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The orbit method

Unitary representations
of G

←−−−−−−−→ Quantization of
symplectic G −manifolds

If G is a nilpotent simply connected Lie group, then there exists a
bijective correspondence

Irreducible unitary
representations of G

!

G − orbits
in g∗

There is a dictionary :

Algebraic operation Geometric operation

ResGHπ p(O) where p : g∗ → h∗

IndG
Hπ p−1(O) where p : g∗ → h∗

π1 ⊗ π2 O1 +O2

... ...
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Nilpotent Lie groups

G : nilpotent and simply connected g = Lie(G) O ⊂ g∗ : a G-orbit.
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Nilpotent Lie groups

G : nilpotent and simply connected g = Lie(G) O ⊂ g∗ : a G-orbit.

Recipe to construct π from O
1 Fix λ ∈ O. Consider the skew-symmetric form

Ωλ : g × g→ R

defined by Ωλ(X,Y) = λ([X,Y]).
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Nilpotent Lie groups

G : nilpotent and simply connected g = Lie(G) O ⊂ g∗ : a G-orbit.

Recipe to construct π from O
1 Fix λ ∈ O. Consider the skew-symmetric form

Ωλ : g × g→ R

defined by Ωλ(X,Y) = λ([X,Y]).

2 Proposition. There exists a subalgebram ⊂ g such that m is a
maximal isotropic subspace of Ωλ.
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Nilpotent Lie groups

G : nilpotent and simply connected g = Lie(G) O ⊂ g∗ : a G-orbit.

Recipe to construct π from O
1 Fix λ ∈ O. Consider the skew-symmetric form

Ωλ : g × g→ R

defined by Ωλ(X,Y) = λ([X,Y]).

2 Proposition. There exists a subalgebram ⊂ g such that m is a
maximal isotropic subspace of Ωλ.

3 SetM = exp(m) and define χλ : M→ C× by

χλ(exp(X)) = eλ(X)
√
−1 for every X ∈ m.
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Nilpotent Lie groups

G : nilpotent and simply connected g = Lie(G) O ⊂ g∗ : a G-orbit.

Recipe to construct π from O
1 Fix λ ∈ O. Consider the skew-symmetric form

Ωλ : g × g→ R

defined by Ωλ(X,Y) = λ([X,Y]).

2 Proposition. There exists a subalgebram ⊂ g such that m is a
maximal isotropic subspace of Ωλ.

3 SetM = exp(m) and define χλ : M→ C× by

χλ(exp(X)) = eλ(X)
√
−1 for every X ∈ m.

4 Set π = IndG
Mχλ.
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Example : the Schrödinger model

(W,Ω) : finite dimensional symplectic vector space, i.e.,

Ω is nondegenerate,
Ω(v,w) = −Ω(w, v).
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Example : the Schrödinger model

(W,Ω) : finite dimensional symplectic vector space, i.e.,

Ω is nondegenerate,
Ω(v,w) = −Ω(w, v).

The Heisenberg group :

Hn = { (v, s) | v ∈W and s ∈ R}

The group law is given by

(v1, s1) • (v2, s2) = (v1 + v2, s1 + s2 +
1

2
Ω(v1, v2)).
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Example : the Schrödinger model

(W,Ω) : finite dimensional symplectic vector space, i.e.,

Ω is nondegenerate,
Ω(v,w) = −Ω(w, v).

The Heisenberg group :

Hn = { (v, s) | v ∈W and s ∈ R}

The group law is given by

(v1, s1) • (v2, s2) = (v1 + v2, s1 + s2 +
1

2
Ω(v1, v2)).

dimZ(Hn) = 1 and Hn/Z(Hn) is commutative (i.e., Hn is
two-step nilpotent).
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Example : the Schrödinger model (cont.)

Consider a polarization of (W,Ω), i.e., a direct sum
decomposition

W = X ⊕ Y such thatΩ(X,X) = Ω(Y,Y) = 0.
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Example : the Schrödinger model (cont.)

Consider a polarization of (W,Ω), i.e., a direct sum
decomposition

W = X ⊕ Y such thatΩ(X,X) = Ω(Y,Y) = 0.

SetH := L2(Y) := { f : Y→ C |
∫
Y
| f |2dµ < ∞ }.
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Example : the Schrödinger model (cont.)

Consider a polarization of (W,Ω), i.e., a direct sum
decomposition

W = X ⊕ Y such thatΩ(X,X) = Ω(Y,Y) = 0.

SetH := L2(Y) := { f : Y→ C |
∫
Y
| f |2dµ < ∞ }.

Fix a nonzero a ∈ R and define a representation πa of Hn on
H via

(
πa(v, 0) f

)
(y) = e aΩ(y,v)

√
−1f (y) if v ∈ X,(

πa(0, v) f
)
(y) = f (y + v) if v ∈ Y,(

πa(0, s) f
)
(y) = eas

√
−1f (y) otherwise.

15 / 107



Example : the Schrödinger model (cont.)

Facts:

For every a ∈ R, πa is an irreducible unitary rep. of Hn.
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Example : the Schrödinger model (cont.)

Facts:

For every a ∈ R, πa is an irreducible unitary rep. of Hn.

If a , b, the representations πa and πb are not unitarily
equivalent.
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Example : the Schrödinger model (cont.)

Facts:

For every a ∈ R, πa is an irreducible unitary rep. of Hn.

