W-Graphs, Nilpotent Orbits and Primitive Ideals

Birne Binegar

Department of Mathematics Oklahoma State University Stillwater, OK 74078, USA

Structure and Representations of Exceptional Groups, B.I.R.S., July 5, 2010

General Setting

G: a real reductive Lie group arising as the set of real points of a connected, linear, complex reductive group $G_{\mathbb{C}}$ defined over \mathbb{R}
$\widehat{G}_{a d m}=\{$ irr adm reps of $G\}$

Objective: an explicit partitioning of $\widehat{G}_{a d m}$ via algebraic invariants.

- $\widehat{G}_{a d m} \longrightarrow \widehat{G}_{a d m, \lambda}$, reps with fixed inf char λ
- $\widehat{G}_{a d m, \lambda} \longrightarrow$ Associated Variety / Nilpotent Orbits
- $\widehat{G}_{\text {adm, } \lambda, \mathcal{O}} \longrightarrow$ reps sharing same primitive ideal
\Longrightarrow a complete "phenomenology" of $\widehat{G}_{\text {adm }}$.

Bullet Point: Atlas software actually makes this program not only tractable but completely explicit.

Reduction to Inf Char ρ

Schur's lemma \rightarrow the center $Z(\mathfrak{g})$ of $U(\mathfrak{g})$ acts by scalars on $x \in \widehat{G}_{a d m}$
Harish-Chandra homomorphism $\phi_{H C}: Z(\mathfrak{g}) \longleftrightarrow S(\mathfrak{h})^{W}$
\rightarrow action of $Z(\mathfrak{g})$ on x can be characterized by an infinitesimal character $\lambda_{x} \in \mathfrak{h}^{*} \backslash W$
Let $\widehat{G}_{a d m, \lambda}:=\{$ irr. adm. reps with inf char $\lambda\}$

Then (Thm. Harish-Chandra)

$$
\left|\widehat{G}_{a d m, \lambda}\right|<\infty
$$

and

$$
\widehat{G}_{a d m}=\coprod_{\lambda \in \mathfrak{h}^{*} / W} \widehat{G}_{a d m, \lambda}
$$

Borho-Jantzen-Zuckerman translation principle : structure of $\widehat{G}_{a d m, \lambda}$ is consistent on entire translation family of $\widehat{G}_{a d m, \lambda}$

Largest, most comprehensive family: translation family of trivial rep
Assumption: λ is assumed to be regular and integral $\Longrightarrow \widehat{G}_{a d m, \lambda} \sim \widehat{G}_{a d m, \rho}$

Blocks and Cells of Harish-Chandra modules

Let

$$
H C_{\lambda}:=\left\{V_{K \text {-finite }} \mid V \in \widehat{G}_{\text {adm, }}\right\}
$$

Definition

Given two reps x, y in $H C_{\lambda}$, we say

$$
x \rightsquigarrow y \quad \Longleftrightarrow \quad \exists \text { f.d. rep } F \subset \bigoplus_{n=0}^{\infty} \mathfrak{g}^{\otimes^{n}} \quad \text { s.t. } \quad x \text { occurs as subquotient of } y \otimes F
$$

and

$$
x \sim y \text { if } x \rightsquigarrow y \text { and } y \rightsquigarrow x
$$

The equivalence classes for the relation \sim are called cells (of HC-modules).

Blocks and Cells of HC modules: W-graph formulation

Definition

Given $x, y \in H C_{\lambda}$, we write

$$
x \xrightarrow{m} y \quad \Longrightarrow \quad x \text { occurs with multiplicity } m \text { in } y \otimes \mathfrak{g}
$$

The relation " \rightarrow " gives $H C_{\lambda}$ the structure of a directed graph.
$" \rightsquigarrow " \longleftrightarrow$ transitive closure of " \rightarrow "
cells of reps \longleftrightarrow strongly connected components of graph blocks of reps \longleftrightarrow connected components of graph

The atlas software explicitly computes this digraph structure as a by-product of its computation of the $K L V$-polynomials.

W-graphs

For each $x, y \in H C_{\lambda}$ Atlas computes a KLV polynomial $P_{x, y}(q)$.

Definition

The W-graph of $H C_{\lambda}$ is the weighted digraph where:

- the vertices are the elements $x \in H C_{\lambda}$
- there is an edge $x \rightarrow y$ of multiplicity m between two vertices if

$$
\text { coefficient of } q^{(|x|-|y|-1) / 2} \text { in } P_{x, y}(q)=m \neq 0
$$

- there is assigned to each vertex x a subset $\tau(x)$ of the set of simple roots of \mathfrak{g}, the descent set of x.

