Representations from contact geometry

Michael Eastwood

Australian National University

Double foliation in 3 dimensions

$X=\frac{\partial}{\partial x} \quad Y=\frac{\partial}{\partial y}+x \frac{\partial}{\partial z}$

Symmetries?

$$
[X, Y]=\frac{\partial}{\partial z} \equiv Z \quad[X, Z]=0 \quad[Y, Z]=0
$$

Symmetries of this geometry

$$
[X, Y]=Z \quad[X, Z]=0 \quad[Y, Z]=0
$$

Vector field K such that

- $\mathcal{L}_{K} X \propto X$
i.e.
- $[X, K] \propto X$
- $\mathcal{L}_{K} Y \propto Y$
- $[Y, K] \propto Y$

Write $K=f_{+} Y-f_{-} X+g Z$. Then

- $X g+f_{+}=0 \quad \& \quad X f_{+}=0$
- $Y g+f_{-}=0 \quad \& \quad Y f_{-}=0$

Hence

$$
X^{2} g=0 \quad \& \quad Y^{2} g=0
$$

Warm-up exercise

$X g=0 \& Y g=0 \Rightarrow Z g=0 \Rightarrow g$ is constant
$X^{2} g=0 \& Y g=0$
Introduce f and p by $X g+f=0$ and $Z g-p=0$.
Recall $\quad[X, Y]=Z \quad[X, Z]=0 \quad[Y, Z]=0$.
Conclude (prolongation)

$$
\nabla\left[\begin{array}{l}
g \\
f \\
p
\end{array}\right] \equiv\left[\begin{array}{lll}
X g+f & Y g & Z g-p \\
X f & Y f-p & Z f \\
X p & Y p & Z p
\end{array}\right]=0
$$

flat connection $\quad \Rightarrow\left\{g\right.$ s.t. $\left.X^{2} g=0=Y g\right\} \cong \mathbb{R}^{3}$

Symmetries cont'd

$$
X^{2} g=0 \& Y^{2} g=0 \quad \leadsto \sim \text { prolongation } \leadsto \leadsto \leadsto
$$

$$
\nabla\left[\begin{array}{ccc}
& g & \\
f_{+} & & f_{-} \\
& p_{+}, p_{-} & \\
r_{-} & & r_{+}
\end{array}\right] \equiv \quad\left[\begin{array}{lll}
K^{+} & & \bar{K}^{0} \\
& a & \pi^{0}, \eta \\
K^{0} & & K^{-}
\end{array}\right]
$$

$$
\left[\right]
$$

Eightfold way

The story so far

- $\{g$ s.t. $X g=0=Y g\} \cong \mathbb{R}$
- $\left\{g\right.$ s.t. $\left.X^{2} g=0=Y g\right\} \cong \mathbb{R}^{3}$
- $\left\{g\right.$ s.t. $\left.X^{2} g=0=Y^{2} g\right\} \cong \mathbb{R}^{8}$

Symmetries

More generally,

$$
\left\{g \text { s.t. } X^{p+1} g=0=Y^{q+1} g\right\} \cong \mathbb{R}^{(p+1)(q+1)(p+q+2) / 2}
$$

In fact,

- $\{$ Symmetries $\} \cong \mathfrak{s l}(3, \mathbb{R})$

Explain?

- $\left\{g\right.$ s.t. $\left.X^{p+1} g=0=Y^{q+1} g\right\} \cong \xrightarrow{p}{ }^{q}$

A 2 root system

Flag manifold

$$
\begin{aligned}
& \operatorname{SL}(3, \mathbb{R}) / P=\operatorname{SL}(3, \mathbb{R}) /\left\{\left[\begin{array}{ccc}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right]\right\}=\underline{\mathbb{F}_{1,2}\left(\mathbb{R}^{3}\right)} \\
& \mathfrak{s l}(3, \mathbb{R})=\underbrace{\mathfrak{g}_{-2}+\mathfrak{g}_{-1}}_{\mathfrak{s l}(3, \mathbb{R}) / \mathfrak{p}}+\underbrace{\mathfrak{g}_{0}+\mathfrak{g}_{1}+\mathfrak{g}_{2}}_{\mathfrak{p}}
\end{aligned}
$$

$$
\begin{aligned}
& \downarrow P \text {-module } \\
& \text { Tangent Bundle }
\end{aligned}
$$

