Unitary Representations of Nilpotent Super Lie groups

Hadi Salmasian University of Ottawa

July 6, 2010

・ロ ・ ・ (型 ト ・ 言 ト ・ 言 ・ う へ ()
1/107

The orbit method

The orbit method

If *G* is a nilpotent simply connected Lie group, then there exists a bijective correspondence

Irreducible unitary G – orbits representations of G in g^*

The orbit method

If G is a nilpotent simply connected Lie group, then there exists a bijective correspondence

Irreducible unitary
representations of GG – orbits
in g^*

There is a dictionary :

Algebraic operation	Geometric operation			
$\mathrm{Res}_{H}^{G}\pi$	$p(O)$ where $p : \mathfrak{g}^* \to \mathfrak{h}^*$			
$\mathrm{Ind}_{H}^{G}\pi$	$p^{-1}(O)$ where $p:\mathfrak{g}^* \to \mathfrak{h}^*$			
$\pi_1\otimes\pi_2$	$O_1 + O_2$			
	··· < □ > < @	★ E > ★ E	t) E	√ へ (~ 4/107

G : nilpotent and simply connected g = Lie(G) $O \subset g^*$: a *G*-orbit.

G : nilpotent and simply connected g = Lie(G) $O \subset g^*$: a *G*-orbit.

Recipe to construct π from *O*

● Fix $\lambda \in O$. Consider the skew-symmetric form

 $\Omega_{\lambda}:\mathfrak{g}\times\mathfrak{g}\rightarrow\mathbb{R}$

defined by $\Omega_{\lambda}(X, Y) = \lambda([X, Y]).$

イロン 不得 とくほう くほう

G : nilpotent and simply connected g = Lie(G) $O \subset g^*$: a *G*-orbit.

Recipe to construct π from *O*

● Fix $\lambda \in O$. Consider the skew-symmetric form

 $\Omega_{\lambda}:\mathfrak{g}\times\mathfrak{g}\rightarrow\mathbb{R}$

defined by $\Omega_{\lambda}(X, Y) = \lambda([X, Y]).$

Proposition. There exists a subalgebra m ⊂ g such that m is a maximal isotropic subspace of Ω_λ.

イロン 不通 とくほう くほう

G : nilpotent and simply connected g = Lie(G) $O \subset g^*$: a *G*-orbit.

Recipe to construct π from *O*

● Fix $\lambda \in O$. Consider the skew-symmetric form

 $\Omega_{\lambda}:\mathfrak{g}\times\mathfrak{g}\to\mathbb{R}$

defined by $\Omega_{\lambda}(X, Y) = \lambda([X, Y]).$

- Proposition. There exists a subalgebra m ⊂ g such that m is a maximal isotropic subspace of Ω_λ.
- Set $M = \exp(\mathfrak{m})$ and define $\chi_{\lambda} : M \to \mathbb{C}^{\times}$ by

$$\chi_{\lambda}(\exp(X)) = e^{\lambda(X)\sqrt{-1}}$$
 for every $X \in \mathfrak{m}$.

イロン 不得 とくほう くほう

G : nilpotent and simply connected g = Lie(G) $O \subset g^*$: a *G*-orbit.

Recipe to construct π from *O*

● Fix $\lambda \in O$. Consider the skew-symmetric form

 $\Omega_{\lambda}:\mathfrak{g}\times\mathfrak{g}\to\mathbb{R}$

defined by $\Omega_{\lambda}(X, Y) = \lambda([X, Y]).$

- Proposition. There exists a subalgebra m ⊂ g such that m is a maximal isotropic subspace of Ω_λ.
- Set $M = \exp(\mathfrak{m})$ and define $\chi_{\lambda} : M \to \mathbb{C}^{\times}$ by

$$\chi_{\lambda}(\exp(X)) = e^{\lambda(X)\sqrt{-1}}$$
 f

for every $X \in \mathfrak{m}$.

イロン 不得 とくほう くほう

()Set $\pi = \operatorname{Ind}_M^G \chi_{\lambda}$.

Example : the Schrödinger model

- (W, Ω) : finite dimensional symplectic vector space, i.e.,
 - Ω is nondegenerate,
 - $\Omega(v, w) = -\overline{\Omega}(w, v).$

Example : the Schrödinger model

• (*W*, Ω) : finite dimensional symplectic vector space, i.e.,

- Ω is nondegenerate,
- $\Omega(v, w) = -\Omega(w, v)$.
- The Heisenberg group :

$$H_n = \{ (v, s) \mid v \in W \text{ and } s \in \mathbb{R} \}$$

The group law is given by

$$(v_1, s_1) \bullet (v_2, s_2) = (v_1 + v_2, s_1 + s_2 + \frac{1}{2}\Omega(v_1, v_2)).$$

・ロ ・ ・ 合 ・ く 言 ・ く 言 ・ 言 ・ う へ や
11/107

Example : the Schrödinger model

• (*W*, Ω) : finite dimensional symplectic vector space, i.e.,

- Ω is nondegenerate,
- $\Omega(v, w) = -\Omega(w, v).$
- The Heisenberg group :

$$H_n = \{ (v, s) \mid v \in W \text{ and } s \in \mathbb{R} \}$$

The group law is given by

$$(v_1, s_1) \bullet (v_2, s_2) = (v_1 + v_2, s_1 + s_2 + \frac{1}{2}\Omega(v_1, v_2)).$$

• dim $\mathcal{Z}(H_n) = 1$ and $H_n/\mathcal{Z}(H_n)$ is commutative (i.e., H_n is two-step nilpotent).

• Consider a polarization of (*W*, Ω), i.e., a direct sum decomposition

$$W = X \oplus Y$$
 such that $\Omega(X, X) = \Omega(Y, Y) = 0$.

Consider a polarization of (W, Ω), i.e., a direct sum decomposition

$$W = X \oplus Y$$
 such that $\Omega(X, X) = \Omega(Y, Y) = 0$.

• Set
$$\mathcal{H} := L^2(Y) := \{ f : Y \to \mathbb{C} \mid \int_Y |f|^2 d\mu < \infty \}.$$

Consider a polarization of (W, Ω), i.e., a direct sum decomposition

$$W = X \oplus Y$$
 such that $\Omega(X, X) = \Omega(Y, Y) = 0$.

- Set $\mathcal{H} := L^2(Y) := \{ f : Y \to \mathbb{C} \mid \int_Y |f|^2 d\mu < \infty \}.$
- Fix a nonzero $a \in \mathbb{R}$ and define a representation π_a of H_n on \mathcal{H} via

$$\begin{aligned} & \left(\pi_a(v,0)f\right)(y) &= e^{a\Omega(y,v)\sqrt{-1}}f(y) & \text{if } v \in X, \\ & \left(\pi_a(0,v)f\right)(y) &= f(y+v) & \text{if } v \in Y, \\ & \left(\pi_a(0,s)f\right)(y) &= e^{as\sqrt{-1}}f(y) & \text{otherwise.} \end{aligned}$$

< □ > < @ > < E > < E > < E</p>

Facts:

• For every $a \in \mathbb{R}$, π_a is an irreducible unitary rep. of H_n .

Facts:

- For every $a \in \mathbb{R}$, π_a is an irreducible unitary rep. of H_n .
- If $a \neq b$, the representations π_a and π_b are *not* unitarily equivalent.

Facts:

- For every $a \in \mathbb{R}$, π_a is an irreducible unitary rep. of H_n .
- If $a \neq b$, the representations π_a and π_b are *not* unitarily equivalent.