Digression: Blocks of irreducible Harish-Chandra modules in Atlas

"Under the hood" of the atlas software is a parameterization of $\widehat{G}_{a d m, \rho}$ in terms of pairs

$$
(x, y) \in K \backslash G / B \times K^{\vee} \backslash G^{\vee} / B^{\vee}
$$

Definition

A block of representations is set of representations for which the pairs (x, y) range over $K \backslash G / B \times K^{\vee} \backslash G^{\vee} / B^{\vee}$ corresponding to fixed real forms of G and G^{\vee}.

Atlas's computations take place block by block.
(Atlas blocks are still the connected components of the W-graph of $H C_{\rho}$)

Example: $S p(4, R)$

$\widehat{G}_{\text {adm }, \rho}$ has 18 distinct irreducibles
$S p(4, \mathbb{C})^{\vee} \approx \operatorname{PSO}(5, \mathbb{C})$ has three real forms: $\operatorname{PSO}(5), \operatorname{PSO}(4,1), \operatorname{PSO}(3,2)$ $\operatorname{Sp}(4, \mathbb{R}$ has three blocks of representations.

W-graph for $\operatorname{Sp}(4, R)$

W-graph for $\operatorname{Sp}(4, R)$

Cells in the $S p(4, R) \times P S O(3,2)$ block of $S p(4, C)$

Blocks of $E_{8} \sim E_{8}^{\vee}$

$$
\begin{array}{l|lll}
& e_{8} & E_{8}\left(e_{7}, \text { su }(2)\right) & E_{8}(\mathbb{R}) \\
\hline e_{8} & 0 & 0 & 1 \\
E_{8}\left(e_{7}, \text { su }(2)\right) & 0 & 3150 & 73410 \\
E_{8}(\mathbb{R}) & 1 & 73410 & 453060
\end{array} \begin{aligned}
& 1+73410+453060=526,471 \text { admissible reps in } \widehat{G}_{\text {adm, } \rho} \text { for } E_{8}
\end{aligned}
$$

No corresponding Atlas \# \leftrightarrow rep-type dictionary for E_{8} (or general G for that matter)

Original Motivation: organize Atlas output in terms of humanly recognizable algebraic invariants

Primitive Ideals

Definition

Let V be an irreducible $U(\mathfrak{g})$-module.

$$
\operatorname{Ann}(V):=\{X \in U(\mathfrak{g}) \mid X v=0 \quad, \quad \forall v \in V\}
$$

is a two-sided ideal in $U(\mathfrak{g})$. It is called the primitive ideal in $U(\mathfrak{g})$ attached to V.
Fact: $\operatorname{Ann}(V)=\operatorname{Ann}\left(V^{\prime}\right) \quad \Longrightarrow \quad \inf$ ch $V=\inf$ ch V^{\prime}

Def: $\operatorname{Prim}(\mathfrak{g})_{\lambda}:=$ set of primitive ideals in $U(\mathfrak{g})$ with inf char λ
The correspondence

$$
H C_{\lambda} \rightarrow \operatorname{Prim}(\mathfrak{g})_{\lambda}: x \longmapsto \operatorname{Ann}(x)
$$

is often one-to-one, but generally speaking, several-to-one.
\Rightarrow a fairly fine grained-partitioning of $H C_{\lambda}$

Nilpotent Orbits

$U(\mathfrak{g})$ is naturally filtered according to

$$
U^{n}(\mathfrak{g})=\{X \in U(\mathfrak{g}) \mid X=\text { product of } \leq n \text { elements of } \mathfrak{g}\}
$$

The graded algebra

$$
\operatorname{gr}(U(\mathfrak{g}))=\bigoplus_{n=0}^{\infty} U^{n}(\mathfrak{g}) / U^{n-1}(\mathfrak{g})
$$

is well defined, and, in fact

$$
\operatorname{gr}(U(\mathfrak{g})) \approx S(\mathfrak{g})
$$

Definition

Let J be a primitive ideal and set

$$
\mathcal{V}(J)=\left\{\lambda \in \mathfrak{g}^{*} \mid \phi(\lambda)=0 \quad \forall \phi \in \operatorname{gr}(J)\right\}
$$

The affine variety $\mathcal{V}(J)$ is called the associated variety of J.

