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General Setting

G : a real reductive Lie group arising as the set of real points of a connected, linear,
complex reductive group GC defined over R

Ĝadm = {irr adm reps of G}

Objective: an explicit partitioning of Ĝadm via algebraic invariants.

Ĝadm −→ Ĝadm,λ , reps with fixed inf char λ

Ĝadm,λ −→ Associated Variety / Nilpotent Orbits

Ĝadm,λ,O −→ reps sharing same primitive ideal

=⇒ a complete “phenomenology” of Ĝadm.

Bullet Point: Atlas software actually makes this program not only tractable but
completely explicit.
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Reduction to Inf Char ρ

Schur’s lemma → the center Z (g) of U (g) acts by scalars on x ∈ Ĝadm

Harish-Chandra homomorphism φHC : Z (g)←→ S (h)W

→ action of Z (g) on x can be characterized by an infinitesimal character λx ∈ h∗\W

Let Ĝadm,λ := {irr. adm. reps with inf char λ}

Then (Thm. Harish-Chandra) ∣∣∣Ĝadm,λ

∣∣∣ <∞
and

Ĝadm =
∐

λ∈h∗/W

Ĝadm,λ

Borho-Jantzen-Zuckerman translation principle : structure of Ĝadm,λ is consistent on

entire translation family of Ĝadm,λ

Largest, most comprehensive family: translation family of trivial rep

Assumption: λ is assumed to be regular and integral =⇒ Ĝadm,λ ∼ Ĝadm,ρ
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Blocks and Cells of Harish-Chandra modules

Let
HCλ :=

{
VK -finite | V ∈ Ĝadm,λ

}
Definition

Given two reps x , y in HCλ, we say

x  y ⇐⇒ ∃ f.d. rep F ⊂
∞⊕
n=0

g⊗
n

s.t. x occurs as subquotient of y ⊗ F

and
x ∼ y if x  y and y  x

The equivalence classes for the relation ∼ are called cells (of HC-modules).
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Blocks and Cells of HC modules: W-graph formulation

Definition

Given x , y ∈ HCλ, we write

x m−−−−→ y =⇒ x occurs with multiplicity m in y ⊗ g

The relation “→” gives HCλ the structure of a directed graph.

“ ” ←→ transitive closure of “→ ”

cells of reps ←→ strongly connected components of graph

blocks of reps ←→ connected components of graph

The atlas software explicitly computes this digraph structure as a by-product of its
computation of the KLV -polynomials.
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W -graphs

For each x , y ∈ HCλ Atlas computes a KLV polynomial Px,y (q).

Definition

The W -graph of HCλ is the weighted digraph where:

the vertices are the elements x ∈ HCλ

there is an edge x → y of multiplicity m between two vertices if

coefficient of q(|x|−|y|−1)/2 in Px,y (q) = m 6= 0

there is assigned to each vertex x a subset τ (x) of the set of simple roots of g, the
descent set of x .
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Digression: Blocks of irreducible Harish-Chandra modules in Atlas

“Under the hood” of the atlas software is a parameterization of Ĝadm,ρ in terms of pairs

(x , y) ∈ K\G/B × K∨\G∨/B∨

Definition

A block of representations is set of representations for which the pairs (x , y) range over
K\G/B × K∨\G∨/B∨ corresponding to fixed real forms of G and G∨.

Atlas’s computations take place block by block.

(Atlas blocks are still the connected components of the W -graph of HCρ)
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Example: Sp(4,R)

Ĝadm,ρ has 18 distinct irreducibles

Sp(4,C)∨ ≈ PSO(5,C) has three real forms: PSO (5), PSO (4, 1), PSO (3, 2)

Sp(4,R has three blocks of representations.

