The Dirac operator for graded affine Hecke algebras

> Dan Ciubotaru University of Utah

(joint work with D. Barbasch, P. Trapa)

Banff, July 2010

The graded affine Hecke algebra ${\mathbb H}$

Let $\Phi = (V_0, R, V_0^{\vee}, R^{\vee})$ be a real reduced root system.

Assume $R \subset V_0 \setminus \{0\}$ spans V_0 . There is a perfect bilinear pairing $(\cdot, \cdot) : V_0 \times V_0^{\vee} \to \mathbb{R}$, and a bijection $R \longrightarrow R^{\vee}$, $\alpha \mapsto \alpha^{\vee}$. Let $W \subset GL(V_0^{\vee})$ (or $GL(V_0)$) be the Weyl group, generated by $\{s_{\alpha} \mid \alpha \in R\}$.

 $R^+ \subset R$, a positive system, and Π simple roots in R^+ . $R^{\vee,+}$ are the positive coroots.

Fix a W-invariant inner product $\langle \cdot, \cdot \rangle$ on V_0^{\vee} . Then $W \subset \mathsf{O}(V_0^{\vee})$.

Set $V = V_0 \otimes_{\mathbb{R}} \mathbb{C}$, and $V^{\vee} = V_0^{\vee} \otimes_{\mathbb{R}} \mathbb{C}$.

Fix a W-invariant "parameter function" $c: R \to \mathbb{R}$, and set $c_{\alpha} = c(\alpha)$.

Definition (Lusztig). The graded affine Hecke algebra $\mathbb{H} = \mathbb{H}(\Phi, c)$ is the complex associative algebra with unit, $\mathbb{H} = \mathbb{C}[W] \otimes S(V^{\vee})$ where $\mathbb{C}[W]$ and $S(V^{\vee})$ have the usual algebra structure, and

$$\omega t_{s_{\alpha}} - t_{s_{\alpha}} s_{\alpha}(\omega) = c_{\alpha}(\alpha, \omega), \quad \alpha \in \Pi, \ \omega \in V^{\vee}.$$
(1)

The center $Z(\mathbb{H}) = S(V^{\vee})^W$. The central characters of irreducible \mathbb{H} -modules are parameterized by W-conjugacy classes in V.

If $\nu \in V$, let χ_{ν} be the central character.

The Casimir element

Definition. If $\{\omega_i : i = 1, n\}$ and $\{\omega^i : i = 1, n\}$ are dual bases of V_0^{\vee} with respect to \langle , \rangle , define

$$\Omega = \sum_{i=1}^{n} \omega_i \omega^i \in \mathbb{H}.$$
 (2)

Proposition.

- 1. The element Ω is well-defined independent of the choice of bases, and central in \mathbb{H} .
- 2. Let (π, X) is an irreducible \mathbb{H} -module with central character χ_{ν} . Then

$$\pi(\Omega) = \langle \nu, \nu \rangle \operatorname{Id}_X.$$

Hermitian and unitary representations

The algebra \mathbbmss{H} has a natural conjugate linear anti-involution:

$$t_w^* = t_{w^{-1}}, \quad w \in W,$$

$$\omega^* = -\omega + \sum_{\beta > 0} c_\beta(\beta, \omega) t_{s_\beta}, \quad \omega \in V_0^{\vee}.$$
 (3)

This is the right one for the correspondence with unitary p-adic group representations.

An \mathbb{H} -module (π, X) is Hermitian if there exists a Hermitian form $(\ ,\)_X$ such that:

$$(\pi(h)x, y)_X = (x, \pi(h^*)y)_X, \quad \text{for all } h \in \mathbb{H}, \ x, y \in X.$$

If such a form is positive definite, X is unitary.

