Unitary Representations of Nilpotent Super Lie groups

Hadi Salmasian
University of Ottawa

$$
\text { July 6, } 2010
$$

The orbit method

Unitary representations of G

Quantization of symplectic G - manifolds

The orbit method

If G is a nilpotent simply connected Lie group, then there exists a bijective correspondence
Irreducible unitary

representations of $G$$\leftrightarrow \leadsto \quad$| G - orbits |
| :---: |
| in g^{*} |

The orbit method

Unitary representations of G

Quantization of symplectic G - manifolds

If G is a nilpotent simply connected Lie group, then there exists a bijective correspondence
Irreducible unitary

representations of $G$$\leftrightarrow \leadsto \quad$| G - orbits |
| :---: |
| in \mathfrak{g}^{*} |

There is a dictionary :

Algebraic operation	Geometric operation
$\operatorname{Res}_{H}^{G} \pi$	$p(O)$ where $p: \mathfrak{g}^{*} \rightarrow \mathfrak{h}^{*}$
$\operatorname{Ind}_{H}^{G} \pi$	$p^{-1}(O)$ where $p: \mathfrak{g}^{*} \rightarrow \mathfrak{h}^{*}$
$\pi_{1} \otimes \pi_{2}$	$O_{1}+O_{2}$
\ldots	\ldots

Nilpotent Lie groups

G : nilpotent and simply connected $\quad \mathfrak{g}=\operatorname{Lie}(G) \quad O \subset \mathfrak{g}^{*}:$ a G-orbit.

Nilpotent Lie groups

$G:$ nilpotent and simply connected $\quad \mathfrak{g}=\operatorname{Lie}(G) \quad O \subset \mathfrak{g}^{*}:$ a G-orbit.

Recipe to construct π from O

(1) Fix $\lambda \in O$. Consider the skew-symmetric form

$$
\Omega_{\lambda}: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}
$$

defined by $\Omega_{\lambda}(X, Y)=\lambda([X, Y])$.

Nilpotent Lie groups

$G:$ nilpotent and simply connected $\quad \mathfrak{g}=\operatorname{Lie}(G) \quad O \subset \mathfrak{g}^{*}:$ a G-orbit.

Recipe to construct π from O

(1) Fix $\lambda \in O$. Consider the skew-symmetric form

$$
\Omega_{\lambda}: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}
$$

defined by $\Omega_{\lambda}(X, Y)=\lambda([X, Y])$.
(2) Proposition. There exists a subalgebra $m \subset \mathfrak{g}$ such that m is a maximal isotropic subspace of Ω_{λ}.

Nilpotent Lie groups

$G:$ nilpotent and simply connected $\quad \mathfrak{g}=\operatorname{Lie}(G) \quad O \subset \mathfrak{g}^{*}:$ a G-orbit.

Recipe to construct π from O

(1) Fix $\lambda \in O$. Consider the skew-symmetric form

$$
\Omega_{\lambda}: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}
$$

defined by $\Omega_{\lambda}(X, Y)=\lambda([X, Y])$.
(2) Proposition. There exists a subalgebra $\mathfrak{m} \subset \mathfrak{g}$ such that \mathfrak{m} is a maximal isotropic subspace of Ω_{λ}.
(3) Set $M=\exp (\mathfrak{m})$ and define $\chi_{\lambda}: M \rightarrow \mathbb{C}^{\times}$by

$$
\chi_{\lambda}(\exp (X))=e^{\lambda(X) \sqrt{-1}} \quad \text { for every } X \in \mathfrak{m} .
$$

Nilpotent Lie groups

$G:$ nilpotent and simply connected $\quad \mathfrak{g}=\operatorname{Lie}(G) \quad O \subset \mathfrak{g}^{*}:$ a G-orbit.

Recipe to construct π from O

(1) Fix $\lambda \in O$. Consider the skew-symmetric form

$$
\Omega_{\lambda}: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}
$$

defined by $\Omega_{\lambda}(X, Y)=\lambda([X, Y])$.
(2) Proposition. There exists a subalgebra $\mathfrak{m} \subset \mathfrak{g}$ such that \mathfrak{m} is a maximal isotropic subspace of Ω_{λ}.
(3) Set $M=\exp (\mathfrak{m})$ and define $\chi_{\lambda}: M \rightarrow \mathbb{C}^{\times}$by

$$
\chi_{\lambda}(\exp (X))=e^{\lambda(X) \sqrt{-1}} \quad \text { for every } X \in \mathfrak{m} .
$$

(3) Set $\pi=\operatorname{Ind}_{M}^{G} \chi_{\lambda}$.

Example : the Schrödinger model

- (W, Ω) : finite dimensional symplectic vector space, i.e.,
- Ω is nondegenerate,
- $\Omega(v, w)=-\Omega(w, v)$.

Example : the Schrödinger model

- (W, Ω) : finite dimensional symplectic vector space, i.e.,
- Ω is nondegenerate,
- $\Omega(v, w)=-\Omega(w, v)$.
- The Heisenberg group :

$$
H_{n}=\{(v, s) \mid v \in W \text { and } s \in \mathbb{R}\}
$$

The group law is given by

$$
\left(v_{1}, s_{1}\right) \bullet\left(v_{2}, s_{2}\right)=\left(v_{1}+v_{2}, s_{1}+s_{2}+\frac{1}{2} \Omega\left(v_{1}, v_{2}\right)\right) .
$$

Example : the Schrödinger model

- (W, Ω) : finite dimensional symplectic vector space, i.e.,
- Ω is nondegenerate,
- $\Omega(v, w)=-\Omega(w, v)$.
- The Heisenberg group :

$$
H_{n}=\{(v, s) \mid v \in W \text { and } s \in \mathbb{R}\}
$$

The group law is given by

$$
\left(v_{1}, s_{1}\right) \bullet\left(v_{2}, s_{2}\right)=\left(v_{1}+v_{2}, s_{1}+s_{2}+\frac{1}{2} \Omega\left(v_{1}, v_{2}\right)\right) .
$$

- $\operatorname{dim} \mathcal{Z}\left(H_{n}\right)=1$ and $H_{n} / \mathcal{Z}\left(H_{n}\right)$ is commutative (i.e., H_{n} is two-step nilpotent).

Example : the Schrödinger model (cont.)

- Consider a polarization of (W, Ω), i.e., a direct sum decomposition

$$
W=X \oplus Y \text { such that } \Omega(X, X)=\Omega(Y, Y)=0
$$

Example : the Schrödinger model (cont.)

- Consider a polarization of (W, Ω), i.e., a direct sum decomposition

$$
W=X \oplus Y \text { such that } \Omega(X, X)=\Omega(Y, Y)=0
$$

- Set $\mathcal{H}:=\mathrm{L}^{2}(Y):=\left\{f:\left.Y \rightarrow \mathbb{C}\left|\int_{Y}\right| f\right|^{2} d \mu<\infty\right\}$.

Example : the Schrödinger model (cont.)

- Consider a polarization of (W, Ω), i.e., a direct sum decomposition

$$
W=X \oplus Y \text { such that } \Omega(X, X)=\Omega(Y, Y)=0
$$

- Set $\mathcal{H}:=\mathrm{L}^{2}(Y):=\left\{f:\left.Y \rightarrow \mathbb{C}\left|\int_{Y}\right| f\right|^{2} d \mu<\infty\right\}$.
- Fix a nonzero $a \in \mathbb{R}$ and define a representation π_{a} of H_{n} on \mathcal{H} via

$$
\begin{aligned}
\left(\pi_{a}(v, 0) f\right)(y) & =e^{a \Omega(y, v) \sqrt{-1}} f(y) & & \text { if } v \in X \\
\left(\pi_{a}(0, v) f\right)(y) & =f(y+v) & & \text { if } v \in Y \\
\left(\pi_{a}(0, s) f\right)(y) & =e^{a s \sqrt{-1}} f(y) & & \text { otherwise. }
\end{aligned}
$$

Example : the Schrödinger model (cont.)

Facts:

- For every $a \in \mathbb{R}, \pi_{a}$ is an irreducible unitary rep. of H_{n}.

Example : the Schrödinger model (cont.)

Facts:

- For every $a \in \mathbb{R}, \pi_{a}$ is an irreducible unitary rep. of H_{n}.
- If $a \neq b$, the representations π_{a} and π_{b} are not unitarily equivalent.

Example : the Schrödinger model (cont.)

Facts:

- For every $a \in \mathbb{R}, \pi_{a}$ is an irreducible unitary rep. of H_{n}.
- If $a \neq b$, the representations π_{a} and π_{b} are not unitarily equivalent.

Theorem (Stone-von Neumann, 1930's)

Up to unitary equivalence, an irreducible unitary representation of H_{n} is one of the following :
(1) A one-dimensional representation (which factors through $\left.H_{n} / \mathcal{Z}\left(H_{n}\right)\right)$,
(2) π_{a}, for some $a \in \mathbb{R}^{\times}$.