Basic Facts about $\mathcal{V}(J)$

Theorem

$\mathcal{V}(J)$ is the Zariski closure of a single nilpotent orbit in \mathfrak{g}^{*}

Definition

Let $x \in H C_{\lambda}$. The nilpotent orbit attached to x is the unique dense orbit \mathcal{O}_{x} in $\mathcal{V}(A n n(x))$.

Lemma

If x, y belong to the same cell of HC-modules then $\mathcal{O}_{x}=\mathcal{O}_{y}$.
(assoc variety doesn't change after tensoring with a finite-dim rep)
Different cells can share the same nilpotent orbit
\rightsquigarrow rather coarse invariant of HC-modules

Cell Representations

W acts naturally on the Grothendieck group $\mathbb{Z} H C_{\lambda}$ via the "coherent continuation representation"
The W-representation carried by a cell is encoded in its W-graph.
The action of a simple reflection on cell rep corresponds to

$$
T_{i x}= \begin{cases}-x & i \in \tau(x) \\ x+\sum_{y: i \in \tau(y)} m_{y \rightarrow x} y & i \notin \tau(x)\end{cases}
$$

The W-rep carried by a cell can be computed by evaluating

$$
\chi c\left(s_{i} \cdots s_{j}\right)=\operatorname{trace}\left(T_{i} \cdots T_{j}\right)
$$

on a representative $s_{i} \cdots s_{j}$ of each conjugacy class and then decomposing this character into a sum of irreducible characters (i.e., brute force is feasible)

Or via branching rules (Jackson-Noel) (spotting occurence of sign reps of Levi subgroups)

Cells \longrightarrow Nilpotent Orbits: Notation / Apparatus

```
g}=\operatorname{Lie}(\mp@subsup{G}{\mathbb{R}}{}\mp@subsup{)}{\mathbb{C}}{};\quad\mathfrak{h}, a CSA for g
\Delta=\Delta(\mathfrak{h},\mathfrak{g}), roots of \mathfrak{h}}\mathrm{ in }\mathfrak{g}
\Pi\subset\Delta}\mathrm{ , choice of simple roots in }\Delta\mathrm{ ;
G : adjoint group of g
\mathcal{N}
S \equiv{special nilpotent orbits }}\subset\mp@subsup{\mathcal{N}}{\mathfrak{g}}{
S \equiv{assoc varieties of prim ideals of reg int inf char}
or
S \equiv{orbits that map to Lusztig's special W-reps via Springer correspondence}
or
Let d:G\\mathcal{N}
S \equivimage(d)
d restricts to an order-reversing involution on S
```


Digression: Standard Levis and Richardson orbits

Definition

Let Γ be a subset of the simple roots. The corresponding standard Levi subalgebra l_{Γ} is the subalgebra

$$
\mathfrak{l}_{\Gamma}=\mathfrak{h}+\sum_{\alpha \in \mathbb{Z}\ulcorner } \mathfrak{g}_{\alpha}
$$

Definition

Let $\mathfrak{p}=\mathfrak{l}+\mathfrak{n}$ be the Levi decomposition of a parabolic subalgebra of \mathfrak{g} and let \mathcal{O} be nilpotent orbit in \mathfrak{l}.

$$
\operatorname{ind}_{\mathfrak{l}}^{\mathfrak{g}}(\mathcal{O}):=\text { unique dense orbit in } G \cdot(\mathcal{O}+\mathfrak{n})
$$

When $\mathcal{O}=\mathbf{0}_{\mathfrak{l}}$, ind ${ }_{\mathfrak{l}}^{\mathfrak{g}}(\mathcal{O})$ is called the Richardson orbit corresponding to \mathfrak{l}. When $\mathfrak{l} \sim_{G} \mathfrak{l}_{\Gamma},\lceil\subset \Pi$ we shall write shall write

$$
\mathcal{R}_{\Gamma}=\operatorname{ind}_{\mathrm{I}_{\Gamma}}^{\mathfrak{g}}\left(\mathbf{0}_{\mathbf{l}_{\Gamma}}\right)
$$

for the corresponding Richardson orbit.