PSO (5) PSO (4, 1) PSO (3, 2)
Sp (4,R) 1 5 12
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W-graph for Sp(4,R)
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W-graph for Sp(4,R)
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Cells in the Sp(4,R)× PSO(3, 2) block of Sp(4,C )

3{}

""EEEE
1{} 0{} 2{}

}}{{{{

6{2}

��

bbEEEE
<<yyyy
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��

ccGGGG
;;wwww

5{1}

aaCCCC
=={{{{

��
8{1}

OO

9{2}

OO

uukkkkkkkkk 7{1}

OO

11{1}

55kkkkkkkkk
10{1,2}

iiSSSSSSSS
OO 55llllllll

# (x,y) CSA Π τ Properties

0 (0, 6) T2 [i1, i1] {} non-hol DS
1 (1, 6) T2 [i1, i1] {} non-hol DS
2 (2, 6) T2 [ic, i1] {1} anti-hol DS
3 (3, 6) T2 [ic, i1] {1} hol DS
4 (4, 5) C× [r1,C+] {1} non-tempered, unitary, not HW
5 (5, 4) TR× [C+, r1] {2} non-tempered, unitary, LW
6 (6, 4) TR× [C+, r1] {2} non-tempered, unitary, HW
7 (7, 3) TR× [C−, i1] {1} non-unitary, LW
8 (8, 3) TR× [C−, i1] {1} non-unitary, HW
9 (9, 2) C× [i2,C−] {2} ???

10 (10, 0) (R×)2 [r2, r1] {1, 2} trivial rep
11 (10, 1) (R×)2 [r2, rn] {1} PS w/ LKTs [1,1],[-1,-1]
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Blocks of E8 ∼ E∨8

e8 E8 (e7, su (2)) E8 (R)
e8 0 0 1
E8 (e7, su (2)) 0 3150 73410
E8 (R) 1 73410 453060

1 + 73410 + 453060 = 526, 471 admissible reps in Ĝadm,ρ for E8

No corresponding Atlas #↔ rep-type dictionary for E8 (or general G for that matter)

Original Motivation: organize Atlas output in terms of humanly recognizable algebraic
invariants
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Primitive Ideals

Definition

Let V be an irreducible U (g)-module.

Ann(V ) := {X ∈ U(g) | Xv = 0 , ∀ v ∈ V }

is a two-sided ideal in U(g). It is called the primitive ideal in U(g) attached to V .

Fact: Ann(V ) = Ann(V ′) =⇒ inf ch V = inf ch V ′

Def: Prim (g)λ := set of primitive ideals in U (g) with inf char λ

The correspondence
HCλ → Prim (g)λ : x 7−→ Ann(x)

is often one-to-one, but generally speaking, several-to-one.

⇒ a fairly fine grained-partitioning of HCλ
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Nilpotent Orbits

U(g) is naturally filtered according to

Un(g) = {X ∈ U(g) | X = product of ≤ n elements of g}

The graded algebra

gr(U(g)) =
∞⊕
n=0

Un (g) /Un−1(g)

is well defined, and, in fact
gr (U (g)) ≈ S (g)

Definition

Let J be a primitive ideal and set

V(J) = {λ ∈ g∗ | φ(λ) = 0 ∀φ ∈ gr(J)}

The affine variety V (J) is called the associated variety of J.
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Basic Facts about V (J)

Theorem

V (J) is the Zariski closure of a single nilpotent orbit in g∗

Definition

Let x ∈ HCλ. The nilpotent orbit attached to x is the unique dense orbit Ox in
V (Ann(x)).

Lemma

If x , y belong to the same cell of HC-modules then Ox = Oy .

(assoc variety doesn’t change after tensoring with a finite-dim rep)

Different cells can share the same nilpotent orbit

 rather coarse invariant of HC-modules
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Cell Representations

W acts naturally on the Grothendieck group ZHCλ via the “coherent continuation
representation”

The W -representation carried by a cell is encoded in its W -graph.