Example : Schrödinger model and the orbit method

Recall that:

$$
H_{n}=\{(v, s) \mid v \in W \text { and } s \in \mathbb{R}\}
$$

Set $\mathfrak{b}_{n}=\operatorname{Lie}\left(H_{n}\right)$ and fix $Z \in \mathcal{Z}\left(\mathfrak{h}_{n}\right)$.

Example : Schrödinger model and the orbit method

Recall that:

$$
H_{n}=\{(v, s) \mid v \in W \text { and } s \in \mathbb{R}\}
$$

Set $\mathfrak{b}_{n}=\operatorname{Lie}\left(H_{n}\right)$ and fix $Z \in \mathcal{Z}\left(\mathfrak{h}_{n}\right)$.
H_{n}-orbits in \mathfrak{b}_{n}^{*} are :

- $\{\lambda\}$ where $\lambda(Z)=0 \quad \leadsto \leadsto \quad \begin{gathered}\text { one-dimensional } \\ \text { representations of } H_{n}\end{gathered}$.
- $\left\{\lambda \in \mathfrak{h}_{n}^{*} \mid \lambda(Z)=a\right\} \quad \leadsto \quad$ the representation π_{a}.

Solvable and semisimple groups

Theorem (Auslander - Kostant)

Suppose G is a solvable, connected, simply connected, type I Lie group. Then

$$
\widehat{G}=\bigcup_{O \subset \mathfrak{g}^{*}} S_{O}
$$

where each \mathcal{S}_{O} is a torus of dimension $b_{1}(O)=$ first betti number of O.

Solvable and semisimple groups

Theorem (Auslander - Kostant)

Suppose G is a solvable, connected, simply connected, type I Lie group. Then

$$
\widehat{G}=\bigcup_{O \subset \mathfrak{g}^{*}} S_{O}
$$

where each \mathcal{S}_{O} is a torus of dimension $b_{1}(O)=$ first betti number of O.

Semisimple Groups

- Elliptic orbits $\leadsto \rightarrow$ Discrete series
- Nilpotent orbits $\leadsto \leadsto$ associated varieties of unitary rep's
- . . .

Crash course on Lie superalgebras

- Introduced by physicists - motivated by supersymmetry.

Crash course on Lie superalgebras

- Introduced by physicists - motivated by supersymmetry.
- A (nonassociative) superalgebra is a $\mathbb{Z} / 2 \mathbb{Z}$-graded algebra $\mathcal{A}=\mathcal{A}_{0} \oplus \mathcal{A}_{1}$ (i.e., $\mathcal{A}_{i} \mathcal{A}_{j} \subseteq \mathcal{A}_{i+j}(\bmod 2)$).

Crash course on Lie superalgebras

- Introduced by physicists - motivated by supersymmetry.
- A (nonassociative) superalgebra is a $\mathbb{Z} / 2 \mathbb{Z}$-graded algebra $\mathcal{A}=\mathcal{A}_{0} \oplus \mathcal{A}_{1}$ (i.e., $\mathcal{A}_{i} \mathcal{A}_{j} \subseteq \mathcal{A}_{i+j}(\bmod 2)$).
- A Lie superalgebra is a superalgebra $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ with a "bracket"

$$
[\because \cdot \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}
$$

satisfying

$$
[X, Y]=-(-1)^{|X||Y|}[Y, X]
$$

and

$$
(-1)^{|X| \cdot|Z|}[X,[Y, Z]]+(-1)^{|Y| \cdot|X|}[Y,[Z, X]]+(-1)^{|Z| \cdot|Y|}[Z,[X, Y]]=0
$$

Crash course on Lie superalgebras (cont.)

Examples of Lie superalgebras

- $\mathfrak{g l}(m \mid n)$:
$V=V_{0} \oplus V_{1}$ and $\mathfrak{g}=\operatorname{End}(V)=\operatorname{End}_{0}(V) \oplus \operatorname{End}_{1}(V)$
where
$\operatorname{End}_{i}(V)=\left\{T \in \operatorname{End}(V) \mid T\left(V_{s}\right) \subseteq V_{s+i}(\bmod 2)\right.$ for any $\left.\mathrm{s} \in \mathbb{Z} / 2 \mathbb{Z}\right\}$
and for homogeneous X and Y, the bracket is given by

$$
[X, Y]=X Y-(-1)^{|X| \cdot|Y|} Y X
$$

Crash course on Lie superalgebras (cont.)

Examples of Lie superalgebras

- $\operatorname{gl}(m \mid n)$:
$V=V_{0} \oplus V_{1}$ and $\mathfrak{g}=\operatorname{End}(V)=\operatorname{End}_{0}(V) \oplus \operatorname{End}_{1}(V)$ where
$\operatorname{End}_{i}(V)=\left\{T \in \operatorname{End}(V) \mid T\left(V_{s}\right) \subseteq V_{s+i}(\bmod 2)\right.$ for any $\left.\mathrm{s} \in \mathbb{Z} / 2 \mathbb{Z}\right\}$
and for homogeneous X and Y, the bracket is given by

$$
[X, Y]=X Y-(-1)^{|X| \cdot|Y|} Y X
$$

- Simple Lie superalgebras:
$\mathfrak{s l}(m \mid n), \mathfrak{o s p}(m \mid 2 n), \mathfrak{f}(4), \mathfrak{g}(3), \mathfrak{p}(n), \mathfrak{q}(n), \ldots$

Crash course on Lie superalgebras (cont.)

Examples of Lie superalgebras

- $\mathfrak{g l}(m \mid n)$:
$V=V_{0} \oplus V_{1}$ and $\mathfrak{g}=\operatorname{End}(V)=\operatorname{End}_{0}(V) \oplus \operatorname{End}_{1}(V)$
where
$\operatorname{End}_{i}(V)=\left\{T \in \operatorname{End}(V) \mid T\left(V_{s}\right) \subseteq V_{s+i}(\bmod 2)\right.$ for any $\left.\mathrm{s} \in \mathbb{Z} / 2 \mathbb{Z}\right\}$
and for homogeneous X and Y, the bracket is given by

$$
[X, Y]=X Y-(-1)^{|X| \cdot|Y|} Y X
$$

- Simple Lie superalgebras:
$\mathfrak{s l}(m \mid n), \mathfrak{o s p}(m \mid 2 n), \mathfrak{f}(4), \mathfrak{g}(3), \mathfrak{p}(n), \mathfrak{q}(n), \ldots$
- Heisenberg-Clifford Lie superalgebras.

Heisenberg-Clifford Lie superalgebra

Let (W, Ω) be a supersymplectic space, i.e.,

- $W=W_{0} \oplus W_{1}$.
- $\Omega: W \times W \rightarrow \mathbb{R}$ satisfies
- $\Omega\left(W_{0}, W_{1}\right)=\Omega\left(W_{1}, W_{0}\right)=0$
- $\Omega_{\mid W_{1} \times W_{1}}$ is a nondegenerate symmetric form.
- $\Omega_{\mid W_{0} \times W_{0}}$ is a symplectic form.

Heisenberg-Clifford Lie superalgebra

Let (W, Ω) be a supersymplectic space, i.e.,

- $W=W_{0} \oplus W_{1}$.
- $\Omega: W \times W \rightarrow \mathbb{R}$ satisfies
- $\Omega\left(W_{0}, W_{1}\right)=\Omega\left(W_{1}, W_{0}\right)=0$
- $\Omega_{\mid W_{1} \times W_{1}}$ is a nondegenerate symmetric form.
- $\Omega_{\mid W_{0} \times W_{0}}$ is a symplectic form.

Set $\mathfrak{b}_{W}=W \oplus \mathbb{R}$ where

$$
\left[\left(v_{1}, s_{1}\right),\left(v_{2}, s_{2}\right)\right]=\left(0, \Omega\left(v_{1}, v_{2}\right)\right)
$$

Heisenberg-Clifford Lie superalgebra

Let (W, Ω) be a supersymplectic space, i.e.,

- $W=W_{0} \oplus W_{1}$.
- $\Omega: W \times W \rightarrow \mathbb{R}$ satisfies
- $\Omega\left(W_{0}, W_{1}\right)=\Omega\left(W_{1}, W_{0}\right)=0$
- $\Omega_{\mid W_{1} \times W_{1}}$ is a nondegenerate symmetric form.
- $\Omega_{\mid W_{0} \times W_{0}}$ is a symplectic form.

Set $\mathfrak{b}_{W}=W \oplus \mathbb{R}$ where

$$
\left[\left(v_{1}, s_{1}\right),\left(v_{2}, s_{2}\right)\right]=\left(0, \Omega\left(v_{1}, v_{2}\right)\right)
$$

- \mathfrak{h}_{W} is two-step nilpotent and $\operatorname{dim}\left(\mathcal{Z}\left(\mathfrak{h}_{W}\right)\right)=1$.

Towards unitary representations : super Lie groups

- A super Lie group is a group object in the category of supermanifolds.

Towards unitary representations : super Lie groups

- A super Lie group is a group object in the category of supermanifolds.