The Spaltenstein-Vogan Criterion

Good:
Richardson orbits are always special orbits.
Orbits attached to $x \in \widehat{G}_{a d m, \rho}$ are always special orbits.
Richardson orbits are parameterized by subsets of simple roots (a possible point of contact with Atlas computations)
Unfortunate: special orbits are not always Richardson orbits

Theorem (Spaltenstein, Vogan)

Suppose C is a cell of $\mathrm{H}-\mathrm{C}$ modules with associated special nilpotent orbit \mathcal{O}_{C} and let $\Gamma \subseteq П$. Then

$$
\mathcal{O}_{C} \subset \overline{\mathcal{R}_{\Gamma}}=\overline{\operatorname{ind}_{\Gamma_{\Gamma}}^{\mathfrak{g}}\left(\mathbf{0}_{\left.\mathrm{I}_{\Gamma}\right)}\right.} \quad \Longleftrightarrow \quad \exists x \in C \text { s.t. } \Gamma \subset \tau(x)
$$

Upshot: τ-invariants of a cell C constrain which Richardson orbit closures can contain \mathcal{O}_{C}

Set

$$
\tau(C) \equiv\{\tau(x) \mid x \in C\}=\{\tau \text {-invariants of reps in } C\}
$$

Is it plausible that $\tau(C)$ identifies \mathcal{O}_{C} ?
Observation: \# distinct $\tau(C)=$ \# special nilpotent orbits

For classical \mathfrak{g} every special orbit is either Richardson or the intersection of two Richardsons. Not so for exceptional.

Fact: For \mathfrak{g} simple, every special orbit \mathcal{O} is determined by
(i) the Richardson orbits that contain \mathcal{O}
(ii) the Richardon orbits that contain $d(\mathcal{O})$

David's Insight: The tau invariants of a cell should tell us which Richardson orbits contain \mathcal{O}_{C} and which Richardson orbits contain $d\left(\mathcal{O}_{C}\right)$.

Special Apparatus: tau signatures

$\Psi=2^{\Pi}:=\{$ subsets of simple roots $\}$
Partial Order Ψ as follows:

$$
\Gamma \leq \Gamma^{\prime} \Longleftrightarrow \operatorname{ind}_{\Gamma_{\Gamma}}^{\mathfrak{g}}(\mathbf{0}) \subseteq \overline{i n d_{\Gamma_{\Gamma^{\prime}}}^{\mathfrak{g}}(\mathbf{0})}
$$

Remark: this ordering tends to reverse the natural ordering of Ψ by set inclusion.

$$
\text { trivial orbit }=\operatorname{ind}_{\mathfrak{g}}^{\mathfrak{g}}(\mathbf{0})=\mathcal{R}_{\Pi} \subset \cdots \cdots \subset \mathcal{R}_{\{ \}}=\operatorname{ind}_{\mathfrak{h}}^{\mathfrak{g}}\left(\mathbf{0}_{\mathfrak{h}}\right)=\text { principal orbit }
$$

Definition: The tau signature of an W-cell C is the pair

$$
\tau_{\operatorname{sig}}(C) \equiv\left(\min (\tau(C) \cap \Psi), \quad \min \left(\tau^{\vee}(C) \cap \Psi\right)\right)
$$

Here $\tau^{\vee}(C)$ is the set of Π-complements of tau invariants in C :

$$
\tau^{\vee}(C)=\{\Pi-\tau(x) \mid x \in C\}
$$

Tau signatures for special orbits

Definition: Let \mathcal{O} be a special orbit. The tau signature of \mathcal{O} is the pair $\left(\tau(\mathcal{O}), \tau^{\vee}(\mathcal{O})\right)$ where

$$
\begin{aligned}
\tau(\mathcal{O}) & =\min \left\{\Gamma \in \Psi \mid \mathcal{O} \subset \overline{\operatorname{ind}_{\Gamma_{\Gamma}}^{\mathfrak{g}}\left(\mathbf{0}_{\mathrm{I}_{\Gamma}}\right)}\right\} \\
\tau^{\vee}(\mathcal{O}) & =\min \left\{\Gamma \in \Psi \mid d(\mathcal{O}) \subset \overline{\operatorname{ind}_{\mathrm{I}_{\Gamma}}^{\mathfrak{g}}\left(\mathbf{0}_{\mathrm{I}_{\Gamma}}\right)}\right\}
\end{aligned}
$$

The point: we are using pairs of subsets of simple roots to tell us when a Richardson orbit closure can contain a special orbit (or its dual).

