There is no

Theory of Everything

 inside E8Skip Garibaldi

Emory University

I'm an algebraist.

Joint work with Jacques Distler Physics Department University of Texas

There is No "Theory of Everything" Inside E8

Jacques Distler ${ }^{1}$, Skip Garibaldi ${ }^{2}$
${ }^{1}$ Theory Group, Department of Physics, and Texas Cosmology Center, University of Texas, Austin, TX 78712, USA.
E-mail: distler@golem.ph.utexas.edu
2 Department of Mathematics \& Computer Science, 400 Dowman Dr., Emory University, Atlanta, GA 30322, USA.
E-mail: skip@member.ams.org; skip@ mathcs.emory.edu

Received: 30 July 2009 / Accepted: 26 October 2009
© Springer-Verlag 2010

Abstract

We analyze certain subgroups of real and complex forms of the Lie group E_{8}, and deduce that any "Theory of Everything" obtained by embedding the gauge groups of gravity and the Standard Model into a real or complex form of E_{8} lacks certain rep-resentation-theoretic properties required by physical reality. The arguments themselves amount to representation theory of Lie algebras in the spirit of Dynkin's classic papers and are written for mathematicians.

Background

Establish notation

GraviGUT outline (from Percacci's talk)

I. Identify GraviGUT group E
2. Fit particles into a representation of E
3. Write \mathcal{G}-invariant action
4. Explain symmetry breaking
5. Check that new particles not-seen at low energies have high mass

Pause

Groups \& representations

Example: Nesti-Percacci

- $G=\operatorname{Spin}(10)$
- $E=\operatorname{Spin}(I I, 3)$
- $V=64+64+64$

	$m=1$	$m=2$	$m=3$
$n=1$	0	$16+16$ +16	0
$n=2$	$\underline{16}+\underline{16}+$	0	0
$n=3$	0	0	0

Example: Lisi

$$
\begin{aligned}
& G=\operatorname{Spin}(10) \\
& \quad E=E_{8(-24)} \\
& V=\operatorname{Lie}(E)
\end{aligned}
$$

	$m=1$	$m=2$	$m=3$
$n=1$	$45+10+$ $10+1$	$16+\underline{16}$	1
$n=2$	$\underline{16+16}$	$1+10$ +1	0
$n=3$	1	0	0

Our paper

No Theory of Everything inside E_{8}

ToE inside E_{8}

Our task: fit all fields of the Standard Model and gravity tightly in E_{8}, with only a handful of new particles

ToE inside E_{8}

- $G=$ your favorite compact connected real group
- $E=$ real form of E_{8}
- $V=\operatorname{Lie}(E)$
- Concoct a map $G \times \operatorname{Spin}(3, I)$ into E with finite kernel,"so that V is a good representation of G "

Easy observation

You can't get 3 generations of fermions.

- 3 generations of fermions implies $\operatorname{dim} V_{1,2}$ is $\geq 3 \cdot 16=48$
- $\operatorname{dim}\left(2 \otimes I \otimes V_{2,1}+I \otimes 2 \otimes V_{1,2}\right) \geq 192$
- But: $\operatorname{Spin}(3, I)=S L(2, C)$ has center $\pm I$, and $-I$ acts on this subspace as -I. By E. Cartan (or Serre), the - I-eigenspace has $\operatorname{dim} \leq 128$.

ToE inside E_{8}

Our task: fit $\begin{aligned} & \text { wields of the Standard }\end{aligned}$ Model and gravity tightly in E_{8}, with only a handful of new particles

Theorem (Distler-G)

- Take $E=E_{8(-24)}, \mathrm{E}_{8(8)}$, or $\mathrm{Rc}_{\mathbf{C} / \mathbf{R}}\left(\mathrm{E}_{8, \mathbf{C}}\right)$
- If $V_{m, n}=0$ for all (m, n) with $m \geq 4$ or $n \geq 4$, then $V_{1,2}$ is not a complex representation of G.

Definition of "complex"

- Let G be a real group, and fix a representation of $G \times \mathbf{C}$ on some complex vector space A. Three possibilities:
- A is defined over \mathbf{R} : A is real
- $A+A$ is defined over \mathbf{R} but A is not: A is pseudoreal ("quaternionic")
- $A+A$ is not defined over \mathbf{R} : A is complex

If $V_{m, n}=0$ for all (m, n) with $m \geq 4$ or $n \geq 4$, then $V_{1,2}$ is not a complex representation of G.

Why is that bad?