Proposition

The category of Super Lie groups is equivalent to a category of Harish-Chandra pairs, i.e., pairs $\left(G_{0}, \mathfrak{g}\right)$ such that :
(1) $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ is a Lie superalgebra over \mathbb{R}.
(2) G_{0} is a real Lie group with Lie algebra \mathfrak{g}_{0} which acts on \mathfrak{g} smoothly via \mathbb{R}-linear automorphisms.
(3) The action of G_{0} on \mathfrak{g}_{0} is the adjoint action. The adjoint action of \mathfrak{g}_{0} on \mathfrak{g} is the differential of the action of G_{0} on \mathfrak{g}.

Towards unitary representations : super Lie groups

- A super Lie group is a group object in the category of supermanifolds.

Proposition

The category of Super Lie groups is equivalent to a category of Harish-Chandra pairs, i.e., pairs $\left(G_{0}, \mathfrak{g}\right)$ such that :
(1) $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ is a Lie superalgebra over \mathbb{R}.
(2) G_{0} is a real Lie group with Lie algebra \mathfrak{g}_{0} which acts on \mathfrak{g} smoothly via \mathbb{R}-linear automorphisms.
(3) The action of G_{0} on \mathfrak{g}_{0} is the adjoint action. The adjoint action of \mathfrak{g}_{0} on \mathfrak{g} is the differential of the action of G_{0} on \mathfrak{g}.

- For simplicity, from now on we assume that G_{0} is connected and simply connected.

Super Hilbert spaces

"Wrong" definition : A super Hilbert space is a $\mathbb{Z} / 2 \mathbb{Z}$-graded Hilbert space $\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1}$ where \mathcal{H}_{0} and \mathcal{H}_{1} are closed subspaces and $\mathcal{H}_{0} \perp \mathcal{H}_{1}$.
"Right" definition : Indeed \mathcal{H} is endowed with an even super Hermitian form:

$$
\langle x, y\rangle_{\text {super }}= \begin{cases}0 & \text { if } x, y \text { are of opposite parity, } \\ \langle x, y\rangle_{\mathcal{H}_{0}} & \text { if } x, y \in \mathcal{H}_{0}, \\ \sqrt{-1}\langle x, y\rangle_{\mathcal{H}_{1}} & \text { if } x, y \in \mathcal{H}_{1} .\end{cases}
$$

We have:

$$
\begin{array}{r}
\langle y, x\rangle_{\text {super }}=(-1)^{|x| \cdot|\cdot|} \overline{\langle x, y\rangle}_{\text {super }} \\
\langle x, x\rangle_{\text {super }}>0 \text { for } x \in \mathcal{H}_{0}, x \neq 0 \\
\sqrt{-1}\langle x, x\rangle_{\text {super }}<0 \text { for } x \in \mathcal{H}_{1}, x \neq 0
\end{array}
$$

Unitary representations of super Lie groups

- Let $\left(G_{0}, \mathfrak{g}\right)$ be a super Lie group. We want to consider unitary representations of $\left(G_{0}, \mathfrak{g}\right)$ on super Hilbert spaces, i.e.,

$$
\pi: \mathfrak{g} \rightarrow \operatorname{End}_{\mathbb{C}}(\mathcal{H})
$$

Unitary representations of super Lie groups

- Let $\left(G_{0}, \mathfrak{g}\right)$ be a super Lie group. We want to consider unitary representations of $\left(G_{0}, \mathfrak{g}\right)$ on super Hilbert spaces, i.e.,

$$
\pi: \mathfrak{g} \rightarrow \operatorname{End}_{\mathbb{C}}(\mathcal{H})
$$

But if $X \in \mathfrak{g}_{1}$, then

$$
\pi([X, X])=\pi(X) \pi(X)+\pi(X) \pi(X)=2 \pi(X)^{2}
$$

and $\pi([X, X])$ is an unbounded, (only) densely defined operator.

Unitary representations of super Lie groups

- Let $\left(G_{0}, \mathfrak{g}\right)$ be a super Lie group. We want to consider unitary representations of $\left(G_{0}, g\right)$ on super Hilbert spaces, i.e.,

$$
\pi: \mathfrak{g} \rightarrow \operatorname{End}_{\mathbb{C}}(\mathcal{H})
$$

But if $X \in \mathfrak{g}_{1}$, then

$$
\pi([X, X])=\pi(X) \pi(X)+\pi(X) \pi(X)=2 \pi(X)^{2}
$$

and $\pi([X, X])$ is an unbounded, (only) densely defined operator.

- A natural choice of representation space is \mathcal{H}^{∞} (the subspace of smooth vectors) defined as

$$
\mathcal{H}^{\infty}=\{v \mid v \in \mathcal{H} \text { and the map } g \mapsto \pi(g) v \text { is smooth }\}
$$

But then one needs to know that $\pi(X) \mathcal{H}^{\infty} \subseteq \mathcal{H}^{\infty}$.

Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of $\left(G_{0}, \mathfrak{g}\right)$ is a triple $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ such that :

Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of $\left(G_{0}, \mathfrak{g}\right)$ is a triple $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ such that :

- $\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1}$ is a super Hilbert space.

Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of $\left(G_{0}, \mathfrak{g}\right)$ is a triple $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ such that :

- $\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1}$ is a super Hilbert space.
- $\pi: G_{0} \rightarrow \mathrm{U}(\mathcal{H})$ is a unitary representation of G_{0} (in the usual sense).

Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of $\left(G_{0}, \mathfrak{g}\right)$ is a triple $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ such that :

- $\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1}$ is a super Hilbert space.
- $\pi: G_{0} \rightarrow \mathrm{U}(\mathcal{H})$ is a unitary representation of G_{0} (in the usual sense).
- $\rho^{\pi}: \mathfrak{g} \rightarrow \operatorname{End}\left(\mathcal{H}^{\infty}\right)$ is a super skew-Hermitian representation which satisfies

$$
\rho^{\pi}([X, Y])=\rho^{\pi}(X) \rho^{\pi}(Y)-(-1)^{|X| \cdot|Y|} \rho^{\pi}(Y) \rho^{\pi}(X) .
$$

Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of $\left(G_{0}, \mathfrak{g}\right)$ is a triple $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ such that :

- $\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1}$ is a super Hilbert space.
- $\pi: G_{0} \rightarrow \mathrm{U}(\mathcal{H})$ is a unitary representation of G_{0} (in the usual sense).
- $\rho^{\pi}: \mathfrak{g} \rightarrow \operatorname{End}\left(\mathcal{H}^{\infty}\right)$ is a super skew-Hermitian representation which satisfies

$$
\rho^{\pi}([X, Y])=\rho^{\pi}(X) \rho^{\pi}(Y)-(-1)^{|X| \cdot|Y|} \rho^{\pi}(Y) \rho^{\pi}(X) .
$$

- Here \mathcal{H}^{∞} is the space of smooth vectors of (π, \mathcal{H}).

Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of $\left(G_{0}, \mathfrak{g}\right)$ is a triple $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ such that :

- $\mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1}$ is a super Hilbert space.
- $\pi: G_{0} \rightarrow \mathrm{U}(\mathcal{H})$ is a unitary representation of G_{0} (in the usual sense).
- $\rho^{\pi}: \mathfrak{g} \rightarrow \operatorname{End}\left(\mathcal{H}^{\infty}\right)$ is a super skew-Hermitian representation which satisfies

$$
\rho^{\pi}([X, Y])=\rho^{\pi}(X) \rho^{\pi}(Y)-(-1)^{|X| \cdot|Y|} \rho^{\pi}(Y) \rho^{\pi}(X) .
$$

- Here \mathcal{H}^{∞} is the space of smooth vectors of (π, \mathcal{H}).
- $\rho_{\lg _{0}}^{\pi}=\pi^{\infty} \quad$ and $\quad \rho^{\pi}(\operatorname{Ad}(g)(X))=\pi(g) \rho^{\pi}(X) \pi\left(g^{-1}\right)$.

Restriction and induction

Let $\left(H_{0}, \mathfrak{h}\right)$ be a sub super Lie group of $\left(G_{0}, \mathfrak{g}\right)$. One can formally define restriction and induction functors.
$\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ unitary rep. of $\left(G_{0}, \mathfrak{g}\right) \quad \leadsto \quad \operatorname{Res}_{\left(H_{0}, \mathfrak{h}\right)}^{\left(G_{0}, \mathfrak{g}\right)}\left(\pi, \rho^{\pi}, \mathcal{H}\right)$

$$
\begin{aligned}
& \left(\sigma, \rho^{\sigma}, \mathcal{K}\right) \text { unitary rep. of }\left(H_{0}, \mathfrak{h}\right) \quad \leadsto \quad \operatorname{Ind}_{\left(H_{0}, \mathfrak{b}\right)}^{\left(G_{0}, \mathfrak{g}\right)}\left(\sigma, \rho^{\sigma}, \mathcal{K}\right) \\
& \mathfrak{g}_{1}=\mathfrak{h}_{1}
\end{aligned}
$$

Not So Obvious Fact :

These functors are well defined.
Proof. Follows from [Carmeli, Cassinelli, Toigo, Varadarajan].