If a , b, the representations πa and πb are not unitarily
equivalent.

Theorem (Stone-von Neumann, 1930’s)

Up to unitary equivalence, an irreducible unitary
representation of Hn is one of the following :

1 A one-dimensional representation (which factors through
Hn/Z(Hn)),

2 πa, for some a ∈ R×.

18 / 107



Example : Schrödinger model and the orbit method

Recall that :
Hn = { (v, s) | v ∈W and s ∈ R}

Set hn = Lie(Hn) and fix Z ∈ Z(hn).
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Example : Schrödinger model and the orbit method

Recall that :
Hn = { (v, s) | v ∈W and s ∈ R}

Set hn = Lie(Hn) and fix Z ∈ Z(hn).

Hn-orbits in h
∗
n are :

{λ} where λ(Z) = 0 !
one-dimensional

representations of Hn.

{λ ∈ h∗n | λ(Z) = a} ! the representation πa.
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Solvable and semisimple groups

Theorem (Auslander - Kostant)

Suppose G is a solvable, connected, simply connected, type I
Lie group. Then

Ĝ =
⋃

O⊂g∗
SO

where each SO is a torus of dimension b1(O) = first betti
number of O.
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Solvable and semisimple groups

Theorem (Auslander - Kostant)

Suppose G is a solvable, connected, simply connected, type I
Lie group. Then

Ĝ =
⋃

O⊂g∗
SO

where each SO is a torus of dimension b1(O) = first betti
number of O.

Semisimple Groups

Elliptic orbits! Discrete series

Nilpotent orbits! associated varieties of unitary rep’s

. . .
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Crash course on Lie superalgebras

Introduced by physicists – motivated by supersymmetry.
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Crash course on Lie superalgebras

Introduced by physicists – motivated by supersymmetry.

A (nonassociative) superalgebra is a Z/2Z-graded algebra
A = A0 ⊕A1 (i.e.,AiAj ⊆ Ai+j (mod 2)).

24 / 107



Crash course on Lie superalgebras

Introduced by physicists – motivated by supersymmetry.

A (nonassociative) superalgebra is a Z/2Z-graded algebra
A = A0 ⊕A1 (i.e.,AiAj ⊆ Ai+j (mod 2)).

A Lie superalgebra is a superalgebra g = g0 ⊕ g1 with a
“bracket”

[·, ·] : g × g→ g
satisfying

[X,Y] = −(−1)|X|·|Y|[Y,X]
and

(−1)|X|·|Z|[X, [Y,Z]] + (−1)|Y|·|X|[Y, [Z,X]] + (−1)|Z|·|Y|[Z, [X,Y]] = 0
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Crash course on Lie superalgebras (cont.)

Examples of Lie superalgebras

gl(m|n) :
V = V0 ⊕ V1 and g = End(V) = End0(V) ⊕ End1(V)
where

Endi(V) =
{
T ∈ End(V) | T(Vs) ⊆ Vs+i (mod 2) for any s ∈ Z/2Z

}

and for homogeneous X and Y, the bracket is given by

[X,Y] = XY − (−1)|X|·|Y|YX
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Crash course on Lie superalgebras (cont.)

Examples of Lie superalgebras

gl(m|n) :
V = V0 ⊕ V1 and g = End(V) = End0(V) ⊕ End1(V)
where

Endi(V) =
{
T ∈ End(V) | T(Vs) ⊆ Vs+i (mod 2) for any s ∈ Z/2Z

}

and for homogeneous X and Y, the bracket is given by

[X,Y] = XY − (−1)|X|·|Y|YX

Simple Lie superalgebras:
sl(m|n), osp(m|2n), f(4), g(3), p(n), q(n), ...
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Crash course on Lie superalgebras (cont.)

Examples of Lie superalgebras

gl(m|n) :
V = V0 ⊕ V1 and g = End(V) = End0(V) ⊕ End1(V)
where

Endi(V) =
{
T ∈ End(V) | T(Vs) ⊆ Vs+i (mod 2) for any s ∈ Z/2Z

}

and for homogeneous X and Y, the bracket is given by

[X,Y] = XY − (−1)|X|·|Y|YX

Simple Lie superalgebras:
sl(m|n), osp(m|2n), f(4), g(3), p(n), q(n), ...
Heisenberg-Clifford Lie superalgebras.
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Heisenberg-Clifford Lie superalgebra

Let (W,Ω) be a supersymplectic space, i.e.,

W =W0 ⊕W1.

Ω : W ×W → R satisfies

Ω(W0,W1) = Ω(W1,W0) = 0
Ω|W1×W1

is a nondegenerate symmetric form.
Ω|W0×W0

is a symplectic form.
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Heisenberg-Clifford Lie superalgebra

Let (W,Ω) be a supersymplectic space, i.e.,

W =W0 ⊕W1.

Ω : W ×W → R satisfies

Ω(W0,W1) = Ω(W1,W0) = 0
Ω|W1×W1

is a nondegenerate symmetric form.
Ω|W0×W0

is a symplectic form.

Set hW =W ⊕Rwhere

[(v1, s1), (v2, s2)] = (0,Ω(v1, v2))
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Heisenberg-Clifford Lie superalgebra

Let (W,Ω) be a supersymplectic space, i.e.,

W =W0 ⊕W1.