Theorem (Stone-von Neumann, 1930's)

Up to unitary equivalence, an irreducible unitary representation of H_n is one of the following :

- A one-dimensional representation (which factors through $H_n/\mathcal{Z}(H_n)$),
- ② π_a , for some *a* ∈ \mathbb{R}^{\times} .

Example : Schrödinger model and the orbit method

Recall that :

 $H_n = \{ (v, s) \mid v \in W \text{ and } s \in \mathbb{R} \}$

Set $\mathfrak{h}_n = \operatorname{Lie}(H_n)$ and fix $Z \in \mathcal{Z}(\mathfrak{h}_n)$.

Example : Schrödinger model and the orbit method

Recall that : $H_n = \{ (v, s) \mid v \in W \text{ and } s \in \mathbb{R} \}$ Set $\mathfrak{h}_n = \text{Lie}(H_n)$ and fix $Z \in \mathcal{Z}(\mathfrak{h}_n)$.

H_n-orbits in \mathfrak{h}_n^* are :

• $\{\lambda \in \mathfrak{h}_n^* \mid \lambda(Z) = a\}$

• { λ } where $\lambda(Z) = 0 \quad \iff \quad re$

) $\leftrightarrow \rightarrow$ one-dimensional representations of H_n . $\leftrightarrow \rightarrow$ the representation π_a .

Theorem (Auslander - Kostant)

Suppose *G* is a solvable, connected, simply connected, type I Lie group. Then

$$\widehat{G} = \bigcup_{O \subset \mathfrak{g}^*} \mathcal{S}_O$$

where each S_O is a torus of dimension $b_1(O)$ = first betti number of O.

Theorem (Auslander - Kostant)

Suppose *G* is a solvable, connected, simply connected, type I Lie group. Then

$$\widehat{G} = \bigcup_{O \subset \mathfrak{g}^*} S_O$$

where each S_O is a torus of dimension $b_1(O)$ = first betti number of O.

Semisimple Groups

- Elliptic orbits 🛶 Discrete series
- Nilpotent orbits <--> associated varieties of unitary rep's

• . . .

Crash course on Lie superalgebras

• Introduced by physicists – motivated by supersymmetry.

Crash course on Lie superalgebras

- Introduced by physicists motivated by supersymmetry.
- A (nonassociative) superalgebra is a $\mathbb{Z}/2\mathbb{Z}$ -graded algebra $\mathcal{A} = \mathcal{A}_0 \oplus \mathcal{A}_1$ (i.e., $\mathcal{A}_i \mathcal{A}_j \subseteq \mathcal{A}_{i+j \pmod{2}}$).

Crash course on Lie superalgebras

- Introduced by physicists motivated by supersymmetry.
- A (nonassociative) superalgebra is a $\mathbb{Z}/2\mathbb{Z}$ -graded algebra $\mathcal{A} = \mathcal{A}_0 \oplus \mathcal{A}_1$ (i.e., $\mathcal{A}_i \mathcal{A}_j \subseteq \mathcal{A}_{i+j \pmod{2}}$).
- A *Lie superalgebra* is a superalgebra g = g₀ ⊕ g₁ with a "bracket"

 $[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$

satisfying

$$[X, Y] = -(-1)^{|X| \cdot |Y|} [Y, X]$$

and

$$(-1)^{|X| \cdot |Z|} [X, [Y, Z]] + (-1)^{|Y| \cdot |X|} [Y, [Z, X]] + (-1)^{|Z| \cdot |Y|} [Z, [X, Y]] = 0$$

Crash course on Lie superalgebras (cont.)

Examples of Lie superalgebras

• $\mathfrak{gl}(m|n)$: $V = V_0 \oplus V_1$ and $\mathfrak{g} = \operatorname{End}(V) = \operatorname{End}_0(V) \oplus \operatorname{End}_1(V)$ where

 $\operatorname{End}_{i}(V) = \left\{ T \in \operatorname{End}(V) \mid T(V_{s}) \subseteq V_{s+i \pmod{2}} \text{ for any } s \in \mathbb{Z}/2\mathbb{Z} \right\}$

and for homogeneous X and Y, the bracket is given by

$$[X, Y] = XY - (-1)^{|X| \cdot |Y|} YX$$

<ロト < 四ト < 三ト < 三ト

26/107

Crash course on Lie superalgebras (cont.)

Examples of Lie superalgebras

• $\mathfrak{gl}(m|n)$: $V = V_0 \oplus V_1$ and $\mathfrak{g} = \operatorname{End}(V) = \operatorname{End}_0(V) \oplus \operatorname{End}_1(V)$ where

 $\operatorname{End}_{i}(V) = \left\{ T \in \operatorname{End}(V) \mid T(V_{s}) \subseteq V_{s+i \pmod{2}} \text{ for any } s \in \mathbb{Z}/2\mathbb{Z} \right\}$

and for homogeneous X and Y, the bracket is given by

$$[X, Y] = XY - (-1)^{|X| \cdot |Y|} YX$$

<ロト < 四ト < 三ト < 三ト

Simple Lie superalgebras:
 sl(*m*|*n*), osp(*m*|2*n*), f(4), g(3), p(*n*), q(*n*), ...

Crash course on Lie superalgebras (cont.)

Examples of Lie superalgebras

• $\mathfrak{gl}(m|n)$: $V = V_0 \oplus V_1$ and $\mathfrak{g} = \operatorname{End}(V) = \operatorname{End}_0(V) \oplus \operatorname{End}_1(V)$ where

 $\operatorname{End}_{i}(V) = \left\{ T \in \operatorname{End}(V) \mid T(V_{s}) \subseteq V_{s+i \pmod{2}} \text{ for any } s \in \mathbb{Z}/2\mathbb{Z} \right\}$

and for homogeneous X and Y, the bracket is given by

$$[X, Y] = XY - (-1)^{|X| \cdot |Y|} YX$$

- Simple Lie superalgebras:
 sl(*m*|*n*), osp(*m*|2*n*), f(4), g(3), p(*n*), q(*n*), ...
- Heisenberg-Clifford Lie superalgebras.

Heisenberg-Clifford Lie superalgebra

Let (W, Ω) be a *supersymplectic* space, i.e.,

- $W = W_0 \oplus W_1$.
- $\Omega: W \times W \to \mathbb{R}$ satisfies
 - $\Omega(W_0, W_1) = \Omega(W_1, W_0) = 0$
 - $\Omega_{|W_1 \times W_1}$ is a nondegenerate symmetric form.
 - $\Omega_{|W_0 \times W_0}$ is a symplectic form.

Heisenberg-Clifford Lie superalgebra

Let (W, Ω) be a *supersymplectic* space, i.e.,

- $W = W_0 \oplus W_1$.
- $\Omega: W \times W \to \mathbb{R}$ satisfies
 - $\Omega(W_0, W_1) = \Omega(W_1, W_0) = 0$
 - $\Omega_{|W_1 \times W_1}$ is a nondegenerate symmetric form.
 - $\Omega_{|W_0 \times W_0}$ is a symplectic form.

Set $\mathfrak{h}_W = W \oplus \mathbb{R}$ where

 $[(v_1,s_1),(v_2,s_2)]=(0,\Omega(v_1,v_2))$

< □ > < @ > < E > < E > < E</p>

30/107

Heisenberg-Clifford Lie superalgebra

Let (W, Ω) be a *supersymplectic* space, i.e.,

- $W = W_0 \oplus W_1$.
- $\Omega: W \times W \to \mathbb{R}$ satisfies
 - $\Omega(W_0, W_1) = \Omega(W_1, W_0) = 0$
 - $\Omega_{|W_1 \times W_1}$ is a nondegenerate symmetric form.
 - $\Omega_{|W_0 \times W_0}$ is a symplectic form.

