The Dirac operator
for graded affine Hecke algebras
Dan Ciubotaru
University of Utah
(joint work with D. Barbasch, P. Trapa)
Banff, July 2010

1

The graded affine Hecke algebra \mathbb{H}

Let $\Phi=\left(V_{0}, R, V_{0}^{\vee}, R^{\vee}\right)$ be a real reduced root system.
Assume $R \subset V_{0} \backslash\{0\}$ spans V_{0}. There is a perfect bilinear pairing
$(\cdot, \cdot): V_{0} \times V_{0}^{\vee} \rightarrow \mathbb{R}$, and a bijection $R \longrightarrow R^{\vee}, \alpha \mapsto \alpha^{\vee}$. Let
$W \subset G L\left(V_{0}^{\vee}\right)$ (or $\left.G L\left(V_{0}\right)\right)$ be the Weyl group, generated by
$\left\{s_{\alpha} \mid \alpha \in R\right\}$.
$R^{+} \subset R$, a positive system, and Π simple roots in $R^{+} . R^{\vee,+}$ are the positive coroots.

Fix a W-invariant inner product $\langle\cdot, \cdot\rangle$ on V_{0}^{\vee}. Then $W \subset \mathrm{O}\left(V_{0}^{\vee}\right)$.

Set $V=V_{0} \otimes_{\mathbb{R}} \mathbb{C}$, and $V^{\vee}=V_{0}^{\vee} \otimes_{\mathbb{R}} \mathbb{C}$.
Fix a W-invariant "parameter function" $c: R \rightarrow \mathbb{R}$, and set $c_{\alpha}=c(\alpha)$.
Definition (Lusztig). The graded affine Hecke algebra $\mathbb{H}=\mathbb{H}(\Phi, c)$ is the complex associative algebra with unit, $\mathbb{H}=\mathbb{C}[W] \otimes S\left(V^{\vee}\right)$ where $\mathbb{C}[W]$ and $S\left(V^{\vee}\right)$ have the usual algebra structure, and

$$
\begin{equation*}
\omega t_{s_{\alpha}}-t_{s_{\alpha}} s_{\alpha}(\omega)=c_{\alpha}(\alpha, \omega), \quad \alpha \in \Pi, \omega \in V^{\vee} \tag{1}
\end{equation*}
$$

The center $Z(\mathbb{H})=S\left(V^{\vee}\right)^{W}$. The central characters of irreducible \mathbb{H}-modules are parameterized by W-conjugacy classes in V.

If $\nu \in V$, let χ_{ν} be the central character.

The Casimir element

Definition. If $\left\{\omega_{i}: i=1, n\right\}$ and $\left\{\omega^{i}: i=1, n\right\}$ are dual bases of V_{0}^{\vee} with respect to \langle,$\rangle , define$

$$
\begin{equation*}
\Omega=\sum_{i=1}^{n} \omega_{i} \omega^{i} \in \mathbb{H} . \tag{2}
\end{equation*}
$$

Proposition.

1. The element Ω is well-defined independent of the choice of bases, and central in \mathbb{H}.
2. Let (π, X) is an irreducible \mathbb{H}-module with central character χ_{ν}. Then

$$
\pi(\Omega)=\langle\nu, \nu\rangle \operatorname{Id}_{X}
$$

Hermitian and unitary representations

The algebra \mathbb{H} has a natural conjugate linear anti-involution:

$$
\begin{align*}
& t_{w}^{*}=t_{w^{-1}}, \quad w \in W, \\
& \omega^{*}=-\omega+\sum_{\beta>0} c_{\beta}(\beta, \omega) t_{s_{\beta}}, \quad \omega \in V_{0}^{\vee} . \tag{3}
\end{align*}
$$

This is the right one for the correspondence with unitary p-adic group representations.
An \mathbb{H}-module (π, X) is Hermitian if there exists a Hermitian form $(,)_{X}$ such that:

$$
\begin{equation*}
(\pi(h) x, y)_{X}=\left(x, \pi\left(h^{*}\right) y\right)_{X}, \quad \text { for all } h \in \mathbb{H}, x, y \in X . \tag{4}
\end{equation*}
$$