Ω : W ×W → R satisfies

Ω(W0,W1) = Ω(W1,W0) = 0
Ω|W1×W1

is a nondegenerate symmetric form.
Ω|W0×W0

is a symplectic form.

Set hW =W ⊕Rwhere

[(v1, s1), (v2, s2)] = (0,Ω(v1, v2))

hW is two-step nilpotent and dim
(
Z(hW)

)
= 1.
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Towards unitary representations : super Lie groups

• A super Lie group is a group object in the category of
supermanifolds.
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Towards unitary representations : super Lie groups

• A super Lie group is a group object in the category of
supermanifolds.

Proposition

The category of Super Lie groups is equivalent to a category of
Harish-Chandra pairs, i.e., pairs (G0, g) such that :

1 g = g0 ⊕ g1 is a Lie superalgebra over R.

2 G0 is a real Lie group with Lie algebra g0 which acts on g
smoothly via R-linear automorphisms.

3 The action of G0 on g0 is the adjoint action. The adjoint
action of g0 on g is the differential of the action of G0 on g.
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Towards unitary representations : super Lie groups

• A super Lie group is a group object in the category of
supermanifolds.

Proposition

The category of Super Lie groups is equivalent to a category of
Harish-Chandra pairs, i.e., pairs (G0, g) such that :

1 g = g0 ⊕ g1 is a Lie superalgebra over R.

2 G0 is a real Lie group with Lie algebra g0 which acts on g
smoothly via R-linear automorphisms.

3 The action of G0 on g0 is the adjoint action. The adjoint
action of g0 on g is the differential of the action of G0 on g.

• For simplicity, from now on we assume that G0 is connected
and simply connected.
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Super Hilbert spaces

“Wrong” definition : A super Hilbert space is a Z/2Z-gradedHilbert
spaceH =H0 ⊕H1 whereH0 andH1 are closed subspaces and
H0 ⊥ H1.

“Right” definition : IndeedH is endowed with an even super
Hermitian form:

〈x, y〉super =



0 if x, y are of opposite parity,
〈x, y〉H0

if x, y ∈ H0,√
−1〈x, y〉H1

if x, y ∈ H1.

We have:

〈y, x〉super = (−1)|x|·|y|〈x, y〉super
〈x, x〉super > 0 for x ∈ H0, x , 0

√
−1〈x, x〉super < 0 for x ∈ H1, x , 0
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Unitary representations of super Lie groups

• Let (G0, g) be a super Lie group. We want to consider unitary
representations of (G0, g) on super Hilbert spaces, i.e.,

π : g→ EndC(H ).
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Unitary representations of super Lie groups

• Let (G0, g) be a super Lie group. We want to consider unitary
representations of (G0, g) on super Hilbert spaces, i.e.,

π : g→ EndC(H ).

But if X ∈ g1, then

π([X,X]) = π(X)π(X) + π(X)π(X) = 2π(X)2

and π([X,X]) is an unbounded, (only) densely defined operator.
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Unitary representations of super Lie groups

• Let (G0, g) be a super Lie group. We want to consider unitary
representations of (G0, g) on super Hilbert spaces, i.e.,

π : g→ EndC(H ).

But if X ∈ g1, then

π([X,X]) = π(X)π(X) + π(X)π(X) = 2π(X)2

and π([X,X]) is an unbounded, (only) densely defined operator.

• A natural choice of representation space isH∞ (the subspace
of smooth vectors) defined as

H∞ =
{
v | v ∈ H and the map g 7→ π(g)v is smooth

}

But then one needs to know that π(X)H∞ ⊆ H∞.
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Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of (G0, g) is a triple (π, ρ
π,H ) such that :
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Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of (G0, g) is a triple (π, ρ
π,H ) such that :

H =H0 ⊕H1 is a super Hilbert space.
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Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of (G0, g) is a triple (π, ρ
π,H ) such that :

H =H0 ⊕H1 is a super Hilbert space.

π : G0 → U(H ) is a unitary representation of G0 (in the usual
sense).
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Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of (G0, g) is a triple (π, ρ
π,H ) such that :

H =H0 ⊕H1 is a super Hilbert space.

π : G0 → U(H ) is a unitary representation of G0 (in the usual
sense).

ρπ : g→ End(H∞) is a super skew-Hermitian representation
which satisfies

ρπ([X,Y]) = ρπ(X)ρπ(Y) − (−1)|X|·|Y|ρπ(Y)ρπ(X).
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Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of (G0, g) is a triple (π, ρ
π,H ) such that :

H =H0 ⊕H1 is a super Hilbert space.

π : G0 → U(H ) is a unitary representation of G0 (in the usual
sense).

ρπ : g→ End(H∞) is a super skew-Hermitian representation
which satisfies

ρπ([X,Y]) = ρπ(X)ρπ(Y) − (−1)|X|·|Y|ρπ(Y)ρπ(X).

•HereH∞ is the space of smooth vectors of (π,H ).
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Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of (G0, g) is a triple (π, ρ
π,H ) such that :

H =H0 ⊕H1 is a super Hilbert space.

π : G0 → U(H ) is a unitary representation of G0 (in the usual
sense).

ρπ : g→ End(H∞) is a super skew-Hermitian representation
which satisfies

ρπ([X,Y]) = ρπ(X)ρπ(Y) − (−1)|X|·|Y|ρπ(Y)ρπ(X).