Set $\mathfrak{h}_W = W \oplus \mathbb{R}$ where

 $[(v_1,s_1),(v_2,s_2)]=(0,\Omega(v_1,v_2))$

• \mathfrak{h}_W is two-step nilpotent and dim $(\mathcal{Z}(\mathfrak{h}_W)) = 1$.

Towards unitary representations : super Lie groups

• A *super Lie group* is a group object in the category of supermanifolds.

Towards unitary representations : super Lie groups

• A *super Lie group* is a group object in the category of supermanifolds.

Proposition

The category of Super Lie groups is equivalent to a category of *Harish-Chandra pairs*, i.e., pairs (G_0 , g) such that :

- **Q** $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ is a Lie superalgebra over \mathbb{R} .
- G₀ is a real Lie group with Lie algebra g₀ which acts on g smoothly via R-linear automorphisms.
- The action of G₀ on g₀ is the adjoint action. The adjoint action of g₀ on g is the differential of the action of G₀ on g.

Towards unitary representations : super Lie groups

• A *super Lie group* is a group object in the category of supermanifolds.

Proposition

The category of Super Lie groups is equivalent to a category of *Harish-Chandra pairs*, i.e., pairs (G_0 , g) such that :

- **(**) $g = g_0 \oplus g_1$ is a Lie superalgebra over **R**.
- G₀ is a real Lie group with Lie algebra g₀ which acts on g smoothly via R-linear automorphisms.
- The action of G₀ on g₀ is the adjoint action. The adjoint action of g₀ on g is the differential of the action of G₀ on g.

• For simplicity, from now on we assume that G_0 is connected and simply connected.

Super Hilbert spaces

"Wrong" definition : A super Hilbert space is a $\mathbb{Z}/2\mathbb{Z}$ -graded Hilbert space $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$ where \mathcal{H}_0 and \mathcal{H}_1 are closed subspaces and $\mathcal{H}_0 \perp \mathcal{H}_1$.

"**Right**" definition : Indeed \mathcal{H} is endowed with an even super Hermitian form:

$$\langle x, y \rangle_{super} = \begin{cases} 0 & \text{if } x, y \text{ are of opposite parity,} \\ \langle x, y \rangle_{\mathcal{H}_0} & \text{if } x, y \in \mathcal{H}_0, \\ \sqrt{-1} \langle x, y \rangle_{\mathcal{H}_1} & \text{if } x, y \in \mathcal{H}_1. \end{cases}$$

We have:

$$\begin{array}{l} \langle y, x \rangle_{super} = (-1)^{|x| \cdot |y|} \overline{\langle x, y \rangle}_{super} \\ \langle x, x \rangle_{super} > 0 \text{ for } x \in \mathcal{H}_0, x \neq 0 \\ \sqrt{-1} \langle x, x \rangle_{super} < 0 \text{ for } x \in \mathcal{H}_1, x \neq 0 \end{array}$$

35/107

Unitary representations of super Lie groups

• Let (G_0, \mathfrak{g}) be a super Lie group. We want to consider unitary representations of (G_0, \mathfrak{g}) on super Hilbert spaces, i.e.,

 $\pi : \mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(\mathcal{H}).$

• Let (G_0, \mathfrak{g}) be a super Lie group. We want to consider unitary representations of (G_0, \mathfrak{g}) on super Hilbert spaces, i.e.,

 $\pi : \mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(\mathcal{H}).$

But if $X \in g_1$, then

$$\pi([X, X]) = \pi(X)\pi(X) + \pi(X)\pi(X) = 2\pi(X)^2$$

and $\pi([X, X])$ is an *unbounded*, (only) densely defined operator.

• Let (G_0, \mathfrak{g}) be a super Lie group. We want to consider unitary representations of (G_0, \mathfrak{g}) on super Hilbert spaces, i.e.,

 $\pi : \mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(\mathcal{H}).$

But if $X \in \mathfrak{g}_1$, then

$$\pi([X, X]) = \pi(X)\pi(X) + \pi(X)\pi(X) = 2\pi(X)^2$$

and $\pi([X, X])$ is an *unbounded*, (only) densely defined operator.

• A natural choice of representation space is \mathcal{H}^∞ (the subspace of smooth vectors) defined as

$$\mathcal{H}^{\infty} = \{ v \mid v \in \mathcal{H} \text{ and the map } g \mapsto \pi(g)v \text{ is smooth } \}$$

But then one needs to know that $\pi(X)\mathcal{H}^{\infty} \subseteq \mathcal{H}^{\infty}$

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A *unitary representation* of (G_0 , g) is a triple (π , ρ^{π} , \mathcal{H}) such that :

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A *unitary representation* of (G_0 , g) is a triple (π , ρ^{π} , \mathcal{H}) such that :

• $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$ is a super Hilbert space.

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A *unitary representation* of (G_0 , g) is a triple (π , ρ^{π} , \mathcal{H}) such that :

- $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$ is a super Hilbert space.
- *π* : *G*₀ → U(*H*) is a unitary representation of *G*₀ (in the usual sense).

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A *unitary representation* of (G_0 , g) is a triple (π , ρ^{π} , \mathcal{H}) such that :

- $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$ is a super Hilbert space.
- *π* : *G*₀ → U(*H*) is a unitary representation of *G*₀ (in the usual sense).
- $\rho^{\pi} : \mathfrak{g} \to \operatorname{End}(\mathcal{H}^{\infty})$ is a super skew-Hermitian representation which satisfies

$$\rho^{\pi}([X,Y]) = \rho^{\pi}(X)\rho^{\pi}(Y) - (-1)^{|X| \cdot |Y|}\rho^{\pi}(Y)\rho^{\pi}(X).$$

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A *unitary representation* of (G_0 , g) is a triple (π , ρ^{π} , \mathcal{H}) such that :

- $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$ is a super Hilbert space.
- *π* : *G*₀ → U(*H*) is a unitary representation of *G*₀ (in the usual sense).
- $\rho^{\pi} : \mathfrak{g} \to \operatorname{End}(\mathcal{H}^{\infty})$ is a super skew-Hermitian representation which satisfies

$$\rho^{\pi}([X,Y]) = \rho^{\pi}(X)\rho^{\pi}(Y) - (-1)^{|X| \cdot |Y|}\rho^{\pi}(Y)\rho^{\pi}(X).$$

• Here \mathcal{H}^{∞} is the space of smooth vectors of (π, \mathcal{H}) .

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A *unitary representation* of (G_0 , g) is a triple (π , ρ^{π} , \mathcal{H}) such that :

- $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$ is a super Hilbert space.
- *π* : *G*₀ → U(*H*) is a unitary representation of *G*₀ (in the usual sense).
- *ρ^π*: g → End(*H[∞]*) is a super skew-Hermitian representation
 which satisfies

$$\rho^{\pi}([X,Y]) = \rho^{\pi}(X)\rho^{\pi}(Y) - (-1)^{|X| \cdot |Y|}\rho^{\pi}(Y)\rho^{\pi}(X).$$

• Here \mathcal{H}^{∞} is the space of smooth vectors of (π, \mathcal{H}) .

•
$$\rho_{|g_0}^{\pi} = \pi^{\infty}$$
 and $\rho^{\pi}(\operatorname{Ad}(g)(X)) = \pi(g)\rho^{\pi}(X)\pi(g^{-1}).$

Let (H_0, \mathfrak{h}) be a sub super Lie group of (G_0, \mathfrak{g}) . One can formally define restriction and induction functors.