For every $\omega \in V_0^{\vee}$, define $\widetilde{\omega} = \omega - \frac{1}{2} \sum_{\beta>0} c_\beta(\beta, \omega) t_{s_\beta} \in \mathbb{H}.$ (5) Then $\widetilde{\omega}^* = -\widetilde{\omega}.$ If (π, X) is Hermitian \mathbb{H} -module $(\pi(\widetilde{\omega})x, \pi(\widetilde{\omega})x)_X = (\pi(\widetilde{\omega}^*)\pi(\widetilde{\omega})x, x)_X = -(\pi(\widetilde{\omega}^2)x, x)_X.$ (6) A necessary condition for a Hermitian representation X to be unitary is $(\pi(\widetilde{\omega}^2)x, x)_X \leq 0, \quad \text{for all } x \in X, \ \omega \in V_0^{\vee}.$ (7)

Definition. Let $\{\omega_i\}, \{\omega^i\}$ be dual bases of V_0^{\vee} . Define

$$\widetilde{\Omega} = \sum_{i=1}^{n} \widetilde{\omega}_{i} \widetilde{\omega}^{i} \in \mathbb{H}.$$
(8)

The operator $\widetilde{\Omega}$ is independent of the bases chosen, and lies in \mathbb{H}^W . A Hermitian \mathbb{H} -module (π, X) with invariant form $(\ ,\)_X$ is unitary only if

$$(\pi(\widetilde{\Omega})x, x)_X \le 0, \quad \text{for all } x \in X.$$
 (9)

Theorem.

$$\widetilde{\Omega} = \Omega - \Omega_W, \ where$$

$$\Omega_W = \frac{1}{4} \sum_{\alpha > 0, \beta > 0} c_\alpha c_\beta \langle \alpha, \beta \rangle t_{s_\alpha} t_{s_\beta}.$$
⁽¹⁰⁾

We have $\Omega_W \in \mathbb{C}[W]^W$, so Ω_W acts in an irreducible $\sigma \in \widehat{W}$ by a scalar $C(\sigma)$.

Corollary (Casimir inequality). Let (π, X) be a unitary irreducible \mathbb{H} -module with c.c. $\chi_{\nu}, \nu \in V$, and $\operatorname{Hom}_{W}[\sigma, X] \neq 0$. Then:

 $\langle \nu, \nu \rangle \le C(\sigma).$

The following is a consequence of the Casimir Inequality. For p-adic groups, this is known by other methods, *e.g.* [Casselman] or [Howe-Moore]. Assume $c \equiv 1$.

Corollary. A hermitian irreducible representation X with c.c. χ_{ν} $(\nu \in V)$ is unitary only if

$$\langle \nu, \nu \rangle \le \langle \rho, \rho \rangle.$$

When equality holds and the root system is simple, only the trivial and the Steinberg modules are unitary.

The Dirac operator

The Clifford algebra $C(V_0^\vee)$

Denote by $C(V_0^{\vee})$ the Clifford algebra defined by V_0^{\vee} and \langle , \rangle ; $C(V_0^{\vee})$ is the associative algebra with unit generated by V_0^{\vee} with relations:

$$\omega^2 = -\langle \omega, \omega \rangle, \quad \omega \omega' + \omega' \omega = -2 \langle \omega, \omega' \rangle. \tag{11}$$

 $\mathsf{O}(V_0^\vee)$ acts by algebra automorphisms on $C(V_0^\vee),$ and the action of $-1\in\mathsf{O}(V_0^\vee)$ induces a grading

$$C(V_0^\vee) = C(V_0^\vee)_{\mathrm{even}} + C(V_0^\vee)_{\mathrm{odd}}$$

There is an automorphism ϵ : $\epsilon = +1$ on $C(V_0^{\vee})_{\mathsf{even}}$ and -1 on $C(V_0^{\vee})_{\mathsf{odd}}$; let t be the transpose antiautomorphism

$$\omega^t = -\omega, \ \omega \in V_0^{\vee}, \quad (ab)^t = b^t a^t, \ a, b \in C(V_0^{\vee}).$$

The Pin group is

$$\mathsf{Pin}(V_0^{\vee}) = \{ a \in C(V_0^{\vee}) \mid \epsilon(a) V_0^{\vee} a^{-1} \subset V_0^{\vee}, \ a^t = a^{-1} \}.$$
(12)

One has:

$$1 \longrightarrow \{\pm 1\} \longrightarrow \mathsf{Pin}(V_0^{\vee}) \xrightarrow{p} \mathsf{O}(V_0^{\vee}) \longrightarrow 1, \tag{13}$$

where the projection p is given by $p(a)(\omega) = \epsilon(a)\omega a^{-1}$.

We call a simple $C(V_0^{\vee})$ module (γ, S) of dimension $2^{[\dim V_0^{\vee}/2]}$ a spin module for $C(V_0^{\vee})$. When dim V_0^{\vee} is even, there is only one such module, but if dim V_0^{\vee} is odd, there are two choices.