•HereH∞ is the space of smooth vectors of (π,H ).

ρπ|g0 = π
∞ and ρπ(Ad(g)(X)) = π(g)ρπ(X)π(g−1).
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Restriction and induction

Let (H0, h) be a sub super Lie group of (G0, g). One can formally define
restriction and induction functors.

(π, ρπ,H ) unitary rep. of (G0, g)  Res
(G0,g)

(H0 ,h)
(π, ρπ,H )

(σ, ρσ,K ) unitary rep. of (H0, h)

g1 = h1
 Ind

(G0,g)

(H0,h)
(σ, ρσ,K )

Not So Obvious Fact :

These functors are well defined.

Proof. Follows from [Carmeli, Cassinelli, Toigo, Varadarajan].
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Unitary equivalence and parity

Unitary equivalence

Two unitary representations (π, ρπ,H ) and (π′, ρπ
′
,H ′) are said to be

unitarily equivalent if there exists a linear isometry T : H → H ′ such
that :

T preserves the Z/2Z-grading.
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Unitary equivalence and parity

Unitary equivalence

Two unitary representations (π, ρπ,H ) and (π′, ρπ
′
,H ′) are said to be

unitarily equivalent if there exists a linear isometry T : H → H ′ such
that :

T preserves the Z/2Z-grading.

For any g ∈ G0, π
′(g) ◦ T = T ◦ π(g).

For any X ∈ g, ρπ′ (X) ◦ T = T ◦ ρπ(X).
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Unitary equivalence and parity

Unitary equivalence

Two unitary representations (π, ρπ,H ) and (π′, ρπ
′
,H ′) are said to be

unitarily equivalent if there exists a linear isometry T : H → H ′ such
that :

T preserves the Z/2Z-grading.

For any g ∈ G0, π
′(g) ◦ T = T ◦ π(g).

For any X ∈ g, ρπ′ (X) ◦ T = T ◦ ρπ(X).

Parity change

Tensoring (π, ρπ,H ) with the trivial representation on C0|1

yields (π, ρπ,ΠH ) where ΠH0 = H1 and
ΠH1 = H0.
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Unitary equivalence and parity

Unitary equivalence

Two unitary representations (π, ρπ,H ) and (π′, ρπ
′
,H ′) are said to be

unitarily equivalent if there exists a linear isometry T : H → H ′ such
that :

T preserves the Z/2Z-grading.

For any g ∈ G0, π
′(g) ◦ T = T ◦ π(g).

For any X ∈ g, ρπ′ (X) ◦ T = T ◦ ρπ(X).

Parity change

Tensoring (π, ρπ,H ) with the trivial representation on C0|1

yields (π, ρπ,ΠH ) where ΠH0 = H1 and
ΠH1 = H0.

• (π, ρπ,H ) and (π, ρπ, ΠH ) are not necessarily unitarily equivalent.
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Some of the difficulties . . .

1 General facts about rep’s of locally compact groups (e.g.,
Mackey machinery) may not generalize.
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Some of the difficulties . . .

1 General facts about rep’s of locally compact groups (e.g.,
Mackey machinery) may not generalize.

2 If g0 were reductive, we could work “infinitesimally” (as
done by S. J. Cheng, H. Furutsu, K. Nishiyama, W. Wang,
R. B. Zhang, . . . )

51 / 107



Some of the difficulties . . .

1 General facts about rep’s of locally compact groups (e.g.,
Mackey machinery) may not generalize.

2 If g0 were reductive, we could work “infinitesimally” (as
done by S. J. Cheng, H. Furutsu, K. Nishiyama, W. Wang,
R. B. Zhang, . . . )

3 One needs to define “super” polarizing subalgebras (and
prove that they exist).
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Nilpotent super Lie groups

A super Lie group (G0, g) is called nilpotent if the lower central series of g
has finitely many nonzero terms (equivalently, if g appears in its own
upper central series).
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Nilpotent super Lie groups

A super Lie group (G0, g) is called nilpotent if the lower central series of g
has finitely many nonzero terms (equivalently, if g appears in its own
upper central series).

Unlike Lie groups, certain super Lie groups do not have any faithful
unitary representairons!
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Nilpotent super Lie groups

A super Lie group (G0, g) is called nilpotent if the lower central series of g
has finitely many nonzero terms (equivalently, if g appears in its own
upper central series).

Unlike Lie groups, certain super Lie groups do not have any faithful
unitary representairons!

Lemma

If X1, ...Xm ∈ g1 such that
m∑

i=1

[Xi,Xi] = 0

then for every unitary representation (π, ρπ,H) we have
ρπ(X1) = · · · = ρπ(Xm) = 0.
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Nilpotent super Lie groups

A super Lie group (G0, g) is called nilpotent if the lower central series of g
has finitely many nonzero terms (equivalently, if g appears in its own
upper central series).

Unlike Lie groups, certain super Lie groups do not have any faithful
unitary representairons!

Lemma

If X1, ...Xm ∈ g1 such that
m∑

i=1

[Xi,Xi] = 0

then for every unitary representation (π, ρπ,H) we have
ρπ(X1) = · · · = ρπ(Xm) = 0.