Corollary (to S-V criterion)

$$
\mathcal{O}_{C}=\mathcal{O} \quad \Longleftrightarrow \quad \tau_{\text {sig }}(C)=\tau_{\text {sig }}(\mathcal{O})
$$

Example: Special Orbits of $D_{5} \approx \mathfrak{s o}(5,5)_{C}$

Richardson Orbits of D_{5}

Tau Signatures of Special Orbits of D_{5}

Tau signatures for cells in the big block of $S O(5,5)$

- 365 representations with inf. char. ρ in big block
- 32 cells in the big block

Output of extract-cells

```
// Individual cells.
// cell #O:
0[0]: {}
// cell #1:
0[1]: {2} --> 1,2
1[3]: {1} --> 0
2[5]: {3} --> 0,3,4
3[13]: {5} --> 2
4[14]: {4} --> 2
    *
    *
// cell #29:
0[328]: {1,2,4,5} --> 2,3
1[340]: {2,3,4,5} --> 2
2[358]: {1,3,4,5} --> 0,1
3[364]: {1,2,3} --> 0
// cell #30:
O[353]: {1,2,3,4,5}
// cell #31:
O[357]: {1,2,3,4,5}
```

cell \#	tau signature
0	$\},\{1,2,3,4,5\}$
1	$\{1\},\{1,2,3,4\}$
2	$\{1\},\{2,3,4,5\}$
3	$\{1,3\},\{1,3,4,5\}$
$*$	$*$
$*$	$*$
$*$	$*$

Each of these coincides with the tau signature of a particular nilpotent orbit.

Cell-Orbit Correspondences for $\operatorname{SO}(5,5)$

More Generally:

Exceptional Groups: tables by Spaltenstein list induced orbits and Hasse diagrams.
Tau signatures of special orbits can be done by hand.

1. Use Spaltenstein's tables to figure out which special orbits are Richardson orbits and to identify the std Γ 's corresponding to the corresponding Levi subalgebra.
2. Place the Richardson orbits in the Hasse diagram of special orbits, and then figure out the Γ parameters of the minimal Richardson orbits that contain a given special orbit and the minimal Richardson orbits that contain its Spaltenstein dual
Even E_{8} can be done by hand.

Classical Groups:

Partition classification \longrightarrow closure relations
Just need to

- which partitions correspond to special orbits (easy recipes in Collingwood-McGovern)
- use dominance ordering of partitions to partial order special orbits
- use formulas in [C-M] to determine partitions corresponding to Richardson orbits for each $\Gamma \in \Psi$. Place these in the Hasse diagram of special orbits and at the same time partial order Ψ.
- Use the partial ordering of Ψ to ascribe tau signatures to cells (employing atlas data)
- match orbit tau sigs to cell tau sigs

The Structure of $\operatorname{Prim}(\mathfrak{g})_{\lambda}$

Standard modules and Irr HC-modules arise naturally in the study of $\widehat{G}_{\mathbb{R}, a d m}$
Verma and Irr HW modules much more convenient family for discussing primitive ideals.
Set
$\mathfrak{b}=\mathfrak{h}+\mathfrak{n}$: Borel subalgebra of $\mathfrak{g} \quad \rho=\frac{1}{2} \sum_{\alpha \in \Delta^{+}(\mathfrak{g}, \mathfrak{h})} \alpha$

Theorem

Let $\lambda \in \mathfrak{h}^{*}$ and let $M(\lambda)$ denote the Verma module of highest weight $\lambda-\rho$; i.e., the left $U(\mathfrak{g})$-module

$$
M(\lambda):=U(\mathfrak{g}) \otimes U(\mathfrak{b}) \mathbb{C}_{\lambda-\rho}
$$

Then
(i) The Verma module $M(\lambda)$ has a unique irreducible quotient module $L(\lambda)$ which is of highest weight $\lambda-\rho$.
(ii) Every irreducible highest weight module is isomorphic to some $L(\lambda)$.

Duflo's theorem

Theorem (Duflo)

For $\lambda \in \mathfrak{h}^{*}$ let

$$
L_{\lambda}=\text { unique irreducible quotient of } M(\lambda)
$$

Then

$$
\varphi: W \rightarrow \operatorname{Prim}(\mathfrak{g})_{\rho}: w \rightarrow \operatorname{Ann}\left(L_{w}\right)
$$

is a surjection.

For $w \in W$ set

$$
M_{w}=M_{-w \rho}
$$

Parameterizing $\operatorname{Prim}(\mathfrak{g})_{\rho}$ is tantamount to understanding the fiber of $\varphi: W \rightarrow \operatorname{Prim}(\mathfrak{g})_{\rho}$

Left Cells and Double Cells in W

Definition

Let \approx be the equivalence relation on W defined by

$$
w \approx w^{\prime} \Longleftrightarrow \mathcal{O}_{A n n\left(L_{w}\right)}=\mathcal{O}_{A n n\left(L_{w^{\prime}}\right)}
$$

The corresponding equivalence classes of elements of W are double cells in W.