Not So Obvious Fact :

These functors are well defined.

Proof. Follows from [Carmeli, Cassinelli, Toigo, Varadarajan].

Unitary equivalence

Two unitary representations $(\pi, \rho^{\pi}, \mathcal{H})$ and $(\pi', \rho^{\pi'}, \mathcal{H}')$ are said to be unitarily equivalent if there exists a linear isometry $T : \mathcal{H} \to \mathcal{H}'$ such that :

• *T* preserves the $\mathbb{Z}/2\mathbb{Z}$ -grading.

Unitary equivalence

Two unitary representations $(\pi, \rho^{\pi}, \mathcal{H})$ and $(\pi', \rho^{\pi'}, \mathcal{H}')$ are said to be unitarily equivalent if there exists a linear isometry $T : \mathcal{H} \to \mathcal{H}'$ such that :

- *T* preserves the $\mathbb{Z}/2\mathbb{Z}$ -grading.
- For any $g \in G_0$, $\pi'(g) \circ T = T \circ \pi(g)$.
- For any $X \in \mathfrak{g}$, $\rho^{\pi'}(X) \circ T = T \circ \rho^{\pi}(X)$.

Unitary equivalence

Two unitary representations $(\pi, \rho^{\pi}, \mathcal{H})$ and $(\pi', \rho^{\pi'}, \mathcal{H}')$ are said to be unitarily equivalent if there exists a linear isometry $T : \mathcal{H} \to \mathcal{H}'$ such that :

- *T* preserves the $\mathbb{Z}/2\mathbb{Z}$ -grading.
- For any $g \in G_0$, $\pi'(g) \circ T = T \circ \pi(g)$.
- For any $X \in \mathfrak{g}$, $\rho^{\pi'}(X) \circ T = T \circ \rho^{\pi}(X)$.

Parity change

Tensoring $(\pi, \rho^{\pi}, \mathcal{H})$ with the trivial representation on $\mathbb{C}^{0|1}$ yields $(\pi, \rho^{\pi}, {}^{\Pi}\mathcal{H})$ where ${}^{\Pi}\mathcal{H}_0 = \mathcal{H}_1$ and ${}^{\Pi}\mathcal{H}_1 = \mathcal{H}_0$.

Unitary equivalence

Two unitary representations $(\pi, \rho^{\pi}, \mathcal{H})$ and $(\pi', \rho^{\pi'}, \mathcal{H}')$ are said to be unitarily equivalent if there exists a linear isometry $T : \mathcal{H} \to \mathcal{H}'$ such that :

- *T* preserves the $\mathbb{Z}/2\mathbb{Z}$ -grading.
- For any $g \in G_0$, $\pi'(g) \circ T = T \circ \pi(g)$.
- For any $X \in \mathfrak{g}$, $\rho^{\pi'}(X) \circ T = T \circ \rho^{\pi}(X)$.

Parity change

Tensoring $(\pi, \rho^{\pi}, \mathcal{H})$ with the trivial representation on $\mathbb{C}^{0|1}$ yields $(\pi, \rho^{\pi}, {}^{\Pi}\mathcal{H})$ where ${}^{\Pi}\mathcal{H}_0 = \mathcal{H}_1$ and ${}^{\Pi}\mathcal{H}_1 = \mathcal{H}_0$.

• $(\pi, \rho^{\pi}, \mathcal{H})$ and $(\pi, \rho^{\pi}, {}^{\Pi}\mathcal{H})$ are *not* necessarily unitarily equivalent.

49/107

 General facts about rep's of locally compact groups (e.g., Mackey machinery) may not generalize.

- General facts about rep's of locally compact groups (e.g., Mackey machinery) may not generalize.
- If g₀ were reductive, we could work "infinitesimally" (as done by S. J. Cheng, H. Furutsu, K. Nishiyama, W. Wang, R. B. Zhang, . . .)

- General facts about rep's of locally compact groups (e.g., Mackey machinery) may not generalize.
- If g₀ were reductive, we could work "infinitesimally" (as done by S. J. Cheng, H. Furutsu, K. Nishiyama, W. Wang, R. B. Zhang, . . .)
- One needs to define "super" polarizing subalgebras (and prove that they exist).

A super Lie group (G₀, g) is called *nilpotent* if the lower central series of g has finitely many nonzero terms (equivalently, if g appears in its own upper central series).

- A super Lie group (G₀, g) is called *nilpotent* if the lower central series of g has finitely many nonzero terms (equivalently, if g appears in its own upper central series).
- Unlike Lie groups, certain super Lie groups do not have any faithful unitary representairons!

- A super Lie group (G₀, g) is called *nilpotent* if the lower central series of g has finitely many nonzero terms (equivalently, if g appears in its own upper central series).
- Unlike Lie groups, certain super Lie groups do not have any faithful unitary representairons!

Lemma

If $X_1, ..., X_m \in \mathfrak{g}_1$ such that

$$\sum_{i=1}^m [X_i, X_i] = 0$$

then for every unitary representation $(\pi, \rho^{\pi}, \mathcal{H})$ we have $\rho^{\pi}(X_1) = \cdots = \rho^{\pi}(X_m) = 0.$

- A super Lie group (G₀, g) is called *nilpotent* if the lower central series of g has finitely many nonzero terms (equivalently, if g appears in its own upper central series).
- Unlike Lie groups, certain super Lie groups do not have any faithful unitary representairons!

Lemma

If $X_1, ..., X_m \in \mathfrak{g}_1$ such that

$$\sum_{i=1}^{m} [X_i, X_i] = 0$$

then for every unitary representation $(\pi, \rho^{\pi}, \mathcal{H})$ we have $\rho^{\pi}(X_1) = \cdots = \rho^{\pi}(X_m) = 0.$

Proof. Observe that $\sum_{i=1}^{m} \rho^{\pi}(X_i)^2 = 0$ and for every *i*, the operator $e^{\frac{\pi}{4}\sqrt{-1}}\rho^{\pi}(X_i)$ is symmetric. For every $v \in \mathcal{H}^{\infty}$ we have : $\sum_{i=1}^{m} \langle e^{\frac{\pi}{4}\sqrt{-1}}\rho^{\pi}(X_i)v, e^{\frac{\pi}{4}\sqrt{-1}}\rho^{\pi}(X_i)v \rangle = \langle v, e^{\frac{\pi}{2}\sqrt{-1}}\sum_{i=1}^{m}\rho^{\pi}(X_i)^2v \rangle = 0.$

• Set $\mathfrak{a}^{(1)} = \langle X \in \mathfrak{g}_1 | [X, X] = 0 \rangle$. We call \mathfrak{g} *reduced* if $\mathfrak{a}^{(1)} = \{0\}$.

Set a⁽¹⁾ = ⟨X ∈ g₁ | [X, X] = 0⟩. We call g *reduced* if a⁽¹⁾ = {0}.
Set

a⁽²⁾ = ⟨X ∈ g₁ | [X, X] ∈ a⁽¹⁾⟩
a⁽³⁾ = ⟨X ∈ g₁ | [X, X] ∈ a⁽²⁾⟩

...