If such a form is positive definite, X is unitary.
For every $\omega \in V_{0}^{\vee}$, define

$$
\begin{equation*}
\widetilde{\omega}=\omega-\frac{1}{2} \sum_{\beta>0} c_{\beta}(\beta, \omega) t_{s_{\beta}} \in \mathbb{H} . \tag{5}
\end{equation*}
$$

Then $\widetilde{\omega}^{*}=-\widetilde{\omega}$.
If (π, X) is Hermitian \mathbb{H}-module

$$
\begin{equation*}
(\pi(\widetilde{\omega}) x, \pi(\widetilde{\omega}) x)_{X}=\left(\pi\left(\widetilde{\omega}^{*}\right) \pi(\widetilde{\omega}) x, x\right)_{X}=-\left(\pi\left(\widetilde{\omega}^{2}\right) x, x\right)_{X} \tag{6}
\end{equation*}
$$

A necessary condition for a Hermitian representation X to be unitary is

$$
\begin{equation*}
\left(\pi\left(\widetilde{\omega}^{2}\right) x, x\right)_{X} \leq 0, \quad \text { for all } x \in X, \omega \in V_{0}^{\vee} \tag{7}
\end{equation*}
$$

Definition. Let $\left\{\omega_{i}\right\},\left\{\omega^{i}\right\}$ be dual bases of V_{0}^{\vee}. Define

$$
\begin{equation*}
\widetilde{\Omega}=\sum_{i=1}^{n} \widetilde{\omega}_{i} \widetilde{\omega}^{i} \in \mathbb{H} . \tag{8}
\end{equation*}
$$

The operator $\widetilde{\Omega}$ is independent of the bases chosen, and lies in \mathbb{H}^{W}
A Hermitian \mathbb{H}-module (π, X) with invariant form $(,)_{X}$ is unitary only if

$$
\begin{equation*}
(\pi(\widetilde{\Omega}) x, x)_{X} \leq 0, \quad \text { for all } x \in X \tag{9}
\end{equation*}
$$

Theorem.

$$
\begin{align*}
& \widetilde{\Omega}=\Omega-\Omega_{W}, \text { where } \\
& \Omega_{W}=\frac{1}{4} \sum_{\alpha>0, \beta>0} c_{\alpha} c_{\beta}\langle\alpha, \beta\rangle t_{s_{\alpha}} t_{s_{\beta}} \tag{10}
\end{align*}
$$

We have $\Omega_{W} \in \mathbb{C}[W]^{W}$, so Ω_{W} acts in an irreducible $\sigma \in \widehat{W}$ by a scalar $C(\sigma)$.
Corollary (Casimir inequality). Let (π, X) be a unitary irreducible \mathbb{H}-module with c.c. $\chi_{\nu}, \nu \in V$, and $\operatorname{Hom}_{W}[\sigma, X] \neq 0$. Then:

$$
\langle\nu, \nu\rangle \leq C(\sigma)
$$

The following is a consequence of the Casimir Inequality. For p-adic groups, this is known by other methods, e.g. [Casselman] or [Howe-Moore]. Assume $c \equiv 1$.
Corollary. A hermitian irreducible representation X with c.c. χ_{ν} $(\nu \in V)$ is unitary only if

$$
\langle\nu, \nu\rangle \leq\langle\rho, \rho\rangle
$$

When equality holds and the root system is simple, only the trivial and the Steinberg modules are unitary.

