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Feedback Control for Problems with Intermediate
Points

It is widely known that an optimal control in a feedback form for
linear-quadratic problems can be found by using the matrix
differential Riccati equation. The latter allow us to avoid solving
boundary value problems.
In the case of singular control problems, non-standard operator
Riccati equations arise. Different classes of such equations
have been considered by S.L. Campbell, J.D. Cobb, L. Pandolfi,
G.A. Kurina, D.J. Bender, A.J. Laub, P. Kunkel, V. Mehrmann,
R. März.
The recent results on feedback solutions of optimal control
problems with DAE constraints are contained in
[1] G.A. Kurina, R. März. SIAM J. Control Optim. 2007. Vol. 46.
No.4. P.1277-1298.



Finite dimensional case

We consider the non-standard quadratic cost functional

J(u,y) =
1
2

N+1

∑
j=1

〈
y(t j)−ξ j,Fj(y(t j)−ξ j)

〉
+

+
1
2

T∫

0

〈(
y(t)
u(t)

)
,

(
W (t) S(t)
S(t)′ R(t)

)(
y(t)
u(t)

)〉
dt (1)

to be minimized with respect to trajectories of the system

d(Ex(t))
dt

= A(t)x(t)+B(t)u(t)+ f (t), Ex(0) = x0
, (2)

y(t) = C(t)x(t). (3)

The prime denotes the transposition.



Finite dimensional case

We will assume that t j are fixed, Fj,W (t),R(t) are symmetric,
R(t) > 0, admissible controls u(·) are piecewise continuous
functions on [0,T ] ensuring the solvability of a state equation
with given conditions for the state variable.



Finite dimensional case

Theorem 1. Let the operator–function K(·) be a solution of the
problem

E ′ dK(t)
dt

= −K(t)′A(t)−A(t)′K(t)+

+(C(t)′S(t)+K(t)′B(t))R(t)−1(S(t)′C(t)+B(t)′K(t))−

−C′(t)W (t)C(t), t 6= t j, (4)

E ′(K(t j −0)−K(t j +0)) = C′(t)FjC(t), j = 1, . . . ,N, (5)

E ′K(T ) = C′(T )FN+1C(T ), (6)

the function ϕ(·) be a solution of the problem

E ′ dϕ(t)
dt

= −(A(t)−B(t)R(t)−1(B(t)′K(t)+S(t)′C(t)))′ϕ(t)−

−K(t)′ f (t), t 6= t j, (7)

E ′(ϕ(t j +0)−ϕ(t j −0)) = C′(t j)Fjξ j, j = 1, . . . ,N, (8)

E ′ϕ(T ) = −C′(T )FN+1ξN+1. (9)



Finite dimensional case

Let x∗(·) be a solution of the initial value problem

d(Ex(t))
dt

= (A(t)−B(t)R(t)−1((S(t)′C(t)+B(t)′K(t)))x(t)−

−B(t)R(t)−1B(t)′ϕ(t)+ f (t), Ex(0) = x0
, (10)

y∗ = Cx∗. (11)

Then

u∗(t) = −R(t)−1((S(t)′C(t)+B(t)′K(t))x∗(t)+B(t)′ϕ(t)) (12)

is an optimal control for the problem (1)–(3)



Finite dimensional case

and the minimal value of the functional (1) is

J(u∗,y∗) =
1
2

N+1

∑
j=1

〈
ξ j,Fjξ j

〉
+

+

〈
x0

,ϕ(0)+
1
2

K(0)′Ẽ−1x0
〉

+

+
1
2

T∫

0

〈
ϕ(t),2 f (t)−B(t)R(t)−1B(t)′ϕ(t)

〉
dt. (13)

Coefficients in the problem condition are continuous however
an optimal control is discontinuous in general case.



We use the following notations. Ẽ−1 is the inverse operator to
the operator

(I −Q)E(I −P) : ImE ′ → ImE. (14)

Q is the orthogonal projector onto KerE ′ corresponding to the
decomposition

X = KerE ′⊕ ImE, (15)

P is the orthogonal projector onto KerE corresponding to the
decomposition

X = KerE ⊕ ImE ′
, (16)



Infinite dimensional case

The last theorem is generalized for the case of Hilbert space,
when the operator E is normally solvable, i.e., ImE is a closed
set, and A(t) = A is unbounded linear operator, acting from
D(A) ⊂ X into X , D(A) = X (the bar denotes here the closure).
Let Fj = E∗G jE, j = 1, . . . ,N +1, where the operators G j are
self–adjoint, C(t) = I, the operators Fj ( j = 1, . . . ,N +1), W (t)

and R(t) are self-adjoint, moreover
[

W (t) S(t)
S(t)∗ R(t)

]
≥ 0, R(t) is

positive and has a bounded inverse for every t ∈ [0,T ]. The
superscript ∗ denotes here the adjoint operator, and the
argument t is usually dropped for sake of brevity almost
everywhere.