Proof. Observe that
∑m

i=1 ρ
π(Xi)

2 = 0 and for every i, the operator e
π
4

√
−1ρπ(Xi)

is symmetric. For every v ∈ H∞ we have :
m∑

i=1

〈e π4
√
−1ρπ(Xi)v, e

π
4

√
−1ρπ(Xi)v〉 = 〈v, e

π
2

√
−1

m∑

i=1

ρπ(Xi)
2v〉 = 0.
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Reduced form

Set a(1) = 〈X ∈ g1 | [X,X] = 0〉. We call g reduced if a(1) = {0}.
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Reduced form

Set a(1) = 〈X ∈ g1 | [X,X] = 0〉. We call g reduced if a(1) = {0}.
Set

a(2) = 〈X ∈ g1 | [X,X] ∈ a(1)〉
a(3) = 〈X ∈ g1 | [X,X] ∈ a(2)〉

...
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Reduced form

Set a(1) = 〈X ∈ g1 | [X,X] = 0〉. We call g reduced if a(1) = {0}.
Set

a(2) = 〈X ∈ g1 | [X,X] ∈ a(1)〉
a(3) = 〈X ∈ g1 | [X,X] ∈ a(2)〉

...

We have
a(1) ⊂ a(2) ⊂ a(3) ⊂ · · ·
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Reduced form

Set a(1) = 〈X ∈ g1 | [X,X] = 0〉. We call g reduced if a(1) = {0}.
Set

a(2) = 〈X ∈ g1 | [X,X] ∈ a(1)〉
a(3) = 〈X ∈ g1 | [X,X] ∈ a(2)〉

...

We have
a(1) ⊂ a(2) ⊂ a(3) ⊂ · · ·

Set a =
⋃

j≥1
a(j).

Observation

ρπ(a) = 0 for every unitary representation (π, ρπ,H ).

a is Z/2Z-graded, hence corresponds to a sub super Lie group
(A0, a) of (G0, g). The quotient g/a is reduced.
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Structure of nilpotent Lie superalgebras

Lemma (Kirillov ?)

Let (G0, g) be a nilpotent super Lie group such that g is reduced and
dimZ(g) = 1. Then exactly one of the following statements is true :
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Structure of nilpotent Lie superalgebras

Lemma (Kirillov ?)

Let (G0, g) be a nilpotent super Lie group such that g is reduced and
dimZ(g) = 1. Then exactly one of the following statements is true :

There exists a graded decomposition

g = RX ⊕RY ⊕RX ⊕w

such that Span{X,Y,Z} is a three-dimensional Heisenberg
algebra, Z ∈ Z(g),

g′ := RY ⊕RZ ⊕w
is a subalgebra, and Y ∈ Z(g′).
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Structure of nilpotent Lie superalgebras

Lemma (Kirillov ?)

Let (G0, g) be a nilpotent super Lie group such that g is reduced and
dimZ(g) = 1. Then exactly one of the following statements is true :

There exists a graded decomposition

g = RX ⊕RY ⊕RX ⊕w

such that Span{X,Y,Z} is a three-dimensional Heisenberg
algebra, Z ∈ Z(g),

g′ := RY ⊕RZ ⊕w
is a subalgebra, and Y ∈ Z(g′).

g is isomorphic to hW whereW0 = {0}.
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Structure of nilpotent Lie superalgebras

Lemma (Kirillov ?)

Let (G0, g) be a nilpotent super Lie group such that g is reduced and
dimZ(g) = 1. Then exactly one of the following statements is true :

There exists a graded decomposition

g = RX ⊕RY ⊕RX ⊕w

such that Span{X,Y,Z} is a three-dimensional Heisenberg
algebra, Z ∈ Z(g),

g′ := RY ⊕RZ ⊕w
is a subalgebra, and Y ∈ Z(g′).

g is isomorphic to hW whereW0 = {0}.
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Unitary representations as induced representations

Let (G0, g) be a nilpotent super Lie group such that

g is reduced,

dimZ(g) = 1,

g is not isomorphic to hW withW0 = {0}.
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Unitary representations as induced representations

Let (G0, g) be a nilpotent super Lie group such that

g is reduced,

dimZ(g) = 1,

g is not isomorphic to hW withW0 = {0}.

Let g′ be as in Kirillov’s lemma, and let (G′0, g
′) be the sub super Lie

group of (G0, g) defined in the super version of Kirillov’s lemma.

Observe that dim g′
1
= dim g1, hence induction from (G′0, g

′) to
(G0, g) yields unitary representaions.
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Unitary representations as induced representations

Let (G0, g) be a nilpotent super Lie group such that

g is reduced,

dimZ(g) = 1,

g is not isomorphic to hW withW0 = {0}.

Let g′ be as in Kirillov’s lemma, and let (G′0, g
′) be the sub super Lie

group of (G0, g) defined in the super version of Kirillov’s lemma.

Observe that dim g′
1
= dim g1, hence induction from (G′0, g

′) to
(G0, g) yields unitary representaions.

Proposition (codimension one induction)

Let (π, ρπ,H ) be an irreducible unitary representation of (G0, g)
whose restriction toZ(G0) is nontrivial. Then

(π, ρπ,H ) = Ind(G0 ,g)

(G′
0
,g′)

(π′, ρπ
′
,H ′)

for some irreducible unitary representation (π′, ρπ
′
,H ′) of (G′0, g′).
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Unitary rep’s of Heisenberg-Clifford super Lie groups

• Recall that hW =W ⊕R where

[(v1, s1), (v2, s2)] = (0,Ω(v,w))

Set g = hW and let (G0, g) be the corresponding super Lie group.
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Unitary rep’s of Heisenberg-Clifford super Lie groups

• Recall that hW =W ⊕R where

[(v1, s1), (v2, s2)] = (0,Ω(v,w))

Set g = hW and let (G0, g) be the corresponding super Lie group.