 (γ, S) restricts to an irreducible unitary representation of $\text{Pin}(V_0^{\vee})$. **Definition** (Dirac operator). Fix a spin module (γ, S) for $C(V_0^{\vee})$, and let (π, X) be a \mathbb{H} -module. The Dirac operator for X (and S) is

$$D = \sum_{i=1}^{n} \pi(\widetilde{\omega}_i) \otimes \gamma(\omega^i) \in \operatorname{End}_{\mathbb{H} \otimes C(V_0^{\vee})}(X \otimes S).$$
(14)

For X hermitian with invariant form $(,)_X, D$ is self-adjoint, *i.e.*

$$(D(x \otimes s), x' \otimes s')_{X \otimes S} = (x \otimes s, D(x' \otimes s'))_{X \otimes S}$$
(15)

Proposition. A hermitian \mathbb{H} -module is unitary only if

$$(D^2(x \otimes s), x \otimes s)_{X \otimes S} \ge 0, \qquad \text{for all } x \otimes s \in X \otimes S.$$
 (16)

The spin cover \widetilde{W} We have $W \subset O(V_0^{\vee})$. We define $\widetilde{W} \subset Pin(V_0^{\vee})$: $\widetilde{W} := p^{-1}(O(V_0^{\vee})) \subset Pin(V_0^{\vee})$, where p is the projection. \widetilde{W} is a central extension of W, $1 \longrightarrow \{\pm 1\} \longrightarrow \widetilde{W} \xrightarrow{p} W \longrightarrow 1$. Explicitly, $\widetilde{W} \subset C(V_0^{\vee})$ is generated by z = -1, $\widetilde{s}_{\alpha} = \check{\alpha}/|\check{\alpha}|$, $\alpha \in R^+$. The analogue of the Coxeter presentation is: $\widetilde{W} = \langle z, \widetilde{s}_{\alpha}, \ \alpha \in \Pi : \ z^2 = 1$, $(\widetilde{s}_{\alpha})^2 = z$, $(\widetilde{s}_{\alpha}\widetilde{s}_{\beta})^{m(\alpha,\beta)} = 1 \rangle$. Via restriction, we can regard a spin module (γS) for $C(V^{\vee})$ as

Via restriction, we can regard a spin module (γ, S) for $C(V_0^{\vee})$ as a unitary genuine irreducible \widetilde{W} representation.

We write τ for the diagonal embedding of $\mathbb{C}[\widetilde{W}]$ into $\mathbb{H} \otimes C(V_0^{\vee})$ defined by linearly extending

$$\tau(\widetilde{w}) = t_{p(\widetilde{w})} \otimes \widetilde{w}. \tag{17}$$

The following is an analogue of Parthasarathy's formula. **Theorem.** (Barbasch-C.-Trapa)

$$D^2 = -\Omega \otimes 1 + \tau(\Omega_{\widetilde{W}}). \tag{18}$$

Here

$$\Omega_{\widetilde{W}} = \sum_{\alpha > 0, \beta > 0, \langle \alpha, \beta \rangle \neq 0} c_{\alpha} c_{\beta} \frac{\langle \alpha, \beta \rangle}{|\cos(\alpha, \beta)|} \widetilde{s}_{\alpha} \widetilde{s}_{\beta}$$

and acts by a scalar $C(\widetilde{\sigma})$ on any irreducible \widetilde{W} -module.

The Dirac inequality

Corollary. Assume that X is irreducible and unitary with central character χ_{ν} with $\nu \in V$. Let $(\tilde{\sigma}, \tilde{U})$ be an irreducible representation of \widetilde{W} such that $\operatorname{Hom}_{\widetilde{W}}(\widetilde{U}, X \otimes S) \neq 0$. Then

$$\langle \nu, \nu \rangle \le C(\widetilde{\sigma}).$$
 (19)

To apply it, we need to know $C(\tilde{\sigma})$ for $\tilde{\sigma}$ a genuine \widetilde{W} -type. Example: If $\tilde{\sigma} = S$ (spin module), then $C(S) = \langle \rho, \rho \rangle$, when $c \equiv 1$.