The action of a simple reflection on cell rep corresponds to

Ti x =

{
−x i ∈ τ(x)
x +

∑
y :i∈τ(y) my→xy i /∈ τ(x)

The W -rep carried by a cell can be computed by evaluating

χC (si · · · sj) = trace (Ti · · ·Tj)

on a representative si · · · sj of each conjugacy class and then decomposing this character
into a sum of irreducible characters (i.e., brute force is feasible)

Or via branching rules (Jackson-Noel) (spotting occurence of sign reps of Levi subgroups)
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Cells −→ Nilpotent Orbits: Notation / Apparatus

g = Lie (GR)C; h, a CSA for g;
∆ = ∆ (h, g), roots of h in g;
Π ⊂ ∆, choice of simple roots in ∆;

G : adjoint group of g

Ng : nilpotent cone in g ∼ g∗

S ≡ {special nilpotent orbits} ⊂ Ng

S ≡ {assoc varieties of prim ideals of reg int inf char}
or

S ≡ {orbits that map to Lusztig’s special W-reps via Springer correspondence}
or

Let d : G\Ng → G\Ng : the Spaltenstein-Barbasch-Vogan duality map

S ≡ image(d)

d restricts to an order-reversing involution on S
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Digression: Standard Levis and Richardson orbits

Definition

Let Γ be a subset of the simple roots. The corresponding standard Levi subalgebra lΓ is
the subalgebra

lΓ = h +
∑
α∈ZΓ

gα

Definition

Let p = l + n be the Levi decomposition of a parabolic subalgebra of g and let O be
nilpotent orbit in l.

indg
l (O) := unique dense orbit in G · (O + n)

When O = 0l, indg
l (O) is called the Richardson orbit corresponding to l.

When l ∼G lΓ, Γ ⊂ Π we shall write shall write

RΓ = indg
lΓ

(0lΓ )

for the corresponding Richardson orbit.
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The Spaltenstein-Vogan Criterion

Good:

Richardson orbits are always special orbits.

Orbits attached to x ∈ Ĝadm,ρ are always special orbits.

Richardson orbits are parameterized by subsets of simple roots (a possible point of
contact with Atlas computations)

Unfortunate: special orbits are not always Richardson orbits

Theorem (Spaltenstein, Vogan)

Suppose C is a cell of H-C modules with associated special nilpotent orbit OC and let
Γ ⊆ Π. Then

OC ⊂ RΓ = indg
lΓ

(0lΓ ) ⇐⇒ ∃ x ∈ C s.t. Γ ⊂ τ(x)

Upshot: τ -invariants of a cell C constrain which Richardson orbit closures can contain
OC

Set
τ(C) ≡ {τ(x) | x ∈ C} = {τ -invariants of reps in C}

Is it plausible that τ(C) identifies OC ?

Observation: # distinct τ(C) = # special nilpotent orbits
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Using Richardson orbits to “frame” special orbits

For classical g every special orbit is either Richardson or the intersection of two
Richardsons. Not so for exceptional.

Fact: For g simple, every special orbit O is determined by

(i) the Richardson orbits that contain O
(ii) the Richardon orbits that contain d(O)

David’s Insight: The tau invariants of a cell should tell us which Richardson orbits
contain OC and which Richardson orbits contain d (OC ).
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Special Apparatus: tau signatures

Ψ = 2Π := { subsets of simple roots}
Partial Order Ψ as follows:

Γ ≤ Γ′ ⇐⇒ indg
lΓ

(0) ⊆ indg
lΓ′

(0)

Remark: this ordering tends to reverse the natural ordering of Ψ by set inclusion.

trivial orbit = indg
g (0) = RΠ ⊂ · · · · · · ⊂ R{} = indg

h (0h) = principal orbit

Definition: The tau signature of an W -cell C is the pair

τsig (C) ≡
(
min (τ(C) ∩Ψ) , min

(
τ∨(C) ∩Ψ

))
Here τ∨(C) is the set of Π-complements of tau invariants in C :

τ∨(C) = {Π− τ(x) | x ∈ C}
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Tau signatures for special orbits

Definition: Let O be a special orbit. The tau signature of O is the pair (τ (O) , τ∨ (O))
where

τ (O) = min
{

Γ ∈ Ψ | O ⊂ indg
lΓ

(0lΓ )
}

τ∨ (O) = min
{

Γ ∈ Ψ | d (O) ⊂ indg
lΓ

(0lΓ )
}

The point: we are using pairs of subsets of simple roots to tell us when a Richardson
orbit closure can contain a special orbit (or its dual).

