There is no Theory of Everything inside E₈

Skip Garibaldi Emory University

l'm an algebraist.

Joint work with Jacques Distler Physics Department University of Texas

Commun. Math. Phys. Digital Object Identifier (DOI) 10.1007/s00220-010-1006-y Communications in Mathematical Physics

There is No "Theory of Everything" Inside E₈

Jacques Distler¹, Skip Garibaldi²

- ¹ Theory Group, Department of Physics, and Texas Cosmology Center, University of Texas, Austin, TX 78712, USA.
 E-mail: distler@golem.ph.utexas.edu
 ² Department of Mathematics & Computer Science, 400 Dowman Dr.,
- ² Department of Mathematics & Computer Science, 400 Dowman Dr., Emory University, Atlanta, GA 30322, USA.
 E-mail: skip@member.ams.org; skip@mathcs.emory.edu

Received: 30 July 2009 / Accepted: 26 October 2009 © Springer-Verlag 2010

Abstract: We analyze certain subgroups of real and complex forms of the Lie group E_8 , and deduce that any "Theory of Everything" obtained by embedding the gauge groups of gravity and the Standard Model into a real or complex form of E_8 lacks certain representation-theoretic properties required by physical reality. The arguments themselves amount to representation theory of Lie algebras in the spirit of Dynkin's classic papers and are written for mathematicians.

Background

Establish notation

GraviGUT outline (from Percacci's talk)

- I. Identify GraviGUT group E
- 2. Fit particles into a representation of E
- 3. Write G-invariant action
 - 4. Explain symmetry breaking
 - 5. Check that new particles not seen at low energies have high mass

Pause

Groups & representations

Example: Nesti-Percacci

	G	= Sp	in(0)
--	---	------	-----	----

 \subseteq E = Spin(11,3)

$$V = 64 + 64 + 64$$

	m=l	m=2	m=3
n=l	0	16+16 +16	0
n=2	<u>16+16</u> + <u>16</u>	0	0
n=3	0	0	0

Example: Lisi (June 2010)

G = Spin(10)

$$\subseteq E = E_{8(-24)}$$

• V = Lie(E)

	m=l	m=2	m=3
n=l	45+10+ 10+1	6+ <u> 6</u>	I
n=2	<u> 6</u> + 6	+ 0 +	0
n=3		0	0

Our paper No Theory of Everything inside E₈

ToE inside E₈

Our task: fit all fields of the Standard Model and gravity tightly in E₈, with only a handful of new particles

ToE inside E₈

- G = your favorite compact connected real group
- \subseteq E = real form of E₈
- V = Lie(E)
- Concoct a map G x Spin(3,1) into E with finite kernel, "so that V is a good representation of G"

Easy observation

You <u>can't</u> get 3 generations of fermions.

- Generations of fermions implies dim V_{1,2} is
 ≥ $3 \cdot 16 = 48$
- $im(2 \otimes I \otimes V_{2,1} + I \otimes 2 \otimes V_{1,2}) \geq 192$
- Sut: Spin(3,1) = SL(2,C) has center ±1, and -1 acts on this subspace as -1. By E. Cartan (or Serre), the -1-eigenspace has dim ≤128.

ToE inside E₈

Theorem (Distler-G)

- Take $E = E_{8(-24)}, E_{8(8)}, \text{ or } R_{C/R}(E_{8,C})$
- If V_{m,n} = 0 for all (m,n) with m≥4 or n≥4, then V_{1,2} is not a complex representation of G.

Definition of "complex"

- Let G be a real group, and fix a representation of G x C on some complex vector space A. Three possibilities:
- A is defined over **R**: A is <u>real</u>
- A+A is defined over **R** but A is not: A is <u>pseudoreal</u> ("quaternionic")
- A+A is not defined over \mathbf{R} : A is <u>complex</u>

If $V_{m,n} = 0$ for all (m,n) with $m \ge 4$ or $n \ge 4$, then $V_{1,2}$ is not a complex representation of G.

Why is that bad?

- Solution You want G_{SM} to embed in G.
- Standard Model requires $V_{1,2}$ to be a complex representation of G_{SM} .
- If V_{1,2} is not a complex representation, then you get a profusion of extra particles and new theoretical challenges.

Theorem (Distler-G)

- Take $E = E_{8(-24)}, E_{8(8)}, \text{ or } R_{C/R}(E_{8,C})$
- If V_{m,n} = 0 for all (m,n) with m≥4 or n≥4, then V_{1,2} is not a complex representation of G.
- Note: does not depend on choice of compact group G

How to prove it?

- Complexify to get $SL_{2,C} \times SL_{2,C}$ embedded in $E \propto C = \text{complex } E_8$
- Both copies have the same Dynkin index

Dynkin index 2 case

- centralizer of one SL₂,c is Spin₁₃,c
- Spin_{13,} c has two index 2 SL_{2,} c's
- One gives (SL₂, c x SL₂, c)/(-1,-1) in E₈, c (ignore it); other is SL₂, c x SL₂, c
- centralizer of full SL₂, c x SL₂, c is Sp₄, c x
 Sp₄, c

How to determine the real forms?

- G is contained in G_{max} , the maximal compact subgroup of $Z_E(Spin(3, I))$
- If $V_{1,2}$ is not complex for G_{max} , then it is not complex for G
- We know $Z_E(Spin(3, I)) \times \mathbb{C}$; need to determine the real form (hence G_{max}) and restrict $V_{1,2}$ to G_{max}

How to determine the real forms?

- Two tools: (a) we know how the Galois action permutes the summands of V as a representation of Spin(3,1) x $Z_E(Spin(3,1))$
- (b) use the Killing form on E to control the real form of $Z_E(Spin(3, I))$

Case: Dynkin index I

- $V_{1,2}=S_+, V_{2,1}=S_-$ interchanged, so a=1,3,5
- If a=5, by rank $E=E_{8(8)}$
- If a=1,3, -1 in Spin(3,1) centralizes so(12,4)
 in Lie(E), so $E = E_{8(-24)}$

Table of possibilities

Ε	G _{max} (contains G)	V _{2,3}	V _{1,2}
г	Spin(5) x Spin(7)	0	4⊗8
⊏8(8)	Spin(5)	4	4+16
E astan	Spin(11)	0	32
⊏8(-24)	Spin(9) x SU(2)	0	I6⊗2
	E7 (simply conn.)	0	56
	Spin(12)	0	32+32'
$R_{\mathbf{C}/\mathbf{R}}(E_{8,\mathbf{C}})$	Spin(13)	0	64
	Spin(5) x Spin(5)	(4⊗I) + (I⊗4)	(4⊗5) + (5⊗4)
	SU(2) x Spin(9)	2⊗I	(2⊗9) + (2⊗16)

These representations are all non-complex

Elevator summary

If you try to fit gravity and the Standard Model -- even just some of the fermions -- into E_8 ,

- you cannot get the known 3 generations of fermions, and
- gou will find a profusion of new particles.