A classification of genuine \widetilde{W} -types

Assume $c \equiv 1$. Let $\operatorname{Irr}_{\mathsf{gen}}(\widetilde{W}) \subset \operatorname{Irr}(\widetilde{W})$ denote the genuine representations of \widetilde{W} .

Let \mathfrak{g} be the Lie algebra for Φ , with Cartan subalgebra $\mathfrak{h} = V$. Let G be the adjoint group.

Let \mathcal{N}_{sol} be the set of nilpotent adjoint orbits in \mathfrak{g} whose centralizer in \mathfrak{g} is solvable. E.g.: type A these are orbits whose Jordan blocks are all distinct. In general, every distinguished orbit is in \mathcal{N}_{sol} .

If e is nilpotent, let $\nu_e \in V_0$ denote one half of a Jacobson-Morozov "middle" element. Let A(e) denote the A-group, and $\operatorname{Irr}_0 A(e)$ the set of irreducible representations of A(e) of Springer type.

Theorem (C.). There is a surjective map

$$\Psi: \operatorname{Irr}_{\mathsf{gen}}(\widetilde{W}) \longrightarrow G \backslash \mathcal{N}_{\mathsf{sol}}$$

$$\tag{20}$$

with the following properties:

1. If $\Psi(\widetilde{\sigma}) = G \cdot e$, then

$$C(\tilde{\sigma}) = \langle \nu_e, \nu_e \rangle, \qquad (21)$$

where $C(\tilde{\sigma})$ is the scalar from the D^2 formula, and ν_e is the middle element of the corresponding nilpotent orbit.

2. (a) If $e \in \mathcal{N}_{sol}$ and $\phi \in \operatorname{Irr}_0(A(e))$, and S is a spin module, then there exists $\tilde{\sigma} \in \Psi^{-1}(G \cdot e)$ so that

 $\operatorname{Hom}_W(\sigma_{e,\phi}, \widetilde{\sigma} \otimes S) \neq 0.$

(b) If $\Psi(\tilde{\sigma}) = G \cdot e$, then there exists $\phi \in \operatorname{Irr}_0(A(e))$ and a spin module S such that

$$\operatorname{Hom}_W(\sigma_{e,\phi}, \widetilde{\sigma} \otimes S) \neq 0.$$

3. If e is distinguished, 2) induces a unique bijection

$$\Psi^{-1}(G \cdot e)/_{\widetilde{\sigma} \sim \widetilde{\sigma} \otimes \mathsf{sgn}} \longleftrightarrow \operatorname{Irr}_0(A(e)).$$

Here $\sigma_{e,\phi}$ is the Weyl group representation associated to (e,ϕ) by the Springer correspondence.

Corollary. Suppose (π, X) is an irreducible unitary \mathbb{H} -module with central character χ_{ν} with $\nu \in V$. (a) Let $(\tilde{\sigma}, \tilde{U})$ be a representation of \widetilde{W} such that $\operatorname{Hom}_{\widetilde{W}}[\widetilde{U}, X \otimes S] \neq 0$. Write $\Psi(\widetilde{\sigma}) = G \cdot e$. Then $\langle \nu, \nu \rangle \leq \langle \nu_e, \nu_e \rangle$. (22) (b) Suppose $e \in \mathcal{N}_{sol}$ and $\phi \in \operatorname{Irr}_0(A(e))$ such that $\operatorname{Hom}_W[\sigma_{(e,\phi)}, X] \neq 0$. Then $\langle \nu, \nu \rangle \leq \langle \nu_e, \nu_e \rangle$. (23)

Some consequences

1) If \mathfrak{g} is simple, then there is a unique subregular orbit (lies in \mathcal{N}_{sol}). Let $\nu_{sr} \in V_0$ be one half a middle element for it. **Corollary.** If X is irreducible unitary with central character χ_{ν} and X is not trivial or Steinberg, then

 $\langle \nu, \nu \rangle \leq \langle \nu_{\rm sr}, \nu_{\rm sr} \rangle.$

In particular, for spherical modules, we get the best possible spectral gap for the trivial representation. (At $\nu = \nu_{sr}$, there is a unitary spherical module: the minimal representation.)

Example: The spherical unitary dual of G_2 .