Unitary equivalence and parity

Unitary equivalence

Two unitary representations $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ and $\left(\pi^{\prime}, \rho^{\pi^{\prime}}, \mathcal{H}^{\prime}\right)$ are said to be unitarily equivalent if there exists a linear isometry $T: \mathcal{H} \rightarrow \mathcal{H}^{\prime}$ such that:

- T preserves the $\mathbb{Z} / 2 \mathbb{Z}$-grading.

Unitary equivalence and parity

Unitary equivalence

Two unitary representations $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ and $\left(\pi^{\prime}, \rho^{\pi^{\prime}}, \mathcal{H}^{\prime}\right)$ are said to be unitarily equivalent if there exists a linear isometry $T: \mathcal{H} \rightarrow \mathcal{H}^{\prime}$ such that:

- T preserves the $\mathbb{Z} / 2 \mathbb{Z}$-grading.
- For any $g \in G_{0}, \pi^{\prime}(g) \circ T=T \circ \pi(g)$.
- For any $X \in \mathfrak{g}, \rho^{\pi^{\prime}}(X) \circ T=T \circ \rho^{\pi}(X)$.

Unitary equivalence and parity

Unitary equivalence

Two unitary representations $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ and $\left(\pi^{\prime}, \rho^{\pi^{\prime}}, \mathcal{H}^{\prime}\right)$ are said to be unitarily equivalent if there exists a linear isometry $T: \mathcal{H} \rightarrow \mathcal{H}^{\prime}$ such that:

- T preserves the $\mathbb{Z} / 2 \mathbb{Z}$-grading.
- For any $g \in G_{0}, \pi^{\prime}(g) \circ T=T \circ \pi(g)$.
- For any $X \in \mathfrak{g}, \rho^{\pi^{\prime}}(X) \circ T=T \circ \rho^{\pi}(X)$.

Parity change

Tensoring $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ with the trivial representation on $\mathbb{C}^{0 \mid 1}$ yields $\left(\pi, \rho^{\pi}, \Pi \mathcal{H}\right)$ where ${ }^{\Pi} \mathcal{H}_{0}=\mathcal{H}_{1}$ and ${ }^{\Pi} \mathcal{H}_{1}=\mathcal{H}_{0}$.

Unitary equivalence and parity

Unitary equivalence

Two unitary representations $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ and $\left(\pi^{\prime}, \rho^{\pi^{\prime}}, \mathcal{H}^{\prime}\right)$ are said to be unitarily equivalent if there exists a linear isometry $T: \mathcal{H} \rightarrow \mathcal{H}^{\prime}$ such that :

- T preserves the $\mathbb{Z} / 2 \mathbb{Z}$-grading.
- For any $g \in G_{0}, \pi^{\prime}(g) \circ T=T \circ \pi(g)$.
- For any $X \in \mathfrak{g}, \rho^{\pi^{\prime}}(X) \circ T=T \circ \rho^{\pi}(X)$.

Parity change

Tensoring $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ with the trivial representation on $\mathbb{C}^{0 \mid 1}$ yields $\left(\pi, \rho^{\pi},{ }^{\Pi} \mathcal{H}\right)$ where ${ }^{\Pi} \mathcal{H}_{0}=\mathcal{H}_{1}$ and ${ }^{\Pi} \mathcal{H}_{1}=\mathcal{H}_{0}$.

- $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ and $\left(\pi, \rho^{\pi}, \Pi_{\mathcal{H}}\right)$ are not necessarily unitarily equivalent.

Some of the difficulties . . .

(1) General facts about rep's of locally compact groups (e.g., Mackey machinery) may not generalize.

Some of the difficulties . . .

(1) General facts about rep's of locally compact groups (e.g., Mackey machinery) may not generalize.
(2) If \mathfrak{g}_{0} were reductive, we could work "infinitesimally" (as done by S. J. Cheng, H. Furutsu, K. Nishiyama, W. Wang, R. B. Zhang, . . .)

Some of the difficulties . . .

(1) General facts about rep's of locally compact groups (e.g., Mackey machinery) may not generalize.
(2) If \mathfrak{g}_{0} were reductive, we could work "infinitesimally" (as done by S. J. Cheng, H. Furutsu, K. Nishiyama, W. Wang, R. B. Zhang, . . .)
(3) One needs to define "super" polarizing subalgebras (and prove that they exist).

Nilpotent super Lie groups

- A super Lie group $\left(G_{0}, \mathfrak{g}\right)$ is called nilpotent if the lower central series of \mathfrak{g} has finitely many nonzero terms (equivalently, if \mathfrak{g} appears in its own upper central series).

Nilpotent super Lie groups

- A super Lie group $\left(G_{0}, \mathfrak{g}\right)$ is called nilpotent if the lower central series of \mathfrak{g} has finitely many nonzero terms (equivalently, if \mathfrak{g} appears in its own upper central series).
- Unlike Lie groups, certain super Lie groups do not have any faithful unitary representairons!

Nilpotent super Lie groups

- A super Lie group $\left(G_{0}, g\right)$ is called nilpotent if the lower central series of g has finitely many nonzero terms (equivalently, if \mathfrak{g} appears in its own upper central series).
- Unlike Lie groups, certain super Lie groups do not have any faithful unitary representairons!

Lemma

If $X_{1}, \ldots X_{m} \in \mathfrak{g}_{1}$ such that

$$
\sum_{i=1}^{m}\left[X_{i}, X_{i}\right]=0
$$

then for every unitary representation $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ we have $\rho^{\pi}\left(X_{1}\right)=\cdots=\rho^{\pi}\left(X_{m}\right)=0$.

Nilpotent super Lie groups

- A super Lie group $\left(G_{0}, \mathfrak{g}\right)$ is called nilpotent if the lower central series of \mathfrak{g} has finitely many nonzero terms (equivalently, if \mathfrak{g} appears in its own upper central series).
- Unlike Lie groups, certain super Lie groups do not have any faithful unitary representairons!

Lemma

If $X_{1}, \ldots X_{m} \in \mathfrak{g}_{1}$ such that

$$
\sum_{i=1}^{m}\left[X_{i}, X_{i}\right]=0
$$

then for every unitary representation $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ we have $\rho^{\pi}\left(X_{1}\right)=\cdots=\rho^{\pi}\left(X_{m}\right)=0$.

Proof. Observe that $\sum_{i=1}^{m} \rho^{\pi}\left(X_{i}\right)^{2}=0$ and for every i, the operator $e^{\frac{\pi}{4} \sqrt{-1}} \rho^{\pi}\left(X_{i}\right)$ is symmetric. For every $v \in \mathcal{H}^{\infty}$ we have :
$\sum_{i=1}^{m}\left\langle e^{\frac{\pi}{4} \sqrt{-1}} \rho^{\pi}\left(X_{i}\right) v, e^{\frac{\pi}{4} \sqrt{-1}} \rho^{\pi}\left(X_{i}\right) v\right\rangle=\left\langle v, e^{\frac{\pi}{2} \sqrt{-1}} \sum_{i=1}^{m} \rho^{\pi}\left(X_{i}\right)^{2} v\right\rangle=0$.

Reduced form

- Set $\mathfrak{a}^{(1)}=\left\langle X \in \mathfrak{g}_{1} \mid[X, X]=0\right\rangle$. We call \mathfrak{g} reduced if $\mathfrak{a}^{(1)}=\{0\}$.

Reduced form

- Set $\mathfrak{a}^{(1)}=\left\langle X \in \mathfrak{g}_{1} \mid[X, X]=0\right\rangle$. We call \mathfrak{g} reduced if $\mathfrak{a}^{(1)}=\{0\}$.
- Set

$$
\begin{aligned}
\mathfrak{a}^{(2)} & =\left\langle X \in \mathfrak{g}_{1} \mid[X, X] \in \mathfrak{a}^{(1)}\right\rangle \\
\mathfrak{a}^{(3)} & =\left\langle X \in \mathfrak{g}_{1} \mid[X, X] \in \mathfrak{a}^{(2)}\right\rangle
\end{aligned}
$$

Reduced form

- Set $\mathfrak{a}^{(1)}=\left\langle X \in \mathfrak{g}_{1} \mid[X, X]=0\right\rangle$. We call \mathfrak{g} reduced if $\mathfrak{a}^{(1)}=\{0\}$.
- Set

$$
\begin{aligned}
\mathfrak{a}^{(2)} & =\left\langle X \in \mathfrak{g}_{1} \mid[X, X] \in \mathfrak{a}^{(1)}\right\rangle \\
\mathfrak{a}^{(3)} & =\left\langle X \in \mathfrak{g}_{1} \mid[X, X] \in \mathfrak{a}^{(2)}\right\rangle
\end{aligned}
$$

We have

$$
\mathfrak{a}^{(1)} \subset \mathfrak{a}^{(2)} \subset \mathfrak{a}^{(3)} \subset \cdots
$$

Reduced form

- Set $\mathfrak{a}^{(1)}=\left\langle X \in \mathfrak{g}_{1} \mid[X, X]=0\right\rangle$. We call \mathfrak{g} reduced if $\mathfrak{a}^{(1)}=\{0\}$.
- Set

$$
\begin{aligned}
\mathfrak{a}^{(2)} & =\left\langle X \in \mathfrak{g}_{1} \mid[X, X] \in \mathfrak{a}^{(1)}\right\rangle \\
\mathfrak{a}^{(3)} & =\left\langle X \in \mathfrak{g}_{1} \mid[X, X] \in \mathfrak{a}^{(2)}\right\rangle
\end{aligned}
$$

We have

$$
\mathfrak{a}^{(1)} \subset \mathfrak{a}^{(2)} \subset \mathfrak{a}^{(3)} \subset \cdots
$$

Set $\mathfrak{a}=\bigcup_{j \geq 1} \mathfrak{a}^{(j)}$.