Corollary (to S-V criterion)

OC = O ⇐⇒ τsig (C) = τsig (O)
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Example: Special Orbits of D5 ≈ so(5, 5)C

O[9,1] hh

vv

O[7,3]

rrr KKK44

**

O
[52]

LLL::

$$

O
[7,13]

sss dd

zz

O[5,3,1,1]

rrr

9999999 ii

uu

O
[42,12]
99

%%

O
[33,1]

O
[5,15]

�������
O

[32,22]

LLL
O

[32,14]

rrr KKK
O

[24,12]

LLL
O

[3,17]

sss
O

[22,16]

O
[110]
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Richardson Orbits of D5

O[9,1] = R{}
hh

vv

O[7,3] = R{1}

hhhhh VVVVV44

**

O
[52]

= R{1,3}

VVVVV::

$$

O
[7,13]

= R{4,5}

hhhhh dd

zz

O
[5,3,12]

= R{1,4,5}

hhhhh

MMMMMMMMMMM ii

uu

O
[42,12]

= R{1,2,4}
99

%%

O
[33,1]

= R{1,2,4,5} O
[5,15]

= R{3,4,5,}

qqqqqqqqqqq
O

[32,22]
= R{1,2,3}

VVVVV
O

[32,14]
= R{1,3,4,5}

hhhhh VVVVV
O

[24,12]
= R{1,2,3,4}

VVVVVVV
O

[3,17]
= R{2,3,4,5}

hhhhhhh
O

[22,16]

O
[110]

= R{1,2,3,4,5}
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Tau Signatures of Special Orbits of D5

O{};{1,2,3,4,5}
hh

vv

O{1};{1,2,3,4},{2,3,4,5}

ggggg VVVVV44

**

O{1,3};{1,2,3,4}

WWWWW::

$$

O{1};{2,3,4,5}

hhhhh dd

zz

O{1,4,5};{2,3,4,5}

ggggg

MMMMMMMMMMM ii

uu

O{1,2,4};{1,2,3}
88

&&

O{1,2,4,5};{1,2,4,5} O{1,4,5};{1,4,5}

qqqqqqqqqqq
O{1,2,4,5};{1,4,5}

WWWWW
O{1,3,4,5};{1,4,5}

ggggg VVVVV
O{1,2,3,4};{1,3}

WWWWW
O{2,3,4,5};{1}

hhhhh
O{1,2,3,4},{2,3,4,5};{1}

O{1,2,3,4,5};{}
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Tau signatures for cells in the big block of SO(5, 5)

• 365 representations with inf. char. ρ in big block
• 32 cells in the big block

Output of extract-cells

// Individual cells.

// cell #0:

0[0]: {}

// cell #1:

0[1]: {2} --> 1,2

1[3]: {1} --> 0

2[5]: {3} --> 0,3,4

3[13]: {5} --> 2

4[14]: {4} --> 2

*

*

*

// cell #29:

0[328]: {1,2,4,5} --> 2,3

1[340]: {2,3,4,5} --> 2

2[358]: {1,3,4,5} --> 0,1

3[364]: {1,2,3} --> 0

// cell #30:

0[353]: {1,2,3,4,5}

// cell #31:

0[357]: {1,2,3,4,5}
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cell # tau signature