- You want $G_{S M}$ to embed in G.
- Standard Model requires $V_{1,2}$ to be a complex representation of Gsm.
- If $V_{1,2}$ is not a complex representation, then you get a profusion of extra particles and new theoretical challenges.

Theorem (Distler-G)

- Take $E=E_{8(-24)}, E_{8(8)}$, or $\operatorname{Rc}_{\mathbf{C}}\left(\mathrm{E}_{8, \mathbf{c}}\right)$
- If $V_{m, n}=0$ for all (m, n) with $m \geq 4$ or $n \geq 4$, then $V_{1,2}$ is not a complex representation of G.
- Note: does not depend on choice of compact group G

How to prove it?

- Complexify to get $\mathrm{SL}_{2, \mathbf{c}} \times \mathrm{SL}_{2, \mathbf{c}}$ embedded in $E \times \mathbf{C}=$ complex E_{8}
- $V_{m, n}=0$ for $m \geq 4$ or $n \geq 4$ implies both copies of $S L_{2, c}$ have Dynkin index I or 2
- Both copies have the same Dynkin index

Dynkin index 2 case

- centralizer of one $\mathrm{SL}_{2, \mathrm{c}}$ is $\operatorname{Spin}_{13, \mathrm{c}}$
- Spin ${ }_{13, \mathbf{c}}$ has two index 2 SL2,c's 2
- One gives $\left(\mathrm{SL}_{2, \mathbf{c}} \times \mathrm{SL}_{2, \mathbf{c}}\right) /(-I,-I)$ in $\mathrm{E}_{8, \mathbf{c}}$ (ignore it); other is $\mathrm{SL}_{2, \mathrm{c}} \times \mathrm{SL}_{2, \mathrm{c}}$
- centralizer of full $S_{2, \mathbf{c}} \times \mathrm{SL}_{2, \mathbf{c}}$ is $S_{p 4, \mathbf{c}} \times$ Sp4, C

How to determine the real forms?

- G is contained in $G_{\text {max }}$, the maximal compact subgroup of $Z_{E}(\operatorname{Spin}(3, I))$
- If $V_{1,2}$ is not complex for $G_{\text {max }}$, then it is not complex for G
- We know $Z_{E}(\operatorname{Spin}(3, I)) \times \mathbf{C}$; need to determine the real form (hence $G_{\max }$) and restrict $V_{1,2}$ to $G_{\max }$

How to determine the real forms?

- Two tools: (a) we know how the Galois action permutes the summands of V as a representation of $\operatorname{Spin}(3, I) \times Z_{E}(\operatorname{Spin}(3, I))$
- (b) use the Killing form on E to control the real form of $Z_{E}(\operatorname{Spin}(3, I))$

Case: Dynkin index I

- $Z_{E}(\operatorname{Sin}(3, I))$ is $\operatorname{Spin}(12-a, a)$ for some $0 \leq a \leq 6$
- $V_{1,2}=S_{+}, V_{2,1}=S_{\text {. interchanged, so } a=1,3,5}$
- If $a=5$, by rank $E=E_{8(8)}$
- If $a=1,3,-1$ in $\operatorname{Spin}(3,1)$ centralizes so(12,4) in $\operatorname{Lie}(E)$, so $E=E_{8(-24)}$

Table of possibilities

E	$G_{\text {max }}$ (contains G)	$V_{2,3}$	$V_{1,2}$
$\mathrm{E}_{\text {(8) }}$	Spin(5) \times Spin(7)	0	$4 \otimes 8$
	Spin(5)	4	4+16
$\mathrm{E}_{8(-24)}$	Spin(1)	0	32
	Spin(9) \times SU(2)	0	$16 \otimes 2$
$\mathrm{Re}_{\mathbf{/ R}}\left(\mathrm{E}_{8, \mathbf{C}}\right)$	E_{7} (simply conn.)	0	56
	Spin(12)	0	$32+32$ '
	Spin(13)	0	64
	Spin(5) \times Spin(5)	$(4 \otimes \mathrm{l})+(\mathrm{l} \otimes 4)$	$(4 \otimes 5)+(5 \otimes 4)$
	SU(2) x Spin(9)	$2 \otimes 1$	$(2 \otimes 9)+(2 \otimes 16)$

These representations are all
non-complex

QED

Elevator summary

If you try to fit gravity and the Standard Model -- even just some of the fermions -into E_{8},
${ }^{\bullet}$ you cannot get the known 3 generations of fermions, and
${ }^{\ominus}$ you will find a profusion of new particles.