Theorem (generalized Stone-von Neumann)

Let χ : R→ C× be defined by χ(t) = eat
√
−1 where a > 0. (The case a < 0 is

similar.)

Ω|W1×W1
positive definite⇒ up to unitary equivalence and parity

there exists a unique unitary representation with central
character χ.

Ω|W1×W1
not positive definite⇒ (G0, g) does not have any unitary

representations with central character χ.
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Unitary rep’s of Heisenberg-Clifford super Lie groups

• Recall that hW =W ⊕R where

[(v1, s1), (v2, s2)] = (0,Ω(v,w))

Set g = hW and let (G0, g) be the corresponding super Lie group.

Theorem (generalized Stone-von Neumann)

Let χ : R→ C× be defined by χ(t) = eat
√
−1 where a > 0. (The case a < 0 is

similar.)

Ω|W1×W1
positive definite⇒ up to unitary equivalence and parity

there exists a unique unitary representation with central
character χ.

Ω|W1×W1
not positive definite⇒ (G0, g) does not have any unitary

representations with central character χ.

Let (πχ, ρ
πχ ,Hχ) denote the unitary representation with central character χ.

dim g1 = 2k ⇒ (πχ, ρ
πχ ,Hχ) ; (πχ, ρ

πχ , ΠHχ)
dim g1 = 2k + 1 ⇒ (πχ, ρ

πχ ,Hχ) ≃ (πχ, ρ
πχ ,Hχ)
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The general case

Let (G0, g) be a nilpotent super Lie group.
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The general case

Let (G0, g) be a nilpotent super Lie group.

For every λ ∈ g∗
0
one can define a symmetric bilinear form

Bλ : g1 × g1 → R
where Bλ(X,Y) = λ([X,Y]).
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The general case

Let (G0, g) be a nilpotent super Lie group.

For every λ ∈ g∗
0
one can define a symmetric bilinear form

Bλ : g1 × g1 → R
where Bλ(X,Y) = λ([X,Y]).
Set

g+0 = {λ ∈ g∗0 | Bλ is nonnegative definite }
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The general case

Let (G0, g) be a nilpotent super Lie group.

For every λ ∈ g∗
0
one can define a symmetric bilinear form

Bλ : g1 × g1 → R
where Bλ(X,Y) = λ([X,Y]).
Set

g+0 = {λ ∈ g∗0 | Bλ is nonnegative definite }

Observe that g+
0
is a G0-invariant cone.
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The general case

Let (G0, g) be a nilpotent super Lie group.

For every λ ∈ g∗
0
one can define a symmetric bilinear form

Bλ : g1 × g1 → R
where Bλ(X,Y) = λ([X,Y]).
Set

g+0 = {λ ∈ g∗0 | Bλ is nonnegative definite }

Observe that g+
0
is a G0-invariant cone.

THEOREM (S.)

There exists a bijective correspondence

Irreducible unitary
representations of (G0, g)

!

G0 − orbits
in g+

0

75 / 107



Polarizing systems

Let (G0, g) be a nilpotent super Lie group.
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Polarizing systems

Let (G0, g) be a nilpotent super Lie group.

A polarizing system of (G0, g) is a 6-tuple

(M0,m,Φ,C0, c, λ)

such that :
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Polarizing systems

Let (G0, g) be a nilpotent super Lie group.

A polarizing system of (G0, g) is a 6-tuple

(M0,m,Φ,C0, c, λ)

such that :

dimm1 = dim g1.
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Polarizing systems

Let (G0, g) be a nilpotent super Lie group.

A polarizing system of (G0, g) is a 6-tuple

(M0,m,Φ,C0, c, λ)

such that :

dimm1 = dim g1.

λ ∈ g∗
0
and m0 is a maximally isotropic subalgebra of g0

w.r.t. the skew symmetric formΩλ(X,Y) = λ([X,Y]).
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Polarizing systems

Let (G0, g) be a nilpotent super Lie group.

A polarizing system of (G0, g) is a 6-tuple

(M0,m,Φ,C0, c, λ)

such that :

dimm1 = dim g1.

λ ∈ g∗
0
and m0 is a maximally isotropic subalgebra of g0

w.r.t. the skew symmetric formΩλ(X,Y) = λ([X,Y]).

(C0, c) is a Heisenberg-Clifford super Lie group such that
dimC0 = 1.
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Polarizing systems

Let (G0, g) be a nilpotent super Lie group.

A polarizing system of (G0, g) is a 6-tuple

(M0,m,Φ,C0, c, λ)

such that :

dimm1 = dim g1.

λ ∈ g∗
0
and m0 is a maximally isotropic subalgebra of g0

w.r.t. the skew symmetric formΩλ(X,Y) = λ([X,Y]).

(C0, c) is a Heisenberg-Clifford super Lie group such that
dimC0 = 1.

Φ : (M0,m)→ (C0, c) is an epimorphism.
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Polarizing systems

Let (G0, g) be a nilpotent super Lie group.