Set a⁽¹⁾ = ⟨X ∈ g₁ | [X, X] = 0⟩. We call g *reduced* if a⁽¹⁾ = {0}.
Set
a⁽²⁾ = ⟨X ∈ g₁ | [X, X] ∈ a⁽¹⁾⟩

$$\mathfrak{a}^{(3)} = \langle X \in \mathfrak{g}_1 \mid [X, X] \in \mathfrak{a}^{(2)} \rangle$$

We have

 $\mathfrak{a}^{(1)} \subset \mathfrak{a}^{(2)} \subset \mathfrak{a}^{(3)} \subset \cdots$

Set a⁽¹⁾ = ⟨X ∈ g₁ | [X, X] = 0⟩. We call g *reduced* if a⁽¹⁾ = {0}.
Set
a⁽²⁾ = ⟨X ∈ g₁ | [X, X] ∈ a⁽¹⁾⟩

$$\mathfrak{a}^{(3)} = \langle X \in \mathfrak{g}_1 \mid [X, X] \in \mathfrak{a}^{(2)} \rangle$$
$$\mathfrak{a}^{(3)} = \langle X \in \mathfrak{g}_1 \mid [X, X] \in \mathfrak{a}^{(2)} \rangle$$

We have

$$\mathfrak{a}^{(1)} \subset \mathfrak{a}^{(2)} \subset \mathfrak{a}^{(3)} \subset \cdots$$

Set
$$\mathfrak{a} = \bigcup_{j \ge 1} \mathfrak{a}^{(j)}$$

Observation

- $\rho^{\pi}(\mathfrak{a}) = 0$ for every unitary representation $(\pi, \rho^{\pi}, \mathcal{H})$.
- \mathfrak{a} is $\mathbb{Z}/2\mathbb{Z}$ -graded, hence corresponds to a sub super Lie group (A_0, \mathfrak{a}) of (G_0, \mathfrak{g}) . The quotient $\mathfrak{g}/\mathfrak{a}$ is reduced.

Lemma (Kirillov ?)

Let (G_0, \mathfrak{g}) be a nilpotent super Lie group such that \mathfrak{g} is *reduced* and dim $\mathcal{Z}(\mathfrak{g}) = 1$. Then exactly one of the following statements is true :

Lemma (Kirillov ?)

Let (G_0 , g) be a nilpotent super Lie group such that g is *reduced* and dim $\mathcal{Z}(g) = 1$. Then exactly one of the following statements is true :

• There exists a graded decomposition

 $\mathfrak{g}=\mathbb{R} X\oplus\mathbb{R} Y\oplus\mathbb{R} X\oplus\mathfrak{w}$

such that Span{X, Y, Z} is a three-dimensional Heisenberg algebra, $Z \in \mathcal{Z}(g)$,

 $\mathfrak{g}' := \mathbb{R}Y \oplus \mathbb{R}Z \oplus \mathfrak{w}$

is a subalgebra, and $Y \in \mathcal{Z}(g')$.

Lemma (Kirillov ?)

Let (G_0 , g) be a nilpotent super Lie group such that g is *reduced* and dim $\mathcal{Z}(g) = 1$. Then exactly one of the following statements is true :

• There exists a graded decomposition

 $\mathfrak{g}=\mathbb{R} X\oplus\mathbb{R} Y\oplus\mathbb{R} X\oplus\mathfrak{w}$

such that Span{X, Y, Z} is a three-dimensional Heisenberg algebra, $Z \in \mathcal{Z}(g)$,

 $\mathfrak{g}' := \mathbb{R}Y \oplus \mathbb{R}Z \oplus \mathfrak{w}$

is a subalgebra, and $Y \in \mathcal{Z}(g')$.

• g is isomorphic to \mathfrak{h}_W where $W_0 = \{0\}$.

Lemma (Kirillov ?)

Let (G_0 , g) be a nilpotent super Lie group such that g is *reduced* and dim $\mathcal{Z}(g) = 1$. Then exactly one of the following statements is true :

• There exists a graded decomposition

 $\mathfrak{g}=\mathbb{R} X\oplus\mathbb{R} Y\oplus\mathbb{R} X\oplus\mathfrak{w}$

such that Span{X, Y, Z} is a three-dimensional Heisenberg algebra, $Z \in \mathcal{Z}(g)$,

 $\mathfrak{g}' := \mathbb{R}Y \oplus \mathbb{R}Z \oplus \mathfrak{w}$

is a subalgebra, and $Y \in \mathcal{Z}(g')$.

• g is isomorphic to \mathfrak{h}_W where $W_0 = \{0\}$.

Unitary representations as induced representations

Let (G_0, \mathfrak{g}) be a nilpotent super Lie group such that

- g is reduced,
- dim $\mathcal{Z}(g) = 1$,
- \mathfrak{g} is *not* isomorphic to \mathfrak{h}_W with $W_0 = \{0\}$.

Unitary representations as induced representations

Let (G_0, \mathfrak{g}) be a nilpotent super Lie group such that

- g is reduced,
- dim $\mathcal{Z}(g) = 1$,
- \mathfrak{g} is *not* isomorphic to \mathfrak{h}_W with $W_0 = \{0\}$.

Let g' be as in Kirillov's lemma, and let (G'_0, g') be the sub super Lie group of (G_0, g) defined in the super version of Kirillov's lemma.

• Observe that dim g'_1 = dim g_1 , hence induction from (G'_0, g') to (G_0, g) yields unitary representations.

Unitary representations as induced representations

Let (G_0, \mathfrak{g}) be a nilpotent super Lie group such that

- g is reduced,
- dim $\mathcal{Z}(g) = 1$,
- \mathfrak{g} is *not* isomorphic to \mathfrak{h}_W with $W_0 = \{0\}$.

Let g' be as in Kirillov's lemma, and let (G'_0, g') be the sub super Lie group of (G_0, g) defined in the super version of Kirillov's lemma.

Observe that dim g₁' = dim g₁, hence induction from (G₀', g') to (G₀, g) yields unitary representations.

Proposition (codimension one induction)

Let $(\pi, \rho^{\pi}, \mathcal{H})$ be an irreducible unitary representation of (G_0, \mathfrak{g}) whose restriction to $\mathcal{Z}(G_0)$ is nontrivial. Then

$$(\pi, \rho^{\pi}, \mathcal{H}) = \operatorname{Ind}_{(G'_0, \mathfrak{g}')}^{(G_0, \mathfrak{g})}(\pi', \rho^{\pi'}, \mathcal{H}')$$

for some irreducible unitary representation $(\pi', \rho^{\pi'}, \mathcal{H}')$ of (G'_0, \mathfrak{g}') .

Unitary rep's of Heisenberg-Clifford super Lie groups

• Recall that $\mathfrak{h}_W = W \oplus \mathbb{R}$ where

 $[(v_1,s_1),(v_2,s_2)]=(0,\Omega(v,w))$

Set $\mathfrak{g} = \mathfrak{h}_W$ and let (G_0, \mathfrak{g}) be the corresponding super Lie group.

Unitary rep's of Heisenberg-Clifford super Lie groups

• Recall that $\mathfrak{h}_W = W \oplus \mathbb{R}$ where

 $[(v_1,s_1),(v_2,s_2)]=(0,\Omega(v,w))$

Set $\mathfrak{g} = \mathfrak{h}_W$ and let (G_0, \mathfrak{g}) be the corresponding super Lie group.

Theorem (generalized Stone-von Neumann)

Let $\chi : \mathbb{R} \to \mathbb{C}^{\times}$ be defined by $\chi(t) = e^{at\sqrt{-1}}$ where a > 0. (The case a < 0 is similar.)

- Ω_{|W1×W1} positive definite ⇒ up to unitary equivalence and parity there exists a unique unitary representation with central character *χ*.
- $\Omega_{|W_1 \times W_1}$ not positive definite \Rightarrow (G_0 , g) does not have any unitary representations with central character χ .