The Dirac operator

The Clifford algebra $C\left(V_{0}^{\vee}\right)$

Denote by $C\left(V_{0}^{\vee}\right)$ the Clifford algebra defined by V_{0}^{\vee} and \langle,$\rangle ;$ $C\left(V_{0}^{\vee}\right)$ is the associative algebra with unit generated by V_{0}^{\vee} with relations:

$$
\begin{equation*}
\omega^{2}=-\langle\omega, \omega\rangle, \quad \omega \omega^{\prime}+\omega^{\prime} \omega=-2\left\langle\omega, \omega^{\prime}\right\rangle . \tag{11}
\end{equation*}
$$

$\mathrm{O}\left(V_{0}^{\vee}\right)$ acts by algebra automorphisms on $C\left(V_{0}^{\vee}\right)$, and the action of $-1 \in \mathrm{O}\left(V_{0}^{\vee}\right)$ induces a grading

$$
C\left(V_{0}^{\vee}\right)=C\left(V_{0}^{\vee}\right)_{\text {even }}+C\left(V_{0}^{\vee}\right)_{\text {odd }} .
$$

There is an automorphism $\epsilon: \epsilon=+1$ on $C\left(V_{0}^{\vee}\right)_{\text {even }}$ and -1 on $C\left(V_{0}^{\vee}\right)_{\text {odd }}$;
let ${ }^{t}$ be the transpose antiautomorphism

$$
\omega^{t}=-\omega, \omega \in V_{0}^{\vee}, \quad(a b)^{t}=b^{t} a^{t}, a, b \in C\left(V_{0}^{\vee}\right)
$$

The Pin group is

$$
\begin{equation*}
\operatorname{Pin}\left(V_{0}^{\vee}\right)=\left\{a \in C\left(V_{0}^{\vee}\right) \mid \epsilon(a) V_{0}^{\vee} a^{-1} \subset V_{0}^{\vee}, a^{t}=a^{-1}\right\} \tag{12}
\end{equation*}
$$

One has:

$$
\begin{equation*}
1 \longrightarrow\{ \pm 1\} \longrightarrow \operatorname{Pin}\left(V_{0}^{\vee}\right) \xrightarrow{p} \mathrm{O}\left(V_{0}^{\vee}\right) \longrightarrow 1, \tag{13}
\end{equation*}
$$

where the projection p is given by $p(a)(\omega)=\epsilon(a) \omega a^{-1}$.

We call a simple $C\left(V_{0}^{\vee}\right)$ module (γ, S) of dimension $2^{\left[\operatorname{dim} V_{0}^{\vee} / 2\right]}$ a spin module for $C\left(V_{0}^{\vee}\right)$. When $\operatorname{dim} V_{0}^{\vee}$ is even, there is only one such module, but if $\operatorname{dim} V_{0}^{\vee}$ is odd, there are two choices.
(γ, S) restricts to an irreducible unitary representation of $\operatorname{Pin}\left(V_{0}^{\vee}\right)$. Definition (Dirac operator). Fix a spin module (γ, S) for $C\left(V_{0}^{\vee}\right)$, and let (π, X) be a \mathbb{H}-module. The Dirac operator for X (and S) is

$$
\begin{equation*}
D=\sum_{i=1}^{n} \pi\left(\widetilde{\omega}_{i}\right) \otimes \gamma\left(\omega^{i}\right) \in \operatorname{End}_{\mathbb{H} \otimes C\left(V_{0}^{\vee}\right)}(X \otimes S) . \tag{14}
\end{equation*}
$$

The spin cover \widetilde{W}

We have $W \subset \mathrm{O}\left(V_{0}^{\vee}\right)$. We define $\widetilde{W} \subset \operatorname{Pin}\left(V_{0}^{\vee}\right)$:

$$
\widetilde{W}:=p^{-1}\left(\mathrm{O}\left(V_{0}^{\vee}\right)\right) \subset \operatorname{Pin}\left(V_{0}^{\vee}\right), \text { where } p \text { is the projection. }
$$

\widetilde{W} is a central extension of W,

$$
1 \longrightarrow\{ \pm 1\} \longrightarrow \widetilde{W} \xrightarrow{p} W \longrightarrow 1
$$

Explicitly, $\widetilde{W} \subset C\left(V_{0}^{\vee}\right)$ is generated by

$$
z=-1, \quad \widetilde{s}_{\alpha}=\check{\alpha} /|\check{\alpha}|, \quad \alpha \in R^{+} .
$$

The analogue of the Coxeter presentation is:

$$
\widetilde{W}=\left\langle z, \widetilde{s}_{\alpha}, \alpha \in \Pi: z^{2}=1,\left(\widetilde{s}_{\alpha}\right)^{2}=z,\left(\widetilde{s}_{\alpha} \widetilde{s}_{\beta}\right)^{m(\alpha, \beta)}=1\right\rangle .
$$

Via restriction, we can regard a spin module (γ, S) for $C\left(V_{0}^{\vee}\right)$ as a unitary genuine irreducible \widetilde{W} representation.