A polarizing system of (G0, g) is a 6-tuple

(M0,m,Φ,C0, c, λ)

such that :

dimm1 = dim g1.

λ ∈ g∗
0
and m0 is a maximally isotropic subalgebra of g0

w.r.t. the skew symmetric formΩλ(X,Y) = λ([X,Y]).

(C0, c) is a Heisenberg-Clifford super Lie group such that
dimC0 = 1.

Φ : (M0,m)→ (C0, c) is an epimorphism.

m0 ∩ kerΦ = m0 ∩ kerλ.
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Proposition (everything is induced)

Every irreducible rep (π, ρπ,H ) of (G0, g) is induced from a
polarizing system (M0,m,Φ,C0, c, λ), i.e.,

(π, ρπ,H ) = Ind
(G0 ,g)
(M0,m)

(σ ◦ Φ, ρσ◦Φ,K)

where for everyW ∈ m0, ρ
σ◦Φ(W) = ρσ(Φ(W)) = λ(W).
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Proposition (everything is induced)

Every irreducible rep (π, ρπ,H ) of (G0, g) is induced from a
polarizing system (M0,m,Φ,C0, c, λ), i.e.,

(π, ρπ,H ) = Ind
(G0 ,g)
(M0,m)

(σ ◦ Φ, ρσ◦Φ,K)

where for everyW ∈ m0, ρ
σ◦Φ(W) = ρσ(Φ(W)) = λ(W).

(M0,m)
Φ−−−→ (C0, c)d (σ, ρσ,K )

84 / 107



Proposition (everything is induced)

Every irreducible rep (π, ρπ,H ) of (G0, g) is induced from a
polarizing system (M0,m,Φ,C0, c, λ), i.e.,

(π, ρπ,H ) = Ind
(G0 ,g)
(M0,m)

(σ ◦ Φ, ρσ◦Φ,K)

where for everyW ∈ m0, ρ
σ◦Φ(W) = ρσ(Φ(W)) = λ(W).

(M0,m)
Φ−−−→ (C0, c)d (σ, ρσ,K )

Moreover, if (π, ρπ,H ) is induced from two different
polarizing systems

(M0,m,Φ,C0, c, λ) and (M′0,m
′,Φ,C′0, c

′, λ′)

then
1 (C0, c) ≃ (C′

0
, c′)

2 λ′ = Ad∗(g)(λ) for some g ∈ G0.
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Nonnegativity condition

Suppose (π, ρπ,H ) = Ind
(G0,g)

(M0,m)
(σ ◦ Φ, ρσ◦Φ,K).

From λ(W) = ρσ ◦Φ(W) and properties of Clifford modules
we have :

for every X ∈ g1,
Bλ(X,X) = λ([X,X]) = ρσ ◦Φ([X,X])

= [ρσ ◦ Φ(X), ρσ ◦ Φ(X)] ≥ 0
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Nonnegativity condition

Suppose (π, ρπ,H ) = Ind
(G0,g)

(M0,m)
(σ ◦ Φ, ρσ◦Φ,K).

From λ(W) = ρσ ◦Φ(W) and properties of Clifford modules
we have :

for every X ∈ g1,
Bλ(X,X) = λ([X,X]) = ρσ ◦Φ([X,X])

= [ρσ ◦ Φ(X), ρσ ◦ Φ(X)] ≥ 0

which implies that λ ∈ g+
0
.

87 / 107



Nonnegativity condition

Suppose (π, ρπ,H ) = Ind
(G0,g)

(M0,m)
(σ ◦ Φ, ρσ◦Φ,K).

From λ(W) = ρσ ◦Φ(W) and properties of Clifford modules
we have :

for every X ∈ g1,
Bλ(X,X) = λ([X,X]) = ρσ ◦Φ([X,X])

= [ρσ ◦ Φ(X), ρσ ◦ Φ(X)] ≥ 0

which implies that λ ∈ g+
0
.

Conversely, we should show that every λ ∈ g+
0
fits into a

polarizing system (M0,m,C0, c,Φ, λ).

88 / 107



Proposition

For every λ ∈ g+
0
there exists a polarizing system

(M0,m,Φ,C0, c, λ).
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Proposition

For every λ ∈ g+
0
there exists a polarizing system

(M0,m,Φ,C0, c, λ).

The proof is based on the following lemma :

Lemma

Let λ ∈ g+
0
. Then there exists a subalgebra p0 ⊂ g0 such that :

p0 is a maximal isotropic subalgebra for the skew
symmetric form Ωλ,

p0 ⊃ [g1, g1].
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Proof of the lemma

Lemma

There exists a subalgebra p0 ⊂ g0 such that :

p0 is a maximal isotropic subalgebra for the skew symmetric formΩλ,

p0 ⊃ [g1, g1].
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Proof of the lemma

Lemma

There exists a subalgebra p0 ⊂ g0 such that :

p0 is a maximal isotropic subalgebra for the skew symmetric formΩλ,

p0 ⊃ [g1, g1].

1 i = [g1, g1] is an ideal of g0, hence there exists a sequence

{0} = i0 ⊂ i1 ⊂ i2 ⊂ · · · ⊂ is = i ⊂ is+1 ⊂ · · · ⊂ ir = g0
of ideals such that dim (ik/ik−1) = 1 for every k ≥ 1.
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Proof of the lemma

Lemma

There exists a subalgebra p0 ⊂ g0 such that :

p0 is a maximal isotropic subalgebra for the skew symmetric formΩλ,

p0 ⊃ [g1, g1].