Curved geometry

Flat

$$
\mathbb{F}_{1,2}\left(\mathbb{R}^{3}\right) \supset \mathbb{R}^{3} \text { (affine patch) }
$$

Model

$$
\mathbb{F}_{1}\left(\mathbb{R}^{3}\right) \quad \mathbb{F}_{2}\left(\mathbb{R}^{3}\right)
$$

Curved Version

- M is a smooth real 3 -manifold
- Line subbundles $H_{+} \oplus H_{-}$с $T M$
- $\left[H_{+}, H_{-}\right]=T M$ (i.e. $H \equiv H_{+} \oplus H_{-}$is contact)

Theorem (Lie 1888, Tresse 1896, \simeq Cartan 1924)

- $\operatorname{dim}\{$ local symmetries of $M\} \leq 8$
- with equality iff locally flat

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Another curved geometry

Rephrase previous geometry on 3-dimensional M :-

- $H \subset T M$ a contact structure
- $J: H \rightarrow H$ s.t. $J^{2}=\mathrm{Id}$ and $J \neq \pm \mathrm{Id}$ and now change a sign to define CR geometry
- $H \subset T M$ a contact structure
- $J: H \rightarrow H$ s.t. $J^{2}=-\operatorname{Id}$ (complex structure)

Theorem (Poincaré 1907, Segre 1931, Cartan 1932)

- $\operatorname{dim}\{$ local symmetries of $M\} \leq 8$
- with equality iff locally flat

Flat Model $\quad \operatorname{SU}(2,1) / P=S^{3} \subset \mathbb{C}^{2}$.

Existence of G2

Theorem (Engel 1893, Cartan 1893)
Killing's 1888 Lie algebra G2 exists.
Proof (Engel) G2 \equiv symmetries of $\frac{d z}{d x}=\left(\frac{d^{2} y}{d x^{2}}\right)^{2} \square$
$\mathbb{R}^{5} \ni(x, y, p, q, z)$ with 2-plane distribution defined by

$$
d y-p d x \quad d p-q d x \quad d z-q^{2} d x
$$

Curved geometry

- M is a smooth real 5 -manifold
- rank 2 subbundle H с $T M$
- $[H,[H, H]]=T M$

Uniqueness of G2

Theorem (Cartan 1910 'five variables')
For $H \subset T M$ a geometry as above

- $\operatorname{dim}\{$ local symmetries of $M\} \leq 14$
- with equality iff locally flat ...
- in which case $\{$ symmetries $\} \cong \mathrm{G} 2$.

Proof is by rather difficult prolongation to obtain a

Cartan connection

Nowadays use Kostant's Bott-Borel-Weil Theorem

G2 root system

G2 via contact geometry

$$
\mathrm{G} 2=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \underbrace{\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}}_{\mathfrak{p}}
$$

Curved geometry • 5 -dimensional contact manifold, - reduction of structure group to $\mathrm{GL}(2, \mathbb{R})$.

Contact parabolic geometry

- contact structure $H \subset T M$
- reduction of structure group of H to...

	G2	F4	E6	E7	E8
$\operatorname{dim} M$	5	15	21	33	57
	A1	C3	A5	D6	E7

Construction of representations
$a \Leftrightarrow b=\operatorname{ker}^{a} \stackrel{b}{b}{\underset{ }{b}}^{\nabla^{b+1}} a+2 b+2 \underset{\underline{-b}}{\underline{-}}-2$

- Verma modules
- Bernstein-Gelfand-Gelfand resolution
- Jantzen-Zuckerman translation principle

Further reading

- D.N. Arnold, N. Douglas, and R.S. Falk, Finite element exterior calculus: from Hodge theory to numerical stability, Bull. AMS 47 (2010) 281-354.
- A. Čap, M.G. Cowling, M.G. Eastwood, F. De Mari and R. McCallum, The Heisenberg group, $\mathrm{SL}(3, \mathbb{R})$, and rigidity, Harmonic Analysis, . . . in Honour of Roger Howe, Lect. Notes IMS Vol. 12, National University of Singapore 2007, pp. 41-52.
- M.G. Eastwood and A.R. Gover, Prolongations on contact manifolds, arXiv:0910.5519
- P. Nurowski and G.A.J. Sparling, Three-dimensional Cauchy-Riemann structures and second-order ordinary differential equations, Class. Quant. Grav. 20 (2003) 4995-5016.
- A. Čap and J. Slovák, Parabolic Geometries 1, AMS 2009.

THANK YOU

THE END