Unitary rep's of Heisenberg-Clifford super Lie groups

• Recall that $\mathfrak{h}_W = W \oplus \mathbb{R}$ where

 $[(v_1,s_1),(v_2,s_2)]=(0,\Omega(v,w))$

Set $\mathfrak{g} = \mathfrak{h}_W$ and let (G_0, \mathfrak{g}) be the corresponding super Lie group.

Theorem (generalized Stone-von Neumann)

Let $\chi : \mathbb{R} \to \mathbb{C}^{\times}$ be defined by $\chi(t) = e^{at\sqrt{-1}}$ where a > 0. (The case a < 0 is similar.)

- Ω_{|W1×W1} positive definite ⇒ up to unitary equivalence and parity there exists a unique unitary representation with central character *χ*.
- $\Omega_{|W_1 \times W_1}$ not positive definite \Rightarrow (G_0 , g) does not have any unitary representations with central character χ .

Let $(\pi_{\chi}, \rho^{\pi_{\chi}}, \mathcal{H}_{\chi})$ denote the unitary representation with central character χ . dim $\mathfrak{g}_1 = 2k \implies (\pi_{\chi}, \rho^{\pi_{\chi}}, \mathcal{H}_{\chi}) \neq (\pi_{\chi}, \rho^{\pi_{\chi}}, \Pi \mathcal{H}_{\chi})$ dim $\mathfrak{g}_1 = 2k + 1 \implies (\pi_{\chi}, \rho^{\pi_{\chi}}, \mathcal{H}_{\chi}) \simeq (\pi_{\chi}, \rho^{\pi_{\chi}}, \mathcal{H}_{\chi})$

70/107

The general case

Let (G_0, \mathfrak{g}) be a nilpotent super Lie group.

The general case

Let (G_0, \mathfrak{g}) be a nilpotent super Lie group.

• For every $\lambda \in \mathfrak{g}_0^*$ one can define a symmetric bilinear form

 $\mathsf{B}_{\lambda}:\mathfrak{g}_1\times\mathfrak{g}_1\to\mathbb{R}$

where $B_{\lambda}(X, Y) = \lambda([X, Y])$.

The general case

Let (G_0, \mathfrak{g}) be a nilpotent super Lie group.

• For every $\lambda \in \mathfrak{g}_0^*$ one can define a symmetric bilinear form

 $\mathsf{B}_{\lambda}:\mathfrak{g}_1\times\mathfrak{g}_1\to\mathbb{R}$

where $B_{\lambda}(X, Y) = \lambda([X, Y])$.

Set

 $\mathfrak{g}_0^+ = \{ \lambda \in \mathfrak{g}_0^* \mid B_\lambda \text{ is nonnegative definite } \}$

The general case

Let (G_0, \mathfrak{g}) be a nilpotent super Lie group.

• For every $\lambda \in \mathfrak{g}_0^*$ one can define a symmetric bilinear form

 $\mathsf{B}_{\lambda}:\mathfrak{g}_1\times\mathfrak{g}_1\to\mathbb{R}$

where $B_{\lambda}(X, Y) = \lambda([X, Y])$.

Set

 $\mathfrak{g}_0^+ = \{ \lambda \in \mathfrak{g}_0^* \mid B_\lambda \text{ is nonnegative definite } \}$

• Observe that g_0^+ is a G_0 -invariant cone.

The general case

Let (G_0, \mathfrak{g}) be a nilpotent super Lie group.

• For every $\lambda \in \mathfrak{g}_0^*$ one can define a symmetric bilinear form

 $\mathsf{B}_{\lambda}:\mathfrak{g}_1\times\mathfrak{g}_1\to\mathbb{R}$

where $B_{\lambda}(X, Y) = \lambda([X, Y])$.

Set

 $\mathfrak{g}_0^+ = \{ \lambda \in \mathfrak{g}_0^* \mid B_\lambda \text{ is nonnegative definite } \}$

• Observe that g_0^+ is a G_0 -invariant cone.

THEOREM (S.)

There exists a bijective correspondence

Irreducible unitary
representations of (G_0, \mathfrak{g}) G_0 - orbits
in \mathfrak{g}_0^+

Let (G_0, \mathfrak{g}) be a nilpotent super Lie group.

Let (G_0, \mathfrak{g}) be a nilpotent super Lie group.

A polarizing system of (G_0, \mathfrak{g}) is a 6-tuple

 $(M_0, \mathfrak{m}, \Phi, C_0, \mathfrak{c}, \lambda)$

Let (G_0, \mathfrak{g}) be a nilpotent super Lie group.

A polarizing system of (G_0, \mathfrak{g}) is a 6-tuple

 $(M_0,\mathfrak{m},\Phi,C_0,\mathfrak{c},\lambda)$

such that :

• dim $\mathfrak{m}_1 = \dim \mathfrak{g}_1$.

Let (G_0, \mathfrak{g}) be a nilpotent super Lie group.

A polarizing system of (G_0, \mathfrak{g}) is a 6-tuple

 $(M_0,\mathfrak{m},\Phi,C_0,\mathfrak{c},\lambda)$

such that :

- dim $\mathfrak{m}_1 = \dim \mathfrak{g}_1$.
- λ ∈ g₀^{*} and m₀ is a maximally isotropic subalgebra of g₀ w.r.t. the skew symmetric form Ω_λ(X, Y) = λ([X, Y]).

79/107

Let (G_0, \mathfrak{g}) be a nilpotent super Lie group.

A polarizing system of (G_0, \mathfrak{g}) is a 6-tuple

 $(M_0,\mathfrak{m},\Phi,C_0,\mathfrak{c},\lambda)$

- dim $\mathfrak{m}_1 = \dim \mathfrak{g}_1$.
- λ ∈ g₀^{*} and m₀ is a maximally isotropic subalgebra of g₀ w.r.t. the skew symmetric form Ω_λ(X, Y) = λ([X, Y]).
- (C₀, c) is a Heisenberg-Clifford super Lie group such that dim C₀ = 1.

Let (G_0, \mathfrak{g}) be a nilpotent super Lie group.

A polarizing system of (G_0, \mathfrak{g}) is a 6-tuple

 $(M_0,\mathfrak{m},\Phi,C_0,\mathfrak{c},\lambda)$

- dim $\mathfrak{m}_1 = \dim \mathfrak{g}_1$.
- λ ∈ g₀^{*} and m₀ is a maximally isotropic subalgebra of g₀ w.r.t. the skew symmetric form Ω_λ(X, Y) = λ([X, Y]).
- (C₀, c) is a Heisenberg-Clifford super Lie group such that dim C₀ = 1.
- $\Phi: (M_0, \mathfrak{m}) \to (C_0, \mathfrak{c})$ is an epimorphism.

Let (G_0, \mathfrak{g}) be a nilpotent super Lie group.

A polarizing system of (G_0, \mathfrak{g}) is a 6-tuple

 $(M_0,\mathfrak{m},\Phi,C_0,\mathfrak{c},\lambda)$

- dim $\mathfrak{m}_1 = \dim \mathfrak{g}_1$.
- λ ∈ g₀^{*} and m₀ is a maximally isotropic subalgebra of g₀ w.r.t. the skew symmetric form Ω_λ(X, Y) = λ([X, Y]).
- (C₀, c) is a Heisenberg-Clifford super Lie group such that dim C₀ = 1.
- $\Phi: (M_0, \mathfrak{m}) \to (C_0, \mathfrak{c})$ is an epimorphism.
- $\mathfrak{m}_0 \cap \ker \Phi = \mathfrak{m}_0 \cap \ker \lambda$.