1 i = [g1, g1] is an ideal of g0, hence there exists a sequence

{0} = i0 ⊂ i1 ⊂ i2 ⊂ · · · ⊂ is = i ⊂ is+1 ⊂ · · · ⊂ ir = g0
of ideals such that dim (ik/ik−1) = 1 for every k ≥ 1.

2 (M. Vergne) Define p0 to be

p0 :=

r∑

k=1

rad(Ωλ | ik×ik ).

Then p0 is a maximal isotropic subalgebra forΩλ.

93 / 107



Proof of the lemma

Lemma

There exists a subalgebra p0 ⊂ g0 such that :

p0 is a maximal isotropic subalgebra for the skew symmetric formΩλ,

p0 ⊃ [g1, g1].

1 i = [g1, g1] is an ideal of g0, hence there exists a sequence

{0} = i0 ⊂ i1 ⊂ i2 ⊂ · · · ⊂ is = i ⊂ is+1 ⊂ · · · ⊂ ir = g0
of ideals such that dim (ik/ik−1) = 1 for every k ≥ 1.

2 (M. Vergne) Define p0 to be

p0 :=

r∑

k=1

rad(Ωλ | ik×ik ).

Then p0 is a maximal isotropic subalgebra forΩλ.

3 One can show that Ωλ([g1, g1], [g1, g1]) = 0, which implies that
[g1, g1] ⊂ p0. 94 / 107



Irreducibility

Proposition

If a unitary representation (π, ρπ,H ) is induced from a
polarizing system, then it is irreducibe.
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Irreducibility

Proposition

If a unitary representation (π, ρπ,H ) is induced from a
polarizing system, then it is irreducibe.

Proof. By induction on dim g.

Case I : g is not reduced, or g is reduced andZ(g) ∩ kerλ , {0}.
Induction hypothesis.
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Irreducibility

Proposition

If a unitary representation (π, ρπ,H ) is induced from a
polarizing system, then it is irreducibe.

Proof. By induction on dim g.

Case I : g is not reduced, or g is reduced andZ(g) ∩ kerλ , {0}.
Induction hypothesis.

Case II : g is reduced andZ(g) ∩ kerλ , {0}. Find a 3-dimensional
Heisenberg subgroup and use explicit formulas for its action.
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An observation

Corollary

For every unitary representation (π, ρπ,H ) of (G0, g) we have
ρπ([g1, [g1, g1]]) = 0.

Proof. Get deep into the proof of classification!
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An observation

Corollary

For every unitary representation (π, ρπ,H ) of (G0, g) we have
ρπ([g1, [g1, g1]]) = 0.

Proof. Get deep into the proof of classification!

Observation (Neeb) :

Suppose that
⋂

(π,ρπ,H )

ker (π, ρπ,H ) = {0}.

gc := [g1, g1] ⊕ g1.
Cg:= closed convex cone in gc

0
generated by { [X,X] | X ∈ g1 }.
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An observation (cont.)

Cg is G0-invariant, generating, and pointed.
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An observation (cont.)

Cg is G0-invariant, generating, and pointed.

It follows that gc
0
has a compactly embedded Cartan

subalgebra t.
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An observation (cont.)

Cg is G0-invariant, generating, and pointed.

It follows that gc
0
has a compactly embedded Cartan

subalgebra t.

t acts semisimply and nilpotently on gc; hence [t, gc] = {0}.
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An observation (cont.)

Cg is G0-invariant, generating, and pointed.

It follows that gc
0
has a compactly embedded Cartan

subalgebra t.

t acts semisimply and nilpotently on gc; hence [t, gc] = {0}.
It follows that [gc

0
, gc] = {0}; in particular [g1, [g1, g1]] = {0}.
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An observation (cont.)

Cg is G0-invariant, generating, and pointed.

It follows that gc
0
has a compactly embedded Cartan

subalgebra t.

t acts semisimply and nilpotently on gc; hence [t, gc] = {0}.
It follows that [gc

0
, gc] = {0}; in particular [g1, [g1, g1]] = {0}.

Problem. Classify solvable Lie superalgebras g = g0 ⊕ g1 for
which Cg is pointed.
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Restriction of (π, ρπ,H ) to G0

Let (π, ρπ,H ) be an irr. unitary rep. of (G0, g) corresponding to
Oλ := G0 · λ. Then

(π, ρπ,H )|G0
= πλ ⊕ · · · ⊕ πλ︸          ︷︷          ︸

2l time

where πλ is the irreducible unitary representation of G0

corresponding to Oλ.

105 / 107



Restriction of (π, ρπ,H ) to G0

Let (π, ρπ,H ) be an irr. unitary rep. of (G0, g) corresponding to
Oλ := G0 · λ. Then

(π, ρπ,H )|G0
= πλ ⊕ · · · ⊕ πλ︸          ︷︷          ︸

2l time

where πλ is the irreducible unitary representation of G0

corresponding to Oλ.

When (π, ρπ,H ) ≃ (π, ρπ,ΠH )?

If (π, ρπ,H ) is induced form a polarizing system

(M0,m,C0, c,Φ, λ)

then

dim c =

{
2l if (π, ρπ,H ) ≃ (π, ρπ,ΠH )
2l + 1 otherwise.
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