Infinite dimensional case

Theorem 2 (with A. Favini). Let K(t) ∈ L(X), t ∈ [0,T ], be a
solution of the problem

〈E∗ dK
dt y,z〉 = −〈Ay,Kz〉−〈Ky,Az〉+ 〈R−1(S∗ +B∗K)y,(S∗ +B∗K)z〉−

−〈Wy,z〉, t 6= t j, y,z ∈ D(A),
(17)

E∗(K(t j −0)−K(t j +0)) = Fj, j = 1, . . . ,N, (18)

E∗K(T ) = FN+1, (19)



Infinite dimensional case

ϕ(t) ∈ X , t ∈ [0,T ], be a solution of the problem

〈E∗ dϕ
dt

,y〉 = −〈ϕ,(A−BR−1(B∗K +S∗))y〉−〈K∗ f (t),y〉,
(20)

t 6= t j, y ∈ D(A),

E∗(ϕ(t j +0)−ϕ(t j −0)) = Fjξ j, j = 1, . . . ,N, (21)

E∗ϕ(T ) = −FN+1ξN+1. (22)

Let x∗(·)(x∗(t) ∈ D(A)) be a solution of the initial value problem

d(Ex)
dt

= Ax−BR−1((S∗+B∗K)x+B∗ϕ)+ f (t), Ex(0) = x0
, (23)

and
u∗ = −R−1((S∗ +B∗K)x∗ +B∗ϕ). (24)



Infinite dimensional case

Then u∗(·) is an optimal control for the considered problem and
the minimal value of the performance index is

J(u∗,x∗) =

=
1
2

N+1

∑
j=1

〈ξ j,Fjξ j〉+
1
2
〈Ẽ−1(I −Q)x0

,K(0)∗x0〉+Re〈x0
,ϕ(0)〉+

+
∫ T

0

(
Re〈 f (t),ϕ(t)〉−

1
2
〈ϕ(t),B(t)R−1(t)B(t)∗ϕ(t)〉

)
dt.

(25)



Asymptotic Solution

Linear-quadratic problems with differential-algebraic
constraints and with intermediate points and a small
parameter in a performance index (joint work with
post-graduate student Smirnova E.V.)



Asymptotic Solution

Linear-quadratic problems with differential-algebraic
constraints and with intermediate points and a small
parameter in a performance index (joint work with
post-graduate student Smirnova E.V.)

Singularly perturbed problems for discontinuous systems
(joint work with post-graduate student Hoai Thi Nguen)



Asymptotic Solution

At first, we will construct asymptotic expansions of solutions by
substituting postulated asymptotic expansions into the problem
conditions and then defining a series of optimal control
problems in order to find the expansions terms. This method
has been called the ”direct scheme”.
The applications of the direct scheme and the survey of the
publications, devoted to optimal control problems with a small
parameter, are presented in [2].

[2] M. G. Dmitriev and G. A. Kurina, ”Singular perturbations in
control problems”, Avtomatika i Telemehanika, no. 1, pp. 3-51,
2006 (in Russian).



Asymptotic Solution

The estimates are obtained for the proximity of the
asymptotic approximate solutions to the exact one.
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corresponding matrix differential Riccati equation with
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Asymptotic Solution

The estimates are obtained for the proximity of the
asymptotic approximate solutions to the exact one.

The nice property is proved, namely, the values of the
minimized functional do not increase when higher-order
approximations to the optimal control are used.

The asymptotic expansion of the optimal feedback control
is constructed for singularly perturbed problems with
discontinuous coefficients, using the asymptotics of a
corresponding matrix differential Riccati equation with
discontinuous coefficients.

The numerical examples are given in order to illustrate the
proposed methods.



Problem Formulation

We consider a linear-quadratic optimal control problem Pε of the
form

Jε(u,x) =
1
2

〈
x(T )−ξN+1,E

′GN+1E(x(T )−ξN+1)
〉
+

+
ε
2

N

∑
j=1

〈
x(t j)−ξ j,E

′G jE(x(t j)−ξ j)
〉
+

+
1
2

T∫

0

〈(
x(t)
u(t)

)
,

(
W (t) S(t)
S(t)′ R(t)

)(
x(t)
u(t)

)〉
dt → min

u
, (26)

d(Ex(t))
dt

= A(t)x(t)+B(t)u(t)+ f (t), Ex(0) = x0
. (27)

Here ε ≥ 0 is a small parameter.