Definition

Let \sim be the equivalence relation on W defined by

$$
w \sim w^{\prime} \quad \Longleftrightarrow \quad \operatorname{Ann}\left(L_{w}\right)=\operatorname{Ann}\left(L_{w^{\prime}}\right)
$$

The corresponding equivalence classes of elements of W are called left cells in W.

Two pictures of $\operatorname{Prim}(\mathfrak{g})_{\rho}$

HW-modules

W	$\left\{L_{w} \mid w \in W\right\}$	same inf char
\cup	\cup	
$\mathcal{C}: d b l$ cell	$\left\{L_{w} \mid w \in \mathcal{C}\right\}$	same nilpotent orbit
$\cup \cup \cup$ left cell	$\left\{L_{w} \mid w \in \ell\right\}$	same primitive ideal

HC-modules

$B:$ block of HC-modules	$\left\{\pi_{x} \mid x \in B\right\}$	same inf char
\cup	\cup	
C : cell of HC-modules	$\left\{\pi_{x} \mid x \in C\right\}$	same nilpotent orbit
\cup	\cup	
$?$	$\left\{\pi_{x} \mid x \in ?\right\}$	same primitive ideal

Connection with Weyl group reps

Let

$$
p_{w}(\mu):=\text { Goldie rank of } U(\mathfrak{g}) / \operatorname{Ann}\left(L_{w \mu}\right) \quad, \quad \mu \in \Lambda^{+}
$$

Theorem (Joseph)

p_{w} extends to a homogeneous harmonic polynomial on \mathfrak{h}^{*} and $\sigma_{w}=\mathbb{C}\left\langle W \cdot p_{w}\right\rangle$ is an irreducible representation of W.

Theorem (Joseph)

Fix a finite-dimensional representation σ of W. The $w \in W$ such $\sigma_{w} \approx \sigma$ comprise the double cell \mathcal{C}_{σ} in W; i.e.

$$
\sigma_{w} \approx \sigma_{w^{\prime}} \quad \Longrightarrow \quad \operatorname{Ann}\left(L_{w}\right) \text { and } \operatorname{Ann}\left(L_{w^{\prime}}\right) \text { share the same nilpotent orbit }
$$

Remark: The irr reps $\sigma \in \widehat{W}$ that arise in this fashion are exactly the special representations of W (when λ reg int)

Key results from theory of primitive ideals

Theorem (Barbasch-Vogan, Joseph)

Let $C \subset W$ be a double cell and let $\sigma \in \widehat{W}$ be the associated special W-rep. Then

$$
\#\left\{\operatorname{Ann}\left(L_{w}\right) \mid w \in C\right\}=\operatorname{dim} \sigma
$$

or, put another way,

$$
\#\left\{J \in \operatorname{Prim}(\mathfrak{g})_{\rho} \text { sharing same orbit } \mathcal{O}_{w}\right\}=\operatorname{dim} \sigma_{w}
$$

Connection with W-graphs : Tau invariants

$L_{w}:=L(-w \rho):$ simple HWM of highest weight $-w \rho-\rho$
$I_{w}:=\operatorname{Ann}\left(L_{w}\right)$

- $I_{w_{o}}$: unique max ideal (augmentation ideal, annihilator of triv rep)
- $I_{e}=$ unique min PI at inf char ρ
- $I_{s_{\alpha}}, \alpha \in \Pi$: "pen-minimal" ideals

Theorem

The primitive ideals $I_{s_{\alpha}}, \alpha \in \Pi$, are all distinct from each other and I_{e}. Any primitive ideal strictly containing l_{e} contains at least one of the $I_{s_{\alpha}}$.