0 {} , {1,2,3,4,5}

1 {1} , {1,2,3,4}

2 {1} , {2,3,4,5}

3 {1,3} , {1,3,4,5}

* *

* *

* *

28 {2,3,4,5} , {1}

29 {2,3,4,5} , {1}

30 {1,2,3,4,5} , {}

31 {1,2,3,4,5} , {}

Each of these coincides with the tau signature of a particular nilpotent orbit.
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Cell-Orbit Correspondences for SO(5, 5)

O[9,1]

O[7,3]

rrr KKK
O

[52]
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O
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ttt
O
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8888888
O

[42,12]
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O
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�������
O
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sss JJJ
O

[24,12]

KKK
O

[3,17]

ttt
O

[22,16]

O
[110]

#0

#1

oooooo
OOOOOO

#2, 5

OOOOO #3, 4

ooooo

#6, 7, 15, 17

ooooo

@@@@@@@@@

#8, 9

#10, 12, 13 #11, 21

~~~~~~~~~
#16, 18

OOOOO

#14, 19, 20, 22

ooooo OOOOO

#24, 25

OOOOO #23, 28, 29

ooooo

#26, 27

#30, 31
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More Generally:

Exceptional Groups: tables by Spaltenstein list induced orbits and Hasse diagrams.

Tau signatures of special orbits can be done by hand.

1. Use Spaltenstein’s tables to figure out which special orbits are Richardson orbits and
to identify the std Γ’s corresponding to the corresponding Levi subalgebra.

2. Place the Richardson orbits in the Hasse diagram of special orbits, and then figure out
the Γ parameters of the minimal Richardson orbits that contain a given special orbit and
the minimal Richardson orbits that contain its Spaltenstein dual

Even E8 can be done by hand.

Classical Groups:

Partition classification −→ closure relations

Just need to

which partitions correspond to special orbits (easy recipes in Collingwood-McGovern)

use dominance ordering of partitions to partial order special orbits

use formulas in [C-M] to determine partitions corresponding to Richardson orbits for
each Γ ∈ Ψ. Place these in the Hasse diagram of special orbits and at the same time
partial order Ψ.

Use the partial ordering of Ψ to ascribe tau signatures to cells (employing atlas

data)

match orbit tau sigs to cell tau sigs
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The Structure of Prim(g)λ

Standard modules and Irr HC-modules arise naturally in the study of ĜR,adm

Verma and Irr HW modules much more convenient family for discussing primitive ideals.

Set

b = h + n : Borel subalgebra of g ρ = 1
2

∑
α∈∆+(g,h) α

Theorem

Let λ ∈ h∗ and let M (λ) denote the Verma module of highest weight λ− ρ; i.e., the left
U (g)-module

M(λ) := U (g)⊗U(b) Cλ−ρ
Then
(i) The Verma module M (λ) has a unique irreducible quotient module L (λ) which is of
highest weight λ− ρ.
(ii) Every irreducible highest weight module is isomorphic to some L(λ).

Birne Binegar (Oklahoma State University) W -Graphs, Nilpotent Orbits and Primitive Ideals
Structure and Representations of Exceptional Groups, B.I.R.S., July 5, 2010 30

/ 45



Duflo’s theorem

Theorem (Duflo)

For λ ∈ h∗ let
Lλ = unique irreducible quotient of M(λ)

Then
ϕ : W → Prim (g)ρ : w → Ann (Lw )