Observation

- $\rho^{\pi}(\mathfrak{a})=0$ for every unitary representation $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$.
- \mathfrak{a} is $\mathbb{Z} / 2 \mathbb{Z}$-graded, hence corresponds to a sub super Lie group $\left(A_{0}, \mathfrak{a}\right)$ of $\left(G_{0}, \mathfrak{g}\right)$. The quotient $\mathfrak{g} / \mathfrak{a}$ is reduced.

Structure of nilpotent Lie superalgebras

Lemma (Kirillov ?)
Let $\left(G_{0}, \mathfrak{g}\right)$ be a nilpotent super Lie group such that \mathfrak{g} is reduced and $\operatorname{dim} \mathcal{Z}(\mathfrak{g})=1$. Then exactly one of the following statements is true :

Structure of nilpotent Lie superalgebras

Lemma (Kirillov ?)

Let $\left(G_{0}, \mathfrak{g}\right)$ be a nilpotent super Lie group such that \mathfrak{g} is reduced and $\operatorname{dim} \mathcal{Z}(\mathfrak{g})=1$. Then exactly one of the following statements is true :

- There exists a graded decomposition

$$
\mathfrak{g}=\mathbb{R} X \oplus \mathbb{R} Y \oplus \mathbb{R} X \oplus \mathfrak{w}
$$

such that $\operatorname{Span}\{X, Y, Z\}$ is a three-dimensional Heisenberg algebra, $Z \in \mathcal{Z}(\mathrm{~g})$,

$$
\mathfrak{g}^{\prime}:=\mathbb{R} Y \oplus \mathbb{R} Z \oplus \mathfrak{w}
$$

is a subalgebra, and $Y \in \mathcal{Z}\left(\mathrm{~g}^{\prime}\right)$.

Structure of nilpotent Lie superalgebras

Lemma (Kirillov ?)

Let $\left(G_{0}, \mathfrak{g}\right)$ be a nilpotent super Lie group such that \mathfrak{g} is reduced and $\operatorname{dim} \mathcal{Z}(\mathfrak{g})=1$. Then exactly one of the following statements is true :

- There exists a graded decomposition

$$
\mathfrak{g}=\mathbb{R} X \oplus \mathbb{R} Y \oplus \mathbb{R} X \oplus \mathfrak{w}
$$

such that $\operatorname{Span}\{X, Y, Z\}$ is a three-dimensional Heisenberg algebra, $Z \in \mathcal{Z}(\mathfrak{g})$,

$$
\mathfrak{g}^{\prime}:=\mathbb{R} Y \oplus \mathbb{R} Z \oplus \mathfrak{w}
$$

is a subalgebra, and $Y \in \mathcal{Z}\left(\mathrm{~g}^{\prime}\right)$.

- \mathfrak{g} is isomorphic to \mathfrak{G}_{W} where $W_{0}=\{0\}$.

Structure of nilpotent Lie superalgebras

Lemma (Kirillov ?)

Let $\left(G_{0}, \mathfrak{g}\right)$ be a nilpotent super Lie group such that \mathfrak{g} is reduced and $\operatorname{dim} \mathcal{Z}(\mathfrak{g})=1$. Then exactly one of the following statements is true :

- There exists a graded decomposition

$$
\mathfrak{g}=\mathbb{R} X \oplus \mathbb{R} Y \oplus \mathbb{R} X \oplus \mathfrak{w}
$$

such that $\operatorname{Span}\{X, Y, Z\}$ is a three-dimensional Heisenberg algebra, $Z \in \mathcal{Z}(\mathfrak{g})$,

$$
\mathfrak{g}^{\prime}:=\mathbb{R} Y \oplus \mathbb{R} Z \oplus \mathfrak{w}
$$

is a subalgebra, and $Y \in \mathcal{Z}\left(\mathrm{~g}^{\prime}\right)$.

- \mathfrak{g} is isomorphic to \mathfrak{G}_{W} where $W_{0}=\{0\}$.

Unitary representations as induced representations

Let $\left(G_{0}, g\right)$ be a nilpotent super Lie group such that

- g is reduced,
- $\operatorname{dim} \mathcal{Z}(\mathrm{g})=1$,
- \mathfrak{g} is not isomorphic to \mathfrak{h}_{W} with $W_{0}=\{0\}$.

Unitary representations as induced representations

Let $\left(G_{0}, g\right)$ be a nilpotent super Lie group such that

- \mathfrak{g} is reduced,
- $\operatorname{dim} \mathcal{Z}(\mathrm{g})=1$,
- \mathfrak{g} is not isomorphic to \mathfrak{b}_{W} with $W_{0}=\{0\}$.

Let g^{\prime} be as in Kirillov's lemma, and let $\left(G_{0}^{\prime}, g^{\prime}\right)$ be the sub super Lie group of $\left(G_{0}, \mathfrak{g}\right)$ defined in the super version of Kirillov's lemma.

- Observe that $\operatorname{dim} \mathfrak{g}_{1}^{\prime}=\operatorname{dim} \mathfrak{g}_{1}$, hence induction from $\left(G_{0}^{\prime}, g^{\prime}\right)$ to $\left(G_{0}, g\right)$ yields unitary representaions.

Unitary representations as induced representations

Let $\left(G_{0}, \mathfrak{g}\right)$ be a nilpotent super Lie group such that

- \mathfrak{g} is reduced,
- $\operatorname{dim} \mathcal{Z}(\mathrm{g})=1$,
- \mathfrak{g} is not isomorphic to \mathfrak{b}_{W} with $W_{0}=\{0\}$.

Let \mathfrak{g}^{\prime} be as in Kirillov's lemma, and let $\left(G_{0}^{\prime}, g^{\prime}\right)$ be the sub super Lie group of $\left(G_{0}, \mathfrak{g}\right)$ defined in the super version of Kirillov's lemma.

- Observe that $\operatorname{dim} \mathfrak{g}_{1}^{\prime}=\operatorname{dim} \mathfrak{g}_{1}$, hence induction from $\left(G_{0}^{\prime}, g^{\prime}\right)$ to $\left(G_{0}, g\right)$ yields unitary representaions.

Proposition (codimension one induction)

Let $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ be an irreducible unitary representation of $\left(G_{0}, \mathfrak{g}\right)$ whose restriction to $\mathcal{Z}\left(G_{0}\right)$ is nontrivial. Then

$$
\left(\pi, \rho^{\pi}, \mathcal{H}\right)=\operatorname{Ind}_{\left(G_{\left.0^{\prime}, s^{\prime}\right)}\right.}^{\left(G_{0}, \mathfrak{g}\right)}\left(\pi^{\prime}, \rho^{\pi^{\prime}}, \mathcal{H}^{\prime}\right)
$$

for some irreducible unitary representation $\left(\pi^{\prime}, \rho^{\pi^{\prime}}, \mathcal{H}^{\prime}\right)$ of $\left(G_{0}^{\prime}, g^{\prime}\right)$.

Unitary rep's of Heisenberg-Clifford super Lie groups

- Recall that $\mathfrak{b}_{W}=W \oplus \mathbb{R}$ where

$$
\left[\left(v_{1}, s_{1}\right),\left(v_{2}, s_{2}\right)\right]=(0, \Omega(v, w))
$$

Set $\mathfrak{g}=\mathfrak{h}_{W}$ and let $\left(G_{0}, \mathfrak{g}\right)$ be the corresponding super Lie group.

Unitary rep's of Heisenberg-Clifford super Lie groups

- Recall that $\mathfrak{b}_{W}=W \oplus \mathbb{R}$ where

$$
\left[\left(v_{1}, s_{1}\right),\left(v_{2}, s_{2}\right)\right]=(0, \Omega(v, w))
$$

Set $\mathfrak{g}=\mathfrak{h}_{W}$ and let $\left(G_{0}, \mathfrak{g}\right)$ be the corresponding super Lie group.

Theorem (generalized Stone-von Neumann)

Let $\chi: \mathbb{R} \rightarrow \mathbb{C}^{\times}$be defined by $\chi(t)=e^{a t \sqrt{-1}}$ where $a>0$. (The case $a<0$ is similar.)