Definition

The tau invariant of a primitive ideal $/$ containing l_{e} is

$$
\tau(I)=\left\{\alpha \in \Pi \mid I_{s_{\alpha}} \subseteq I\right\}
$$

Connection with W-graphs of HC-modules

Theorem (Vogan)
Let x be an element of a cell C of HC modules and let $\tau(x)$ be its descent set (from W-graph of C). Then

$$
\tau(x)=\text { tau-invariant of } \operatorname{Ann}(x)
$$

A partitioning of W-cells

Recall W-graph of cell: for each element $i \in C$ we attach

- a vertex $v[i]$
- a tau invariant $\tau[i]=$ tau invariant of $\operatorname{Ann}\left(\pi_{i}\right)$
- a list of edges with multiplicities $e[i]=\left[\left(j_{1}, m_{1}\right),\left(j_{2}, m_{d}\right), \ldots,\left(j_{k}, m_{k}\right)\right]$

τ_{0} subcells

Definition

We say two cell vertices x, y belong to the same τ_{0}-subcell and write

$$
x \sim_{\tau_{0}} y
$$

whenever

$$
\tau(x)=\tau(y)
$$

Obviously,

$$
C=\coprod_{[x]_{0} \in C / \sim \sim_{\tau_{0}}}[x]_{0}
$$

(Collecting together reps with common assoc variety and common τ-invariant)

A partitioning of cells, cont'd

τ_{1} subcells: Set $\tau_{1}(x)=\{\tau(y) \mid x \rightarrow y$ is an edge $\}$

$$
\begin{gathered}
x \sim_{\tau_{1}} y \Longleftrightarrow \quad \tau(x)=\tau(y) \text { and } \tau_{1}(x)=\tau_{1}(y) \\
C=\coprod_{[x]_{1} \in c / \sim \tau_{1}}[x]_{1}
\end{gathered}
$$

τ_{2} subcells: Set $\tau_{2}(x)=\left\{\tau_{1}(y) \mid x \rightarrow y\right.$ is an edge $\}$

$$
\begin{aligned}
x \sim_{\tau_{2}} y \quad \Longleftrightarrow \tau_{0}(x) & =\tau_{0}(y), \tau_{1}(x)=\tau_{1}(y), \tau_{2}(x)=\tau_{2}(y) \\
C & =\coprod_{[x]_{2} \in C / \sim_{\tau_{2}}}[x]_{2}
\end{aligned}
$$

$\tau_{\mathbf{i}}$ subcells: Set $\tau_{i}(x)=\left\{\tau_{i-1}(y) \mid x \rightarrow y\right.$ is an edge $\}$

$$
\begin{gathered}
x \sim_{\tau_{i}} y \Longleftrightarrow \tau_{0}(x)=\tau_{0}(y), \ldots, \tau_{i}(x)=\tau_{i}(y) \text { and } \\
C=\coprod_{[x] i \in C / \sim \tau_{i}}[x]_{i}
\end{gathered}
$$

Def. τ_{∞} subcells $:=$ final stable partitioning : $C=\coprod_{[x]_{\infty} \in C / \sim \infty}[x]_{\tau_{\infty}}$

Lemma

The τ_{∞} partitioning of a cell of HC -modules is compatible with the partitioning of the cell into subcells consisting of representations with the same primitive ideal:

$$
\operatorname{Ann}(x)=A n n(y) \quad \Longrightarrow \quad x \text { and } y \text { live in same } \tau_{\infty} \text {-subcell. }
$$

(follows from well-definedness of Translation Functor for primitive ideals)

Conjecture (Vogan (1979))

Suppose J, J^{\prime} are primitive ideals with the same infinitesimal character. Then

$$
\tau_{\infty}(J)=\tau_{\infty}\left(J^{\prime}\right) \quad \Longleftrightarrow \quad J=J^{\prime}
$$

Theorem (Vogan, Garfinkle)

Vogan's Conjecture is true for the classical Lie algebras of type A_{n}, B_{n} and C_{n}

Vogan's Conjecture and Exceptional Lie Algebras

Theorem

Let C be any cell of irr adm reps with reg int inf char, in any real form of any exceptional group G. Then the τ_{∞} partitioning of C coincides precisely with the partitioning of the cell into sets of irr HC modules sharing the same primitive ideal:

$$
x \sim_{\infty} y \quad \Longleftrightarrow \quad \operatorname{Ann}(x)=\operatorname{Ann}(y)
$$

Proof:

- \# P_{∞}-subcells in $C=\operatorname{dim}$ special W-rep attached to C (explicit computation)
- Primitive ideal theory: max \# prim ideals attached to $\mathcal{O}_{C}=\operatorname{dim}$ special W-rep attached to C
- Compatibility of τ-partitioning scheme with partitioning by primitive ideals

Thank you

Acknowledgements

Thanks also to

The Atlas for Lie Groups Team	
Jeffrey Adams	Alessandra Pantano
Dan Barbasch	Annegret Paul
B-	Patrick Polo
Bill Casselman	Siddhartha Sahi
Dan Ciubotaru	Susana Salamanca
Fokko du Cloux	John Stembridge
Scott Crofts	Peter Trapa
Tatiana Howard	Marc van Leeuwen
Steve Jackson	David Vogan
Monty McGovern	Wai Ling Yee
Alfred Noel	Gregg Zuckerman

and the National Science Foundation for support via the Atlas for Lie Groups and Representations FRG (DMS 0554278).