is a surjection.

For w ∈W set
Mw = M−wρ

Parameterizing Prim (g)ρ is tantamount to understanding the fiber of ϕ : W → Prim (g)ρ
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Left Cells and Double Cells in W

Definition

Let ≈ be the equivalence relation on W defined by

w ≈ w ′ ⇐⇒ OAnn(Lw ) = OAnn(Lw′ )

The corresponding equivalence classes of elements of W are double cells in W .

Definition

Let ∼ be the equivalence relation on W defined by

w ∼ w ′ ⇐⇒ Ann(Lw ) = Ann(Lw′)

The corresponding equivalence classes of elements of W are called left cells in W .
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Two pictures of Prim(g)ρ

HW-modules

W {Lw | w ∈ W } same inf char
∪ ∪

C : dbl cell {Lw | w ∈ C} same nilpotent orbit
∪ ∪

` : left cell {Lw | w ∈ `} same primitive ideal

HC-modules

B : block of HC-modules {πx | x ∈ B} same inf char
∪ ∪

C : cell of HC-modules {πx | x ∈ C} same nilpotent orbit
∪ ∪
? {πx | x ∈?} same primitive ideal
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Connection with Weyl group reps

Let

pw (µ) := Goldie rank of U (g) /Ann (Lwµ) , µ ∈ Λ+

Theorem (Joseph)

pw extends to a homogeneous harmonic polynomial on h∗ and σw = C 〈W · pw 〉 is an
irreducible representation of W.

Theorem (Joseph)

Fix a finite-dimensional representation σ of W . The w ∈W such σw ≈ σ comprise the
double cell Cσ in W ; i.e.

σw ≈ σw′ =⇒ Ann (Lw ) and Ann (Lw′) share the same nilpotent orbit

Remark: The irr reps σ ∈ Ŵ that arise in this fashion are exactly the special
representations of W (when λ reg int)
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Key results from theory of primitive ideals

U(g) ⊃ Ann(Lw )
gr

//

pw

''OOOOOOOOOOO
Ow ⊂ Ng

Springer
yyssssssssss

σw ∈ Ŵ

Theorem (Barbasch-Vogan, Joseph)

Let C ⊂W be a double cell and let σ ∈ Ŵ be the associated special W-rep. Then

# {Ann(Lw ) | w ∈ C} = dimσ

or, put another way,

#
{

J ∈ Prim (g)ρ sharing same orbit Ow

}
= dimσw
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Connection with W-graphs : Tau invariants

Lw := L(−wρ) : simple HWM of highest weight −wρ− ρ
Iw := Ann (Lw )

Iwo : unique max ideal (augmentation ideal, annihilator of triv rep)

Ie = unique min PI at inf char ρ

Isα , α ∈ Π : “pen-minimal” ideals

Theorem

The primitive ideals Isα , α ∈ Π, are all distinct from each other and Ie . Any primitive
ideal strictly containing Ie contains at least one of the Isα .

Definition

The tau invariant of a primitive ideal I containing Ie is

τ(I ) = {α ∈ Π | Isα ⊆ I}
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Connection with W-graphs of HC-modules

Theorem (Vogan)

Let x be an element of a cell C of HC modules and let τ(x) be its descent set (from
W -graph of C). Then

τ(x) = tau-invariant of Ann(x)
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A partitioning of W -cells

Recall W -graph of cell: for each element i ∈ C we attach

a vertex v [i ]

a tau invariant τ [i ] = tau invariant of Ann (πi )

a list of edges with multiplicities e [i ] = [(j1,m1) , (j2,md) , . . . , (jk ,mk)]

j1, τ(j1)

gg 77

oo //

i, τ(i)

m1

OO

m2

yyrrrrrr m3

%%LLLLLL

j2, τ(j2)oo

zz ''