- $\Omega_{\mid W_{1} \times W_{1}}$ positive definite \Rightarrow up to unitary equivalence and parity there exists a unique unitary representation with central character χ.
- $\Omega_{\mid W_{1} \times W_{1}}$ not positive definite $\Rightarrow\left(G_{0}, \mathfrak{g}\right)$ does not have any unitary representations with central character χ.

Unitary rep's of Heisenberg-Clifford super Lie groups

- Recall that $\mathfrak{b}_{W}=W \oplus \mathbb{R}$ where

$$
\left[\left(v_{1}, s_{1}\right),\left(v_{2}, s_{2}\right)\right]=(0, \Omega(v, w))
$$

Set $\mathfrak{g}=\mathfrak{b}_{W}$ and let $\left(G_{0}, \mathfrak{g}\right)$ be the corresponding super Lie group.

Theorem (generalized Stone-von Neumann)

Let $\chi: \mathbb{R} \rightarrow \mathbb{C}^{\times}$be defined by $\chi(t)=e^{a t \sqrt{-1}}$ where $a>0$. (The case $a<0$ is similar.)

- $\Omega_{\mid W_{1} \times W_{1}}$ positive definite \Rightarrow up to unitary equivalence and parity there exists a unique unitary representation with central character χ.
- $\Omega_{\mid W_{1} \times W_{1}}$ not positive definite $\Rightarrow\left(G_{0}, \mathfrak{g}\right)$ does not have any unitary representations with central character χ.

Let $\left(\pi_{\chi}, \rho^{\pi_{\chi}}, \mathcal{H}_{\chi}\right)$ denote the unitary representation with central character χ.

$$
\begin{array}{lll}
\operatorname{dim} \mathfrak{g}_{1}=2 k & \Rightarrow \quad\left(\pi_{\chi}, \rho^{\pi_{\chi}}, \mathcal{H}_{\chi}\right) \neq\left(\pi_{\chi}, \rho^{\pi_{\chi}}, \Pi \mathcal{H}_{\chi}\right) \\
\operatorname{dim} \mathfrak{g}_{1}=2 k+1 & \Rightarrow \quad\left(\pi_{\chi}, \rho^{\pi_{\chi}}, \mathcal{H}_{\chi}\right) \simeq\left(\pi_{\chi}, \rho^{\pi_{\chi}}, \mathcal{H}_{\chi}\right)
\end{array}
$$

The general case

Let $\left(G_{0}, \mathfrak{g}\right)$ be a nilpotent super Lie group.

The general case

Let $\left(G_{0}, \mathfrak{g}\right)$ be a nilpotent super Lie group.

- For every $\lambda \in \mathfrak{g}_{0}^{*}$ one can define a symmetric bilinear form

$$
\mathrm{B}_{\lambda}: \mathfrak{g}_{1} \times \mathfrak{g}_{1} \rightarrow \mathbb{R}
$$

where $B_{\lambda}(X, Y)=\lambda([X, Y])$.

The general case

Let $\left(G_{0}, \mathfrak{g}\right)$ be a nilpotent super Lie group.

- For every $\lambda \in \mathfrak{g}_{0}^{*}$ one can define a symmetric bilinear form

$$
\mathrm{B}_{\lambda}: \mathfrak{g}_{1} \times \mathfrak{g}_{1} \rightarrow \mathbb{R}
$$

where $\mathrm{B}_{\lambda}(X, Y)=\lambda([X, Y])$.

- Set

$$
\mathfrak{g}_{0}^{+}=\left\{\lambda \in \mathfrak{g}_{0}^{*} \mid B_{\lambda} \text { is nonnegative definite }\right\}
$$

The general case

Let $\left(G_{0}, \mathfrak{g}\right)$ be a nilpotent super Lie group.

- For every $\lambda \in \mathfrak{g}_{0}^{*}$ one can define a symmetric bilinear form

$$
\mathrm{B}_{\lambda}: \mathfrak{g}_{1} \times \mathfrak{g}_{1} \rightarrow \mathbb{R}
$$

where $\mathrm{B}_{\lambda}(X, Y)=\lambda([X, Y])$.

- Set

$$
\mathfrak{g}_{0}^{+}=\left\{\lambda \in \mathfrak{g}_{0}^{*} \mid B_{\lambda} \text { is nonnegative definite }\right\}
$$

- Observe that \mathfrak{g}_{0}^{+}is a G_{0}-invariant cone.

The general case

Let $\left(G_{0}, \mathfrak{g}\right)$ be a nilpotent super Lie group.

- For every $\lambda \in \mathfrak{g}_{0}^{*}$ one can define a symmetric bilinear form

$$
\mathrm{B}_{\lambda}: \mathfrak{g}_{1} \times \mathfrak{g}_{1} \rightarrow \mathbb{R}
$$

where $\mathrm{B}_{\lambda}(X, Y)=\lambda([X, Y])$.

- Set

$$
\mathfrak{g}_{0}^{+}=\left\{\lambda \in \mathfrak{g}_{0}^{*} \mid B_{\lambda} \text { is nonnegative definite }\right\}
$$

- Observe that \mathfrak{g}_{0}^{+}is a G_{0}-invariant cone.

THEOREM (S.)

There exists a bijective correspondence

Irreducible unitary representations of $\left(G_{0}, \mathfrak{g}\right)$
G_{0} - orbits in \mathfrak{g}_{0}^{+}

Polarizing systems

Let $\left(G_{0}, \mathfrak{g}\right)$ be a nilpotent super Lie group.

Polarizing systems

Let $\left(G_{0}, \mathfrak{g}\right)$ be a nilpotent super Lie group.
A polarizing system of $\left(G_{0}, \mathfrak{g}\right)$ is a 6-tuple

$$
\left(M_{0}, m, \Phi, C_{0}, c, \lambda\right)
$$

such that:

Polarizing systems

Let $\left(G_{0}, \mathfrak{g}\right)$ be a nilpotent super Lie group.
A polarizing system of $\left(G_{0}, \mathfrak{g}\right)$ is a 6-tuple

$$
\left(M_{0}, m, \Phi, C_{0}, c, \lambda\right)
$$

such that:

- $\operatorname{dim} \mathfrak{m}_{1}=\operatorname{dim} \mathfrak{g}_{1}$.

Polarizing systems

Let $\left(G_{0}, \mathfrak{g}\right)$ be a nilpotent super Lie group.
A polarizing system of $\left(G_{0}, \mathfrak{g}\right)$ is a 6-tuple

$$
\left(M_{0}, m, \Phi, C_{0}, c, \lambda\right)
$$

such that:

- $\operatorname{dim} \mathfrak{m}_{1}=\operatorname{dim} \mathfrak{g}_{1}$.
- $\lambda \in \mathfrak{g}_{0}^{*}$ and \mathfrak{m}_{0} is a maximally isotropic subalgebra of \mathfrak{g}_{0} w.r.t. the skew symmetric form $\Omega_{\lambda}(X, Y)=\lambda([X, Y])$.

Polarizing systems

Let $\left(G_{0}, \mathfrak{g}\right)$ be a nilpotent super Lie group.
A polarizing system of $\left(G_{0}, \mathfrak{g}\right)$ is a 6-tuple

$$
\left(M_{0}, m, \Phi, C_{0}, c, \lambda\right)
$$

such that:

- $\operatorname{dim} \mathfrak{m}_{1}=\operatorname{dim} \mathfrak{g}_{1}$.
- $\lambda \in \mathfrak{g}_{0}^{*}$ and \mathfrak{m}_{0} is a maximally isotropic subalgebra of g_{0} w.r.t. the skew symmetric form $\Omega_{\lambda}(X, Y)=\lambda([X, Y])$.
- $\left(C_{0}, c\right)$ is a Heisenberg-Clifford super Lie group such that $\operatorname{dim} C_{0}=1$.

Polarizing systems

Let $\left(G_{0}, \mathfrak{g}\right)$ be a nilpotent super Lie group.
A polarizing system of $\left(G_{0}, \mathfrak{g}\right)$ is a 6-tuple

$$
\left(M_{0}, m, \Phi, C_{0}, c, \lambda\right)
$$

such that:

- $\operatorname{dim} \mathfrak{m}_{1}=\operatorname{dim} \mathfrak{g}_{1}$.
- $\lambda \in \mathfrak{g}_{0}^{*}$ and \mathfrak{m}_{0} is a maximally isotropic subalgebra of g_{0} w.r.t. the skew symmetric form $\Omega_{\lambda}(X, Y)=\lambda([X, Y])$.
- $\left(C_{0}, c\right)$ is a Heisenberg-Clifford super Lie group such that $\operatorname{dim} C_{0}=1$.
- $\Phi:\left(M_{0}, \mathfrak{m}\right) \rightarrow\left(C_{0}, \mathfrak{c}\right)$ is an epimorphism.