$F_{4}(\mathbb{R}) \times F_{4}(\mathbb{R})$ block

$\#$	$\|C\|$	\mathcal{O}_{C}	$\sigma_{\text {spec }}$	$\mathcal{P}_{\tau_{\infty}}$	W-rep
0	1	F_{4}	$\phi_{1,0}$	1^{1}	$\phi_{1,0}$
1	6	$F_{4}\left(a_{1}\right)$	$\phi_{4,1}$	$1^{2} 2^{2}$	$\phi_{4,1}+\phi_{2,4}^{\prime \prime}$
3	6	$F_{4}\left(a_{1}\right)$	$\phi_{4,1}$	$1^{2} 2^{2}$	$\phi_{4,1}+\phi_{2,4}^{\prime \prime}$
4	9	$F_{4}\left(a_{2}\right)$	$\phi_{9,2}$	1^{9}	$\phi_{9,2}$
5	9	$F_{4}\left(a_{2}\right)$	$\phi_{9,2}$	1^{9}	$\phi_{9,2}$
11	9	$F_{4}\left(a_{2}\right)$	$\phi_{9,2}$	1^{9}	$\phi_{9,2}$
12	8	C_{3}	$\phi_{8,3}^{\prime}$	1^{8}	$\phi_{8,3}^{\prime}$
2	8	B_{3}	$\phi_{8,3}^{\prime \prime}$	1^{8}	$\phi_{8,3}^{\prime \prime}$
6	8	B_{3}	$\phi_{8,3}^{\prime \prime}$	1^{8}	$\phi_{8,3}^{\prime \prime}$
7	8	B_{3}	$\phi_{8,3}^{\prime \prime}$	1^{8}	$\phi_{8,3}^{\prime \prime}$
8	8	B_{3}	$\phi_{8,3}^{\prime \prime}$	1^{8}	$\phi_{8,3}^{\prime \prime}$
9	57	$F_{4}\left(a_{3}\right)$	$\phi_{12,4}$	$2^{3} 3^{1} 5^{3} 6^{4} 9^{1}$	$\phi_{12,4}+\phi_{16,5}+2 \phi_{9,6}^{\prime \prime}+\phi_{6,6}^{\prime \prime}+\phi_{4,7}^{\prime \prime}+\phi_{1,12}^{\prime \prime}$
13	47	$F_{4}\left(a_{3}\right)$	$\phi_{12,4}$	$5^{4} 4^{4} 3^{3} 2^{1}$	$\phi_{12,4}+\phi_{16,5}+\phi_{9,6}^{\prime \prime}+\phi_{6,6}^{\prime}+\phi_{4,7}^{\prime \prime}$
14	72	$F_{4}\left(a_{3}\right)$	$\phi_{12,4}$	$4^{6} 6^{2} 9^{4}$	$\phi_{12,4}+2 \phi_{16,5}+\phi_{9,6}^{\prime}+\phi_{9,6}^{\prime \prime}+\phi_{6,6}^{\prime \prime}+\phi_{4,8}$
18	8	\tilde{A}_{2}	$\phi_{8,9}^{\prime}$	1^{8}	$\phi_{8,9}^{\prime \prime}$
10	8	A_{2}	$\phi_{8,9}^{\prime \prime}$	1^{8}	$\phi_{8,9}^{\prime \prime}$
15	8	A_{2}	$\phi_{8,9}^{\prime \prime}$	1^{8}	$\phi_{8,9}^{\prime \prime}$
16	8	A_{2}	$\phi_{8,9}^{\prime \prime}$	1^{8}	$\phi_{8,9}^{\prime \prime}$
21	8	A_{2}	$\phi_{8,9}^{\prime \prime}$	1^{8}	$\phi_{8,9}^{\prime \prime}$
17	9	$A_{1}+\tilde{A}_{1}$	$\phi_{9,10}$	1^{9}	$\phi_{9,10}$
19	9	$A_{1}+\tilde{A}_{1}$	ϕ_{9}		1^{9}