j3, τ(j3)

ww $$

//
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τ0 subcells

Definition

We say two cell vertices x , y belong to the same τ0-subcell and write

x ∼τ0 y

whenever
τ(x) = τ(y)

Obviously,

C =
∐

[x]0∈C/∼τ0

[x ]0

(Collecting together reps with common assoc variety and common τ -invariant)
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A partitioning of cells, cont’d

τ1 subcells: Set τ1(x) = {τ(y) | x → y is an edge}

x ∼τ1 y ⇐⇒ τ(x) = τ(y) and τ1(x) = τ1(y)

C =
∐

[x]1∈C/∼τ1

[x ]1

τ2 subcells: Set τ2(x) = {τ1(y) | x → y is an edge}

x ∼τ2 y ⇐⇒ τ0(x) = τ0(y), τ1(x) = τ1(y), τ2(x) = τ2(y)

C =
∐

[x]2∈C/∼τ2

[x ]2

...

τi subcells: Set τi (x) = {τi−1(y) | x → y is an edge}

x ∼τi y ⇐⇒ τ0(x) = τ0(y), . . . , τi (x) = τi (y) and

C =
∐

[x]i∈C/∼τi

[x ]i
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Def. τ∞ subcells := final stable partitioning : C =
∐

[x]∞∈C/∼∞

[x ]τ∞

Lemma

The τ∞ partitioning of a cell of HC-modules is compatible with the partitioning of the
cell into subcells consisting of representations with the same primitive ideal:

Ann(x) = Ann(y) =⇒ x and y live in same τ∞-subcell.

(follows from well-definedness of Translation Functor for primitive ideals)

Conjecture (Vogan (1979))

Suppose J, J ′ are primitive ideals with the same infinitesimal character. Then

τ∞ (J) = τ∞
(
J ′
)

⇐⇒ J = J ′

Theorem (Vogan, Garfinkle)

Vogan’s Conjecture is true for the classical Lie algebras of type An , Bn and Cn
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Vogan’s Conjecture and Exceptional Lie Algebras

Theorem

Let C be any cell of irr adm reps with reg int inf char, in any real form of any exceptional
group G. Then the τ∞ partitioning of C coincides precisely with the partitioning of the
cell into sets of irr HC modules sharing the same primitive ideal:

x ∼∞ y ⇐⇒ Ann(x) = Ann(y)

Proof:

# P∞ -subcells in C = dim special W -rep attached to C (explicit computation)

Primitive ideal theory: max # prim ideals attached to OC = dim special W -rep
attached to C

Compatibility of τ -partitioning scheme with partitioning by primitive ideals
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Thank you
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F4 (R)× F4 (R) block

# |C | OC σspec Pτ∞ W -rep
0 1 F4 φ1,0 11 φ1,0

1 6 F4(a1) φ4,1 1222 φ4,1 + φ′′2,4
3 6 F4(a1) φ4,1 1222 φ4,1 + φ′′2,4
4 9 F4(a2) φ9,2 19 φ9,2

5 9 F4(a2) φ9,2 19 φ9,2

11 9 F4(a2) φ9,2 19 φ9,2

12 8 C3 φ′8,3 18 φ′8,3
2 8 B3 φ′′8,3 18 φ′′8,3
6 8 B3 φ′′8,3 18 φ′′8,3
7 8 B3 φ′′8,3 18 φ′′8,3
8 8 B3 φ′′8,3 18 φ′′8,3
9 57 F4(a3) φ12,4 2331536491 φ12,4 + φ16,5 + 2φ′′9,6 + φ′′6,6 + φ′′4,7 + φ′′1,12

13 47 F4(a3) φ12,4 54443321 φ12,4 + φ16,5 + φ′′9,6 + φ′6,6 + φ′′4,7
14 72 F4(a3) φ12,4 466294 φ12,4 + 2φ16,5 + φ′9,6 + φ′′9,6 + φ′′6,6 + φ4,8

18 8 Ã2 φ′8,9 18 φ′8,9
10 8 A2 φ′′8,9 18 φ′′8,9
15 8 A2 φ′′8,9 18 φ′′8,9
16 8 A2 φ′′8,9 18 φ′′8,9
21 8 A2 φ′′8,9 18 φ′′8,9
17 9 A1 + Ã1 φ9,10 19 φ9,10

19 9 A1 + Ã1 φ9,10 19 φ9,10

20 9 A1 + Ã1 φ9,10 19 φ9,10

22 6 Ã1 φ4,13 1222 φ4,13 + φ′′2,16

23 6 Ã1 φ4,13 1222 φ4,13 + φ′′2,16

24 1 0 φ1,24 11 φ1,24
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