We write τ for the diagonal embedding of $\mathbb{C}[\widetilde{W}]$ into $\mathbb{H} \otimes C\left(V_{0}^{\vee}\right)$ defined by linearly extending

$$
\begin{equation*}
\tau(\widetilde{w})=t_{p(\widetilde{w})} \otimes \widetilde{w} . \tag{17}
\end{equation*}
$$

The following is an analogue of Parthasarathy's formula. Theorem. (Barbasch-C.-Trapa)

$$
\begin{equation*}
D^{2}=-\Omega \otimes 1+\tau\left(\Omega_{\widetilde{W}}\right) . \tag{18}
\end{equation*}
$$

Here

$$
\Omega_{\widetilde{W}}=\sum_{\alpha>0, \beta>0,\langle\alpha, \beta\rangle \neq 0} c_{\alpha} c_{\beta} \frac{\langle\alpha, \beta\rangle}{|\cos (\alpha, \beta)|} \widetilde{s}_{\alpha} \widetilde{s}_{\beta}
$$

and acts by a scalar $C(\widetilde{\sigma})$ on any irreducible \widetilde{W}-module.

The Dirac inequality

Corollary. Assume that X is irreducible and unitary with central character χ_{ν} with $\nu \in V$. Let $(\widetilde{\sigma}, \widetilde{U})$ be an irreducible
representation of \widetilde{W} such that $\operatorname{Hom}_{\widetilde{W}}(\widetilde{U}, X \otimes S) \neq 0$. Then

$$
\begin{equation*}
\langle\nu, \nu\rangle \leq C(\widetilde{\sigma}) . \tag{19}
\end{equation*}
$$

To apply it, we need to know $C(\widetilde{\sigma})$ for $\widetilde{\sigma}$ a genuine \widetilde{W}-type.
Example: If $\widetilde{\sigma}=S$ (spin module), then $C(S)=\langle\rho, \rho\rangle$, when $c \equiv 1$.

A classification of genuine \widetilde{W}-types

Assume $c \equiv 1$. Let $\operatorname{Irr}_{\text {gen }}(\widetilde{W}) \subset \operatorname{Irr}(\widetilde{W})$ denote the genuine representations of \widetilde{W}.
Let \mathfrak{g} be the Lie algebra for Φ, with Cartan subalgebra $\mathfrak{h}=V$. Let G be the adjoint group.

Let $\mathcal{N}_{\text {sol }}$ be the set of nilpotent adjoint orbits in \mathfrak{g} whose centralizer in \mathfrak{g} is solvable. E.g.: type A these are orbits whose Jordan blocks are all distinct. In general, every distinguished orbit is in $\mathcal{N}_{\text {sol }}$.

If e is nilpotent, let $\nu_{e} \in V_{0}$ denote one half of a Jacobson-Morozov "middle" element. Let $A(e)$ denote the A-group, and $\operatorname{Irr}_{0} A(e)$ the set of irreducible representations of $A(e)$ of Springer type.
Theorem (C.). There is a surjective map

$$
\begin{equation*}
\Psi: \quad \operatorname{Irr}_{\text {gen }}(\widetilde{W}) \longrightarrow G \backslash \mathcal{N}_{\text {sol }} \tag{20}
\end{equation*}
$$

with the following properties:

1. If $\Psi(\widetilde{\sigma})=G \cdot e$, then

$$
\begin{equation*}
C(\widetilde{\sigma})=\left\langle\nu_{e}, \nu_{e}\right\rangle \tag{21}
\end{equation*}
$$

where $C(\widetilde{\sigma})$ is the scalar from the D^{2} formula, and ν_{e} is the middle element of the corresponding nilpotent orbit.
2. (a) If $e \in \mathcal{N}_{\text {sol }}$ and $\phi \in \operatorname{Irr}_{0}(A(e))$, and S is a spin module, then there exists $\widetilde{\sigma} \in \Psi^{-1}(G \cdot e)$ so that

$$
\operatorname{Hom}_{W}\left(\sigma_{e, \phi}, \widetilde{\sigma} \otimes S\right) \neq 0
$$

(b) If $\Psi(\widetilde{\sigma})=G \cdot e$, then there exists $\phi \in \operatorname{Irr}_{0}(A(e))$ and a spin module S such that

$$
\operatorname{Hom}_{W}\left(\sigma_{e, \phi}, \widetilde{\sigma} \otimes S\right) \neq 0
$$

3. If e is distinguished, 2) induces a unique bijection

$$
\Psi^{-1}(G \cdot e) / \widetilde{\sigma} \sim \tilde{\sigma} \otimes \operatorname{sgn} \longleftrightarrow \operatorname{Irr}_{0}(A(e))
$$

Here $\sigma_{e, \phi}$ is the Weyl group representation associated to (e, ϕ) by the Springer correspondence.

Corollary. Suppose (π, X) is an irreducible unitary \mathbb{H}-module with central character χ_{ν} with $\nu \in V$.
(a) Let $(\widetilde{\sigma}, \widetilde{U})$ be a representation of \widetilde{W} such that $\operatorname{Hom}_{\widetilde{W}}[\widetilde{U}, X \otimes S] \neq 0$. Write $\Psi(\widetilde{\sigma})=G \cdot e$. Then

$$
\begin{equation*}
\langle\nu, \nu\rangle \leq\left\langle\nu_{e}, \nu_{e}\right\rangle \tag{22}
\end{equation*}
$$

(b) Suppose $e \in \mathcal{N}_{\text {sol }}$ and $\phi \in \operatorname{Irr}_{0}(A(e))$ such that $\operatorname{Hom}_{W}\left[\sigma_{(e, \phi)}, X\right] \neq 0$. Then

$$
\begin{equation*}
\langle\nu, \nu\rangle \leq\left\langle\nu_{e}, \nu_{e}\right\rangle \tag{23}
\end{equation*}
$$

Some consequences

1) If \mathfrak{g} is simple, then there is a unique subregular orbit (lies in $\left.\mathcal{N}_{\text {sol }}\right)$. Let $\nu_{\text {sr }} \in V_{0}$ be one half a middle element for it.
Corollary. If X is irreducible unitary with central character χ_{ν} and X is not trivial or Steinberg, then

$$
\langle\nu, \nu\rangle \leq\left\langle\nu_{\mathrm{sr}}, \nu_{\mathrm{sr}}\right\rangle .
$$

In particular, for spherical modules, we get the best possible spectral gap for the trivial representation. (At $\nu=\nu_{\mathrm{sr}}$, there is a unitary spherical module: the minimal representation.)

Example: The spherical unitary dual of G_{2}.

2) The Kazhdan and Lusztig classification gives for every (e, ϕ), $\phi \in \operatorname{Irr}_{0} A(e)$, an irreducible tempered \mathbb{H}-module $X_{t}(e, \phi)$ such that:
(a) $X_{t}(e, \phi)$ has central character ν_{e};
(b) $\left.X_{t}(e, \phi)\right|_{W}$ contains the Springer representation $\sigma_{(e, \phi)}$ (with multiplicity one) - as the "lowest W-type".

Then inequality (23) implies:
Corollary. An irreducible \mathbb{H}-module X that has a lowest W-type
$\sigma_{(e, \phi)}$, for $e \in \mathcal{N}_{\text {sol }}$, is unitary if and only if X is tempered.

Dirac cohomology

Let (π, X) be an irreducible \mathbb{H} module with central character χ_{ν}.
The kernel ker D on $X \otimes S$ is invariant under \widetilde{W}. The D^{2} formula implies that if $\widetilde{\sigma}$ occurs in $\operatorname{ker} D$, then

$$
\langle\nu, \nu\rangle=C(\widetilde{\sigma}) .
$$

So the length of ν is determined by the \widetilde{W} structure of $\operatorname{ker}(D)$.

