal Operator Algebra for Operators of Numerical Radius One:
Let $G=\mathbb{D}$, and let $F_{\theta}(z)=\frac{z}{2-e^{i \theta z}}, 0 \leq \theta<2 \pi$.
7. Universal Operator Algebra for Operators of Numerical Radius One:
Let $G=\mathbb{D}$, and let $F_{\theta}(z)=\frac{z}{2-e^{i \theta z}}, 0 \leq \theta<2 \pi$.
Note $\left\|F_{\theta}(T)\right\| \leq 1$ iff $\operatorname{Re}\left(e^{i \theta} T\right) \leq 1$.
7. Universal Operator Algebra for Operators of Numerical Radius One:
Let $G=\mathbb{D}$, and let $F_{\theta}(z)=\frac{z}{2-e^{i \theta z}}, 0 \leq \theta<2 \pi$.
Note $\left\|F_{\theta}(T)\right\| \leq 1$ iff $\operatorname{Re}\left(e^{i \theta} T\right) \leq 1$. Hence, $\mathcal{Q}(\mathbb{D})=\{T: \sigma(T) \subseteq \mathbb{D}, w(T) \leq 1\}$,
7. Universal Operator Algebra for Operators of Numerical Radius One:
Let $G=\mathbb{D}$, and let $F_{\theta}(z)=\frac{z}{2-e^{i \theta} z}, 0 \leq \theta<2 \pi$.
Note $\left\|F_{\theta}(T)\right\| \leq 1$ iff $\operatorname{Re}\left(e^{i \theta} T\right) \leq 1$. Hence, $\mathcal{Q}(\mathbb{D})=\{T: \sigma(T) \subseteq \mathbb{D}, w(T) \leq 1\}$, $\|f\|_{\mathcal{R}} \leq 1$ iff $(1-f(z) \overline{f(w)})$ is a pointwise limit of sums of terms of the form $\left(1-F_{\theta}(z) \overline{F_{\theta}(w)}\right) K(z, w)$ again enough to sup over matrices.