Proposition (everything is induced)

Every irreducible rep (π, ρ^π, H) of (G₀, g) is induced from a polarizing system (M₀, m, Φ, C₀, c, λ), i.e.,

$$(\pi, \rho^{\pi}, \mathcal{H}) = \operatorname{Ind}_{(M_0, \mathfrak{m})}^{(G_0, \mathfrak{g})}(\sigma \circ \Phi, \rho^{\sigma \circ \Phi}, \mathcal{K})$$

where for every $W \in \mathfrak{m}_0$, $\rho^{\sigma \circ \Phi}(W) = \rho^{\sigma}(\Phi(W)) = \lambda(W)$.

Proposition (everything is induced)

Every irreducible rep (π, ρ^π, H) of (G₀, g) is induced from a polarizing system (M₀, m, Φ, C₀, c, λ), i.e.,

$$(\pi, \rho^{\pi}, \mathcal{H}) = \operatorname{Ind}_{(M_0, \mathfrak{m})}^{(G_0, \mathfrak{g})}(\sigma \circ \Phi, \rho^{\sigma \circ \Phi}, \mathcal{K})$$

where for every $W \in \mathfrak{m}_0$, $\rho^{\sigma \circ \Phi}(W) = \rho^{\sigma}(\Phi(W)) = \lambda(W)$.

$$(M_0, \mathfrak{m}) \xrightarrow{\Phi} (C_0, \mathfrak{c}) \dashrightarrow (\sigma, \rho^{\sigma}, \mathcal{K})$$

Proposition (everything is induced)

Every irreducible rep (π, ρ^π, H) of (G₀, g) is induced from a polarizing system (M₀, m, Φ, C₀, c, λ), i.e.,

$$(\pi, \rho^{\pi}, \mathcal{H}) = \operatorname{Ind}_{(M_0, \mathfrak{m})}^{(G_0, \mathfrak{g})}(\sigma \circ \Phi, \rho^{\sigma \circ \Phi}, \mathcal{K})$$

where for every $W \in \mathfrak{m}_0$, $\rho^{\sigma \circ \Phi}(W) = \rho^{\sigma}(\Phi(W)) = \lambda(W)$.

$$(M_0,\mathfrak{m}) \xrightarrow{\Phi} (C_0,\mathfrak{c}) \dashrightarrow (\sigma,\rho^{\sigma},\mathcal{K})$$

Moreover, if (π, ρ^π, H) is induced from two different polarizing systems

 $(M_0, \mathfrak{m}, \Phi, C_0, \mathfrak{c}, \lambda)$ and $(M'_0, \mathfrak{m}', \Phi, C'_0, \mathfrak{c}', \lambda')$

then

(C₀, c)
$$\simeq$$
 (C'₀, c')
($\lambda' = \operatorname{Ad}^*(g)(\lambda)$ for some $g \in G_0$.

Nonnegativity condition

• Suppose $(\pi, \rho^{\pi}, \mathcal{H}) = \operatorname{Ind}_{(M_0, \mathfrak{m})}^{(G_0, \mathfrak{g})}(\sigma \circ \Phi, \rho^{\sigma \circ \Phi}, \mathcal{K}).$ From $\lambda(W) = \rho^{\sigma} \circ \Phi(W)$ and properties of Clifford modules we have :

for every
$$X \in \mathfrak{g}_1$$
,
 $B_{\lambda}(X, X) = \lambda([X, X]) = \rho^{\sigma} \circ \Phi([X, X])$
 $= [\rho^{\sigma} \circ \Phi(X), \rho^{\sigma} \circ \Phi(X)] \ge 0$

Nonnegativity condition

Suppose (π, ρ^π, ℋ) = Ind^(G₀,g)_(M₀,m)(σ ◦ Φ, ρ^{σ◦Φ}, ℋ).
 From λ(W) = ρ^σ ◦ Φ(W) and properties of Clifford modules we have :

for every
$$X \in \mathfrak{g}_1$$
,
 $B_{\lambda}(X, X) = \lambda([X, X]) = \rho^{\sigma} \circ \Phi([X, X])$
 $= [\rho^{\sigma} \circ \Phi(X), \rho^{\sigma} \circ \Phi(X)] \ge 0$

which implies that $\lambda \in \mathfrak{g}_0^+$.

Nonnegativity condition

• Suppose $(\pi, \rho^{\pi}, \mathcal{H}) = \operatorname{Ind}_{(M_0, \mathfrak{m})}^{(G_0, \mathfrak{g})}(\sigma \circ \Phi, \rho^{\sigma \circ \Phi}, \mathcal{K}).$ From $\lambda(W) = \rho^{\sigma} \circ \Phi(W)$ and properties of Clifford modules we have :

for every
$$X \in \mathfrak{g}_1$$
,
 $B_{\lambda}(X, X) = \lambda([X, X]) = \rho^{\sigma} \circ \Phi([X, X])$
 $= [\rho^{\sigma} \circ \Phi(X), \rho^{\sigma} \circ \Phi(X)] \ge 0$

which implies that $\lambda \in \mathfrak{g}_0^+$.

• Conversely, we should show that every $\lambda \in \mathfrak{g}_0^+$ fits into a polarizing system $(M_0, \mathfrak{m}, C_0, \mathfrak{c}, \Phi, \lambda)$.

Proposition

For every $\lambda \in \mathfrak{g}_0^+$ there exists a polarizing system

$(M_0,\mathfrak{m},\Phi,C_0,\mathfrak{c},\lambda).$

Proposition

For every $\lambda \in \mathfrak{g}_0^+$ there exists a polarizing system

 $(M_0,\mathfrak{m},\Phi,C_0,\mathfrak{c},\lambda).$

The proof is based on the following lemma :

Lemma

Let $\lambda \in \mathfrak{g}_0^+$. Then there exists a subalgebra $\mathfrak{p}_0 \subset \mathfrak{g}_0$ such that :

p₀ is a maximal isotropic subalgebra for the skew symmetric form Ω_λ,

•
$$\mathfrak{p}_0 \supset [\mathfrak{g}_1, \mathfrak{g}_1].$$

Lemma

There exists a subalgebra $\mathfrak{p}_0 \subset \mathfrak{g}_0$ such that :

- \mathfrak{p}_0 is a maximal isotropic subalgebra for the skew symmetric form Ω_{λ} ,
- $\mathfrak{p}_0 \supset [\mathfrak{g}_1, \mathfrak{g}_1].$

Lemma

There exists a subalgebra $\mathfrak{p}_0 \subset \mathfrak{g}_0$ such that :

- \mathfrak{p}_0 is a maximal isotropic subalgebra for the skew symmetric form Ω_{λ} ,
- $\mathfrak{p}_0 \supset [\mathfrak{g}_1, \mathfrak{g}_1].$

• $i = [g_1, g_1]$ is an ideal of g_0 , hence there exists a sequence $\{0\} = i^0 \subset i^1 \subset i^2 \subset \cdots \subset i^s = i \subset i^{s+1} \subset \cdots \subset i^r = g_0$

of ideals such that dim $(i^k/i^{k-1}) = 1$ for every $k \ge 1$.