Polarizing systems

Let $\left(G_{0}, \mathfrak{g}\right)$ be a nilpotent super Lie group.
A polarizing system of $\left(G_{0}, \mathfrak{g}\right)$ is a 6-tuple

$$
\left(M_{0}, m, \Phi, C_{0}, c, \lambda\right)
$$

such that:

- $\operatorname{dim} \mathfrak{m}_{1}=\operatorname{dim} \mathfrak{g}_{1}$.
- $\lambda \in \mathfrak{g}_{0}^{*}$ and \mathfrak{m}_{0} is a maximally isotropic subalgebra of g_{0} w.r.t. the skew symmetric form $\Omega_{\lambda}(X, Y)=\lambda([X, Y])$.
- $\left(C_{0}, c\right)$ is a Heisenberg-Clifford super Lie group such that $\operatorname{dim} C_{0}=1$.
- $\Phi:\left(M_{0}, m\right) \rightarrow\left(C_{0}, c\right)$ is an epimorphism.
- $\mathfrak{m}_{0} \cap \operatorname{ker} \Phi=\mathfrak{m}_{0} \cap \operatorname{ker} \lambda$.

Proposition (everything is induced)

- Every irreducible rep $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ of $\left(G_{0}, \mathfrak{g}\right)$ is induced from a polarizing system $\left(M_{0}, m, \Phi, C_{0}, c, \lambda\right)$, i.e.,

$$
\left(\pi, \rho^{\pi}, \mathcal{H}\right)=\operatorname{Ind}_{\left(M_{0}, \mathrm{~m}\right)}^{\left(G_{0}, \mathrm{~g}\right)}\left(\sigma \circ \Phi, \rho^{\sigma \circ \Phi}, \mathcal{K}\right)
$$

where for every $W \in \mathfrak{m}_{0}, \rho^{\sigma \circ \Phi}(W)=\rho^{\sigma}(\Phi(W))=\lambda(W)$.

Proposition (everything is induced)

- Every irreducible rep $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ of $\left(G_{0}, \mathfrak{g}\right)$ is induced from a polarizing system $\left(M_{0}, m, \Phi, C_{0}, c, \lambda\right)$, i.e.,

$$
\left(\pi, \rho^{\pi}, \mathcal{H}\right)=\operatorname{Ind}_{\left(M_{0}, \mathrm{~m}\right)}^{\left(G_{0}, \mathrm{~g}\right)}\left(\sigma \circ \Phi, \rho^{\sigma \circ \Phi}, \mathcal{K}\right)
$$

where for every $W \in \mathfrak{m}_{0}, \rho^{\sigma \circ \Phi}(W)=\rho^{\sigma}(\Phi(W))=\lambda(W)$.

$$
\left(M_{0}, \mathfrak{m}\right) \xrightarrow{\Phi}\left(C_{0}, c\right) \rightarrow\left(\sigma, \rho^{\sigma}, \mathcal{K}\right)
$$

Proposition (everything is induced)

- Every irreducible rep $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ of $\left(G_{0}, \mathfrak{g}\right)$ is induced from a polarizing system $\left(M_{0}, m, \Phi, C_{0}, c, \lambda\right)$, i.e.,

$$
\left(\pi, \rho^{\pi}, \mathcal{H}\right)=\operatorname{Ind}_{\left(M_{0}, \mathrm{~m}\right)}^{\left(\mathrm{G}_{0}, \mathrm{~g}\right)}\left(\sigma \circ \Phi, \rho^{\sigma \circ \Phi}, \mathcal{K}\right)
$$

where for every $W \in \mathfrak{m}_{0}, \rho^{\sigma \circ \Phi}(W)=\rho^{\sigma}(\Phi(W))=\lambda(W)$.

$$
\left(M_{0}, \mathfrak{m}\right) \xrightarrow{\Phi}\left(C_{0}, c\right) \rightarrow\left(\sigma, \rho^{\sigma}, \mathcal{K}\right)
$$

- Moreover, if $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ is induced from two different polarizing systems

$$
\left(M_{0}, \mathfrak{m}, \Phi, C_{0}, c, \lambda\right) \text { and }\left(M_{0}^{\prime}, \mathfrak{m}^{\prime}, \Phi, C_{0}^{\prime}, c^{\prime}, \lambda^{\prime}\right)
$$

then
(1) $\left(C_{0}, c\right) \simeq\left(C_{0}^{\prime}, c^{\prime}\right)$
(2) $\lambda^{\prime}=\operatorname{Ad}^{*}(g)(\lambda)$ for some $g \in G_{0}$.

Nonnegativity condition

- Suppose $\left(\pi, \rho^{\pi}, \mathcal{H}\right)=\operatorname{Ind}_{\left(M_{0}, \mathrm{~m}\right)}^{\left(G_{0}, \mathrm{~g}\right)}\left(\sigma \circ \Phi, \rho^{\sigma \circ \Phi}, \mathcal{K}\right)$.

From $\lambda(W)=\rho^{\sigma} \circ \Phi(W)$ and properties of Clifford modules we have :
for every $X \in \mathfrak{g}_{1}$,

$$
\begin{aligned}
\mathrm{B}_{\lambda}(X, X)=\lambda([X, X]) & =\rho^{\sigma} \circ \Phi([X, X]) \\
& =\left[\rho^{\sigma} \circ \Phi(X), \rho^{\sigma} \circ \Phi(X)\right] \geq 0
\end{aligned}
$$

Nonnegativity condition

- Suppose $\left(\pi, \rho^{\pi}, \mathcal{H}\right)=\operatorname{Ind}_{\left(M_{0}, \mathrm{~m}\right)}^{\left(G_{0}, \mathrm{~g}\right)}\left(\sigma \circ \Phi, \rho^{\sigma \circ \Phi}, \mathcal{K}\right)$.

From $\lambda(W)=\rho^{\sigma} \circ \Phi(W)$ and properties of Clifford modules we have :
for every $X \in \mathfrak{g}_{1}$,

$$
\begin{aligned}
\mathrm{B}_{\lambda}(X, X)=\lambda([X, X]) & =\rho^{\sigma} \circ \Phi([X, X]) \\
& =\left[\rho^{\sigma} \circ \Phi(X), \rho^{\sigma} \circ \Phi(X)\right] \geq 0
\end{aligned}
$$

which implies that $\lambda \in \mathfrak{g}_{0}^{+}$.

Nonnegativity condition

- Suppose $\left(\pi, \rho^{\pi}, \mathcal{H}\right)=\operatorname{Ind}_{\left(M_{0}, \mathrm{~m}\right)}^{\left(\mathrm{G}_{0}, \mathrm{~g}\right)}\left(\sigma \circ \Phi, \rho^{\sigma \circ \Phi}, \mathcal{K}\right)$.

From $\lambda(W)=\rho^{\sigma} \circ \Phi(W)$ and properties of Clifford modules we have :
for every $X \in \mathfrak{g}_{1}$,

$$
\begin{aligned}
\mathrm{B}_{\lambda}(X, X)=\lambda([X, X]) & =\rho^{\sigma} \circ \Phi([X, X]) \\
& =\left[\rho^{\sigma} \circ \Phi(X), \rho^{\sigma} \circ \Phi(X)\right] \geq 0
\end{aligned}
$$

which implies that $\lambda \in \mathfrak{g}_{0}^{+}$.

- Conversely, we should show that every $\lambda \in \mathfrak{g}_{0}^{+}$fits into a polarizing system $\left(M_{0}, m, C_{0}, c, \Phi, \lambda\right)$.

Proposition

For every $\lambda \in \mathfrak{g}_{0}^{+}$there exists a polarizing system $\left(M_{0}, \mathfrak{m}, \Phi, C_{0}, c, \lambda\right)$.

Proposition

For every $\lambda \in \mathfrak{g}_{0}^{+}$there exists a polarizing system

$$
\left(M_{0}, m, \Phi, C_{0}, c, \lambda\right)
$$

The proof is based on the following lemma :

Lemma

Let $\lambda \in \mathfrak{g}_{0}^{+}$. Then there exists a subalgebra $\mathfrak{p}_{0} \subset \mathfrak{g}_{0}$ such that :

- \mathfrak{p}_{0} is a maximal isotropic subalgebra for the skew symmetric form Ω_{λ},
- $\mathfrak{p}_{0} \supset\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]$.

Proof of the lemma

Lemma

There exists a subalgebra $\mathfrak{p}_{0} \subset \mathfrak{g}_{0}$ such that :

- \mathfrak{p}_{0} is a maximal isotropic subalgebra for the skew symmetric form Ω_{λ},
- $\mathfrak{p}_{0} \supset\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]$.

Proof of the lemma

Lemma

There exists a subalgebra $\mathfrak{p}_{0} \subset \mathfrak{g}_{0}$ such that :

- \mathfrak{p}_{0} is a maximal isotropic subalgebra for the skew symmetric form Ω_{λ},
- $\mathfrak{p}_{0} \supset\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]$.
(1) $\mathfrak{i}=\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]$ is an ideal of \mathfrak{g}_{0}, hence there exists a sequence

$$
\{0\}=\mathfrak{i}^{0} \subset \mathfrak{i}^{1} \subset \mathfrak{i}^{2} \subset \cdots \subset \mathfrak{i}^{s}=\mathfrak{i} \subset \mathfrak{i}^{s+1} \subset \cdots \subset \mathfrak{i}^{r}=\mathfrak{g}_{0}
$$

of ideals such that $\operatorname{dim}\left(i^{k} / i^{k-1}\right)=1$ for every $k \geq 1$.