- 2) The Kazhdan and Lusztig classification gives for every (e, ϕ) , $\phi \in \operatorname{Irr}_0 A(e)$, an irreducible tempered \mathbb{H} -module $X_t(e, \phi)$ such that:
- (a) $X_t(e,\phi)$ has central character ν_e ;
- (b) $X_t(e,\phi)|_W$ contains the Springer representation $\sigma_{(e,\phi)}$ (with multiplicity one) as the "lowest W-type".

Then inequality (23) implies:

Corollary. An irreducible \mathbb{H} -module X that has a lowest W-type $\sigma_{(e,\phi)}$, for $e \in \mathcal{N}_{sol}$, is unitary if and only if X is tempered.

Dirac cohomology

Let (π, X) be an irreducible \mathbb{H} module with central character χ_{ν} . The kernel ker D on $X \otimes S$ is invariant under \widetilde{W} . The D^2 formula implies that if $\widetilde{\sigma}$ occurs in ker D, then

$$\langle \nu,\nu\rangle=C(\widetilde{\sigma}).$$

So the length of ν is determined by the \widetilde{W} structure of ker(D).

Define the Dirac cohomology of X:

$$H^{D}(X) := \ker D / \left(\ker D \cap \operatorname{im} D \right) \tag{24}$$

For example, if X is unitary, $\ker(D) \cap \operatorname{im}(D) = 0$, and $H^D(X) = \ker(D)$. **Proposition.** Let (π, X) be an irreducible unitary \mathbb{H} module with central character χ_{ν} with $\nu \in V$. Suppose $(\widetilde{\sigma}, \widetilde{U})$ is an irreducible representation of \widetilde{W} such that $\operatorname{Hom}_{\widetilde{W}}(\widetilde{U}, X \otimes S) \neq 0$. Write $\Psi(\widetilde{\sigma}) = G \cdot e$. Assume further that $\langle \nu, \nu \rangle = \langle \nu_e, \nu_e \rangle$. Then

$$\operatorname{Hom}_{\widetilde{W}}(\widetilde{U}, H^D(X)) \neq 0$$

Proof. Let $x \otimes s$ be an element of the $\tilde{\sigma}$ isotypic component of $X \otimes S$. By the formula for D^2 and for $C(\tilde{\sigma})$, we have $D^2(x \otimes s) = (-\langle \nu, \nu \rangle + \langle \nu_e, \nu_e \rangle) (x \otimes s) = 0.$ (25) Since X is unitary, ker $D \cap \text{im } D = 0$, and so (25) implies $x \otimes s \in \text{ker}(D) = H^D(X).$ \Box **Corollary.** Let $(\tilde{\sigma}, \tilde{U})$ be a \widetilde{W} -type such that $\Psi(\tilde{\sigma}) = G \cdot e$. Then there exists $\phi \in \text{Irr}_0 A(e)$ such that $\operatorname{Hom}_{\widetilde{W}}(\widetilde{U}, H^D(X_t(e, \phi))) \neq 0.$

As in setting of real groups, Vogan's conjecture can be deduced from a purely algebraic statement.

Theorem. Let $z \in Z(\mathbb{H})$ be given. Then there exists $a \in \mathbb{H} \otimes C(V_0^{\vee})$ and a unique element $\zeta(z)$ in the center of $\mathbb{C}[\widetilde{W}]$ such that

$$z \otimes 1 = \tau(\zeta(z)) + Da + aD$$

as elements in $\mathbb{H} \otimes C(V_0^{\vee})$.

Proof that the algebraic theorem implies Vogan's conjecture.

Proof. Let $\widetilde{x} = x \otimes s \in \ker D \setminus \operatorname{im} D$ be in the isotypic component of a \widetilde{W} -type $\widetilde{\sigma}$. Then:

$$(z \otimes 1 - \tau(\zeta(z))\widetilde{x} = (\chi_{\nu}(z) - \widetilde{\sigma}(\zeta(z)))\widetilde{x};$$
$$(Da + aD)\widetilde{x} = Da\widetilde{x}.$$

Therefore, $\chi_{\nu}(z) = \tilde{\sigma}(\zeta(z))$ for all $z \in Z(\mathbb{H})$. Assume $\Psi(\tilde{\sigma}) = G \cdot e$. We need $\tilde{\sigma}(\zeta(z)) = \chi_{\nu_e}(z)$ for all z. But this follows by invoking the corollary to the previous proposition.