Define the Dirac cohomology of X :

$$
\begin{equation*}
H^{D}(X):=\operatorname{ker} D /(\operatorname{ker} D \cap \operatorname{im} D) \tag{24}
\end{equation*}
$$

For example, if X is unitary, $\operatorname{ker}(D) \cap \operatorname{im}(D)=0$, and $H^{D}(X)=\operatorname{ker}(D)$.
Proposition. Let (π, X) be an irreducible unitary \mathbb{H} module with central character χ_{ν} with $\nu \in V$. Suppose $(\widetilde{\sigma}, \widetilde{U})$ is an irreducible representation of \widetilde{W} such that $\operatorname{Hom}_{\widetilde{W}}(\widetilde{U}, X \otimes S) \neq 0$. Write
$\Psi(\widetilde{\sigma})=G \cdot e$. Assume further that $\langle\nu, \nu\rangle=\left\langle\nu_{e}, \nu_{e}\right\rangle$. Then

$$
\operatorname{Hom}_{\widetilde{W}}\left(\widetilde{U}, H^{D}(X)\right) \neq 0
$$

Proof. Let $x \otimes s$ be an element of the $\widetilde{\sigma}$ isotypic component of $X \otimes S$. By the formula for D^{2} and for $C(\widetilde{\sigma})$, we have

$$
\begin{equation*}
D^{2}(x \otimes s)=\left(-\langle\nu, \nu\rangle+\left\langle\nu_{e}, \nu_{e}\right\rangle\right)(x \otimes s)=0 \tag{25}
\end{equation*}
$$

Since X is unitary, ker $D \cap \operatorname{im} D=0$, and so (25) implies $x \otimes s \in \operatorname{ker}(D)=H^{D}(X)$.

Corollary. Let $(\widetilde{\sigma}, \widetilde{U})$ be a \widetilde{W}-type such that $\Psi(\widetilde{\sigma})=G \cdot e$. Then there exists $\phi \in \operatorname{Irr}_{0} A(e)$ such that

$$
\operatorname{Hom}_{\widetilde{W}}\left(\widetilde{U}, H^{D}\left(X_{t}(e, \phi)\right)\right) \neq 0
$$

Vogan's conjecture

The analogue of Vogan's conjecture from real groups (proved for real groups by Huang-Pandzić) is the following.

Theorem (Barbasch-C.-Trapa). Suppose (π, X) is an \mathbb{H} module with central character χ_{ν} with $\nu \in V$. Suppose that $H^{D}(X) \neq 0$. Let $(\widetilde{\sigma}, \widetilde{U})$ be a representation of \widetilde{W} such that $\operatorname{Hom}_{\widetilde{W}}\left(\widetilde{U}, H^{D}(X)\right) \neq 0$. Write $\Psi(\widetilde{\sigma})=G \cdot e$. Then

$$
\chi_{\nu}=\chi_{\nu_{e}}
$$

\square

Proof that the algebraic theorem implies Vogan's conjecture.
Proof. Let $\widetilde{x}=x \otimes s \in \operatorname{ker} D \backslash \mathrm{im} D$ be in the isotypic component of a \widetilde{W}-type $\widetilde{\sigma}$. Then:

$$
\begin{aligned}
& \left(z \otimes 1-\tau(\zeta(z)) \widetilde{x}=\left(\chi_{\nu}(z)-\widetilde{\sigma}(\zeta(z))\right) \widetilde{x} ;\right. \\
& (D a+a D) \widetilde{x}=D a \widetilde{x} .
\end{aligned}
$$

Therefore, $\chi_{\nu}(z)=\widetilde{\sigma}(\zeta(z))$ for all $z \in Z(\mathbb{H})$. Assume $\Psi(\widetilde{\sigma})=G \cdot e$. We need $\widetilde{\sigma}(\zeta(z))=\chi_{\nu_{e}}(z)$ for all z. But this follows by invoking the corollary to the previous proposition.