Proof of the lemma

Lemma

There exists a subalgebra $\mathfrak{p}_{0} \subset \mathfrak{g}_{0}$ such that:

- \mathfrak{p}_{0} is a maximal isotropic subalgebra for the skew symmetric form Ω_{λ},
- $\mathfrak{p}_{0} \supset\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]$.
(1) $\mathfrak{i}=\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]$ is an ideal of \mathfrak{g}_{0}, hence there exists a sequence

$$
\{0\}=\mathfrak{i}^{0} \subset \mathfrak{i}^{1} \subset \mathfrak{i}^{2} \subset \cdots \subset \mathfrak{i}^{s}=\mathfrak{i} \subset \mathfrak{i}^{s+1} \subset \cdots \subset \mathfrak{i}^{r}=\mathfrak{g}_{0}
$$

of ideals such that $\operatorname{dim}\left(\mathrm{i}^{k} / \mathrm{i}^{k-1}\right)=1$ for every $k \geq 1$.
(2) (M. Vergne) Define \mathfrak{p}_{0} to be

$$
\mathfrak{p}_{0}:=\sum_{k=1}^{r} \operatorname{rad}\left(\Omega_{\lambda \mid i^{k} \times i^{k}}\right) .
$$

Then \mathfrak{p}_{0} is a maximal isotropic subalgebra for Ω_{λ}.

Proof of the lemma

Lemma

There exists a subalgebra $\mathfrak{p}_{0} \subset \mathfrak{g}_{0}$ such that:

- \mathfrak{p}_{0} is a maximal isotropic subalgebra for the skew symmetric form Ω_{λ},
- $\mathfrak{p}_{0} \supset\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]$.
(1) $\mathfrak{i}=\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]$ is an ideal of \mathfrak{g}_{0}, hence there exists a sequence

$$
\{0\}=\mathfrak{i}^{0} \subset \mathfrak{i}^{1} \subset \mathfrak{i}^{2} \subset \cdots \subset \mathfrak{i}^{s}=\mathfrak{i} \subset \mathfrak{i}^{s+1} \subset \cdots \subset \mathfrak{i}^{r}=\mathfrak{g}_{0}
$$

of ideals such that $\operatorname{dim}\left(\mathrm{i}^{k} / \mathrm{i}^{k-1}\right)=1$ for every $k \geq 1$.
(2) (M. Vergne) Define \mathfrak{p}_{0} to be

$$
\mathfrak{p}_{0}:=\sum_{k=1}^{r} \operatorname{rad}\left(\Omega_{\lambda \mid \mathrm{i}^{k} \times \mathrm{i}^{k}}\right)
$$

Then \mathfrak{p}_{0} is a maximal isotropic subalgebra for Ω_{λ}.
(3) One can show that $\Omega_{\lambda}\left(\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right],\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]\right)=0$, which implies that $\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right] \subset \mathfrak{p}_{0}$.

Irreducibility

Proposition

If a unitary representation $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ is induced from a polarizing system, then it is irreducibe.

Irreducibility

Proposition

If a unitary representation $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ is induced from a polarizing system, then it is irreducibe.
Proof. By induction on $\operatorname{dim} \mathfrak{g}$.
Case I: \mathfrak{g} is not reduced, or \mathfrak{g} is reduced and $\mathcal{Z}(\mathfrak{g}) \cap \operatorname{ker} \lambda \neq\{0\}$. Induction hypothesis.

Irreducibility

Proposition

If a unitary representation $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ is induced from a polarizing system, then it is irreducibe.
Proof. By induction on $\operatorname{dim} \mathfrak{g}$.
Case I: \mathfrak{g} is not reduced, or \mathfrak{g} is reduced and $\mathcal{Z}(\mathfrak{g}) \cap \operatorname{ker} \lambda \neq\{0\}$. Induction hypothesis.

Case II : \mathfrak{g} is reduced and $\mathcal{Z}(\mathfrak{g}) \cap \operatorname{ker} \lambda \neq\{0\}$. Find a 3-dimensional Heisenberg subgroup and use explicit formulas for its action.

An observation

Corollary

For every unitary representation $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ of $\left(G_{0}, \mathfrak{g}\right)$ we have $\rho^{\pi}\left(\left[\mathfrak{g}_{1},\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]\right]\right)=0$.

Proof. Get deep into the proof of classification!

An observation

Corollary

For every unitary representation $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ of $\left(G_{0}, \mathfrak{g}\right)$ we have $\rho^{\pi}\left(\left[\mathfrak{g}_{1},\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]\right]\right)=0$.

Proof. Get deep into the proof of classification!
Observation (Neeb) :

- Suppose that $\bigcap_{\left(\pi, \rho^{\pi}, \mathcal{H}\right)} \operatorname{ker}\left(\pi, \rho^{\pi}, \mathcal{H}\right)=\{0\}$.
- $\mathfrak{g}^{c}:=\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right] \oplus \mathfrak{g}_{1}$.
- $C_{g}:=$ closed convex cone in \mathfrak{g}_{0}^{c} generated by $\left\{[X, X] \mid X \in \mathfrak{g}_{1}\right\}$.

An observation (cont.)

- C_{g} is G_{0}-invariant, generating, and pointed.

An observation (cont.)

- C_{g} is G_{0}-invariant, generating, and pointed.
- It follows that \mathfrak{g}_{0}^{c} has a compactly embedded Cartan subalgebra t .

An observation (cont.)

- C_{g} is G_{0}-invariant, generating, and pointed.
- It follows that \mathfrak{g}_{0}^{c} has a compactly embedded Cartan subalgebra t .
- t acts semisimply and nilpotently on g^{c}; hence $\left[t, g^{c}\right]=\{0\}$.

An observation (cont.)

- C_{g} is G_{0}-invariant, generating, and pointed.
- It follows that g_{0}^{c} has a compactly embedded Cartan subalgebra t .
- t acts semisimply and nilpotently on g^{c}; hence $\left[t, g^{c}\right]=\{0\}$.
- It follows that $\left[\mathfrak{g}_{0}^{c}, \mathfrak{g}^{c}\right]=\{0\}$; in particular $\left[\mathfrak{g}_{1},\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]\right]=\{0\}$.

An observation (cont.)

- C_{g} is G_{0}-invariant, generating, and pointed.
- It follows that g_{0}^{c} has a compactly embedded Cartan subalgebra t .
- t acts semisimply and nilpotently on \mathfrak{g}^{c}; hence $\left[\mathrm{t}, \mathfrak{g}^{c}\right]=\{0\}$.
- It follows that $\left[\mathfrak{g}_{0}^{c}, \mathfrak{g}^{c}\right]=\{0\}$; in particular $\left[\mathfrak{g}_{1},\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]\right]=\{0\}$.

Problem. Classify solvable Lie superalgebras $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ for which C_{g} is pointed.

Restriction of $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ to G_{0}

Let $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ be an irr. unitary rep. of $\left(G_{0}, \mathfrak{g}\right)$ corresponding to $O_{\lambda}:=G_{0} \cdot \lambda$. Then

$$
\left(\pi, \rho^{\pi}, \mathcal{H}\right)_{\mid G_{0}}=\underbrace{\pi_{\lambda} \oplus \cdots \oplus \pi_{\lambda}}_{2^{l} \text { time }}
$$

where π_{λ} is the irreducible unitary representation of G_{0} corresponding to O_{λ}.

Restriction of $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ to G_{0}

Let $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ be an irr. unitary rep. of $\left(G_{0}, \mathfrak{g}\right)$ corresponding to $O_{\lambda}:=G_{0} \cdot \lambda$. Then

$$
\left(\pi, \rho^{\pi}, \mathcal{H}\right)_{\mid G_{0}}=\underbrace{\pi_{\lambda} \oplus \cdots \oplus \pi_{\lambda}}_{2^{l} \text { time }}
$$

where π_{λ} is the irreducible unitary representation of G_{0} corresponding to O_{λ}.

When $\left(\pi, \rho^{\pi}, \mathcal{H}\right) \simeq\left(\pi, \rho^{\pi}, \Pi \mathcal{H}\right)$?
If $\left(\pi, \rho^{\pi}, \mathcal{H}\right)$ is induced form a polarizing system

$$
\left(M_{0}, m, C_{0}, c, \Phi, \lambda\right)
$$

then

$$
\operatorname{dim} \mathfrak{c}= \begin{cases}2 l & \text { if }\left(\pi, \rho^{\pi}, \mathcal{H}\right) \simeq\left(\pi, \rho^{\pi}, \Pi \mathcal{H}\right) \\ 2 l+1 & \text { otherwise }\end{cases}
$$

Thank you!