Lemma

There exists a subalgebra $\mathfrak{p}_0 \subset \mathfrak{g}_0$ such that :

- \mathfrak{p}_0 is a maximal isotropic subalgebra for the skew symmetric form Ω_{λ} ,
- $\mathfrak{p}_0 \supset [\mathfrak{g}_1, \mathfrak{g}_1].$

• $i = [g_1, g_1]$ is an ideal of g_0 , hence there exists a sequence $\{0\} = i^0 \subset i^1 \subset i^2 \subset \cdots \subset i^s = i \subset i^{s+1} \subset \cdots \subset i^r = g_0$

of ideals such that dim $(i^k/i^{k-1}) = 1$ for every $k \ge 1$.

2 (M. Vergne) Define \mathfrak{p}_0 to be

$$\mathfrak{p}_0 := \sum_{k=1}^r \operatorname{rad}(\Omega_{\lambda \mid i^k \times i^k}).$$

Then \mathfrak{p}_0 is a maximal isotropic subalgebra for Ω_{λ} .

Lemma

There exists a subalgebra $\mathfrak{p}_0 \subset \mathfrak{g}_0$ such that :

- \mathfrak{p}_0 is a maximal isotropic subalgebra for the skew symmetric form Ω_{λ} ,
- $\mathfrak{p}_0 \supset [\mathfrak{g}_1, \mathfrak{g}_1].$

• $i = [g_1, g_1]$ is an ideal of g_0 , hence there exists a sequence $\{0\} = i^0 \subset i^1 \subset i^2 \subset \cdots \subset i^s = i \subset i^{s+1} \subset \cdots \subset i^r = g_0$

of ideals such that dim $(i^k/i^{k-1}) = 1$ for every $k \ge 1$.

2 (M. Vergne) Define \mathfrak{p}_0 to be

$$\mathfrak{p}_0 := \sum_{k=1}^r \operatorname{rad}(\Omega_{\lambda \mid i^k \times i^k}).$$

Then \mathfrak{p}_0 is a maximal isotropic subalgebra for Ω_{λ} .

One can show that $\Omega_{\lambda}([g_1, g_1], [g_1, g_1]) = 0$, which implies that $[g_1, g_1] \subset \mathfrak{p}_0$. ₹

94/107

Irreducibility

Proposition

If a unitary representation $(\pi, \rho^{\pi}, \mathcal{H})$ is induced from a polarizing system, then it is irreducibe.

Irreducibility

Proposition

If a unitary representation $(\pi, \rho^{\pi}, \mathcal{H})$ is induced from a polarizing system, then it is irreducibe.

Proof. By induction on dim g.

Case I : g is not reduced, or g is reduced and $\mathcal{Z}(g) \cap \ker \lambda \neq \{0\}$. Induction hypothesis.

Irreducibility

Proposition

If a unitary representation $(\pi, \rho^{\pi}, \mathcal{H})$ is induced from a polarizing system, then it is irreducibe.

Proof. By induction on dim g.

Case I : g is not reduced, or g is reduced and $Z(g) \cap \ker \lambda \neq \{0\}$. Induction hypothesis.

Case II : g is reduced and $Z(g) \cap \ker \lambda \neq \{0\}$. Find a 3-dimensional Heisenberg subgroup and use explicit formulas for its action.

An observation

Corollary

For every unitary representation $(\pi, \rho^{\pi}, \mathcal{H})$ of (G_0, \mathfrak{g}) we have $\rho^{\pi}([\mathfrak{g}_1, [\mathfrak{g}_1, \mathfrak{g}_1]]) = 0.$

Proof. Get deep into the proof of classification!

An observation

Corollary

For every unitary representation $(\pi, \rho^{\pi}, \mathcal{H})$ of (G_0, \mathfrak{g}) we have $\rho^{\pi}([\mathfrak{g}_1, [\mathfrak{g}_1, \mathfrak{g}_1]]) = 0.$

Proof. Get deep into the proof of classification!

Observation (Neeb) :

• Suppose that
$$\bigcap_{(\pi,\rho^{\pi},\mathcal{H})} \ker (\pi,\rho^{\pi},\mathcal{H}) = \{0\}.$$

• $\mathfrak{g}^c := [\mathfrak{g}_1, \mathfrak{g}_1] \oplus \mathfrak{g}_1.$

• $C_{\mathfrak{g}}$:= closed convex cone in \mathfrak{g}_0^c generated by { [X, X] | $X \in \mathfrak{g}_1$ }.

• C_{g} is G_{0} -invariant, generating, and pointed.

- C_{g} is G_{0} -invariant, generating, and pointed.
- It follows that g_0^c has a *compactly embedded* Cartan subalgebra t.

- C_g is G_0 -invariant, generating, and pointed.
- It follows that g_0^c has a *compactly embedded* Cartan subalgebra t.
- t acts semisimply and nilpotently on g^c; hence [t, g^c] = {0}.

- C_g is G_0 -invariant, generating, and pointed.
- It follows that g_0^c has a *compactly embedded* Cartan subalgebra t.
- t acts semisimply and nilpotently on g^c; hence [t, g^c] = {0}.
- It follows that $[\mathfrak{g}_0^c, \mathfrak{g}^c] = \{0\}$; in particular $[\mathfrak{g}_1, [\mathfrak{g}_1, \mathfrak{g}_1]] = \{0\}$.

- C_g is G_0 -invariant, generating, and pointed.
- It follows that g_0^c has a *compactly embedded* Cartan subalgebra t.
- t acts semisimply and nilpotently on g^c; hence [t, g^c] = {0}.
- It follows that $[\mathfrak{g}_0^c, \mathfrak{g}^c] = \{0\}$; in particular $[\mathfrak{g}_1, [\mathfrak{g}_1, \mathfrak{g}_1]] = \{0\}$.

Problem. Classify solvable Lie superalgebras $g = g_0 \oplus g_1$ for which C_g is pointed.

Restriction of $(\pi, \rho^{\pi}, \mathcal{H})$ to G_0

Let $(\pi, \rho^{\pi}, \mathcal{H})$ be an irr. unitary rep. of (G_0, \mathfrak{g}) corresponding to $O_{\lambda} := G_0 \cdot \lambda$. Then

$$(\pi, \rho^{\pi}, \mathcal{H})_{|G_0} = \underbrace{\pi_{\lambda} \oplus \cdots \oplus \pi_{\lambda}}_{2^l \text{ time}}$$

where π_{λ} is the irreducible unitary representation of G_0 corresponding to O_{λ} .

Restriction of $(\pi, \rho^{\pi}, \mathcal{H})$ to G_0

Let $(\pi, \rho^{\pi}, \mathcal{H})$ be an irr. unitary rep. of (G_0, \mathfrak{g}) corresponding to $O_{\lambda} := G_0 \cdot \lambda$. Then

$$(\pi, \rho^{\pi}, \mathcal{H})_{|G_0} = \underbrace{\pi_{\lambda} \oplus \cdots \oplus \pi_{\lambda}}_{2l \text{ time}}$$

where π_{λ} is the irreducible unitary representation of G_0 corresponding to O_{λ} .

When $(\pi, \rho^{\pi}, \mathcal{H}) \simeq (\pi, \rho^{\pi}, {}^{\Pi}\mathcal{H})$?

If $(\pi, \rho^{\pi}, \mathcal{H})$ is induced form a polarizing system

 $(M_0, \mathfrak{m}, C_0, \mathfrak{c}, \Phi, \lambda)$

then

dim
$$\mathfrak{c} = \begin{cases} 2l & \text{if } (\pi, \rho^{\pi}, \mathcal{H}) \simeq (\pi, \rho^{\pi}, \Pi \mathcal{H}) \\ 2l+1 & \text{otherwise.} \end{cases}$$

うへで)6/107

Thank you !

<ロト</p>
◆□ト
◆□ト
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●</