Problem Formulation

We will assume that



Problem Formulation

We will assume that

admissible controls u(·) in the perturbed problem are
piecewise continuous functions ensuring the solvability of a
state equation with a given condition,
trajectories x(·) of a state equation are piecewise
continuous functions satisfying the state equation almost
everywhere such that Ex(·) are continuous,



Problem Formulation

We will assume that

admissible controls u(·) in the perturbed problem are
piecewise continuous functions ensuring the solvability of a
state equation with a given condition,
trajectories x(·) of a state equation are piecewise
continuous functions satisfying the state equation almost
everywhere such that Ex(·) are continuous,

the operator
QA(t)P : KerE → KerE ′ (28)

is invertible and
(

PW (t)P PS(t)
S(t)′P R(t)

)
> 0, t ∈ [0,T ]. (29)



Formalism of Asymptotic Expansions Construction

We will seek a solution of the perturbed problem (26), (27) in
the series form

u(t,ε) = ∑
j≥0

ε ju j(t), x(t,ε) = ∑
j≥0

ε jx j(t), (30)

We substitute the relations (30) into the problem condition and
expand the right-hand sides of equalities in series in powers of
ε. Then the functional to be minimized may be written in the
form

Jε(u,x) = ∑
j≥0

ε jJ j. (31)

Equating the coefficients of like powers of ε in (27), we obtain
the equations for the terms of the decompositions (30).



Formalism of Asymptotic Expansions Construction

We will determine a series of optimal control problems in order
to find the coefficients in (30).



Formalism of Asymptotic Expansions Construction

When ε = 0 we obtain from (26), (27) the degenerate problem
without intermediate points

P0 : J0 = J0(u0) =
1
2
〈x0(T )−ξN+1,FN+1(x0(T )−ξN+1)〉+

+

T∫

0

(
1
2
〈x0,Wx0〉+ 〈x0,Su0〉+

1
2
〈u0,Ru0〉)dt → min

u0
, (32)

d(Ex0)

dt
= Ax0 +Bu0 + f , Ex0(0) = x0

. (33)

Here and further, we denote the operator E∗G jE by
Fj, j = 1, . . . ,N +1.

The optimal control for the problem P0 is a continuous function.



Formalism of Asymptotic Expansions Construction

Further, in order to determine the pair of the functions (uk,xk)
for k ≥ 1, we define the following problem

Pk : J̃k(uk,xk)=
1
2
〈xk(T ),FN+1xk(T )〉+

N

∑
j=1

〈
xk(t j),Fj(xk−1(t j)−ξ j,k−1)

〉
+

+
1
2

T∫

0

〈(
xk

uk

)
,

(
W S
S′ R

)(
xk

uk

)〉
dt → min

uk
, (34)

d(Exk)

dt
= Axk +Buk, Exk(0) = 0, (35)

where

ξ j,k−1 =

{
ξ j, k = 1,

0, k > 1.



Formalism of Asymptotic Expansions Construction

The solution of the problem Pk can be found from the following
relations

d(Exk)

dt
= Axk +Buk, Exk(0) = 0, (13)

E ′ dψk

dt
= Wxk −A′ψk +Suk, t 6= t j, (36)

E ′(ψk(t j −0)−ψk(t j +0)) = −Fj(xk−1(t j)−ξ j,k−1), j = 1, . . . ,N,

(37)
E ′ψk(T ) = −FN+1xk(T ), (38)

0 = −S′xk +B′ψk −Ruk. (39)

In general, the optimal control for the problem Pk is a
discontinuous function when k ≥ 1.



Formalism of Asymptotic Expansions Construction

The following theorem shows the structure of the coefficients in
the decomposition of the minimized functional: Jε = ∑

j≥0
ε jJ j.

Theorem 3. The coefficient J2k−1 is known after problem Pk−1

has been solved. The performance index for the problem Pk is
the transformed expression for the coefficient J2k when k ≥ 1.

Theorem 3 is valid without the assumption on the invertibility of
the operator (28).



Estimates of Approximate Solution

Let us assume that the solutions (u j,x j) have been found for
the problems Pj, j = 0, . . . ,n.

We shall estimate the approximate solution of the perturbed
problem Pε :

ũn(t) =
n

∑
j=0

ε ju j(t), x̃n(t) =
n

∑
j=0

ε jx j(t). (40)

It is not difficult to see that the function x̃n(t) is a solution of the
problem (27) when u(t) = ũn(t).



Estimates of Approximate Solution

We will denote the solution of the problem Pε by (u∗,x∗).

Theorem 4. The following estimates

‖u∗(t)− ũn(t)‖ ≤ cεn+1,‖x∗(t)− x̃n(t)‖ ≤ cεn+1,

Jε(ũn, x̃n)− Jε(u∗,x∗) ≤ cε2(n+1),
(41)

are true for all t ∈ [0,T ] and sufficiently small ε > 0.

A constant c does not depend on t and ε.

It follows from this theorem that {ũn(·)} is a minimizing
sequence for the considered functional.



Estimates of Approximate Solution

It has been proved that the sequence

{Jε(ũi, x̃i)} (42)

is decreasing for fixed ε.

Theorem 5. For sufficiently small ε > 0, we have

Jε(ũi, x̃i) ≤ Jε(ũi−1, x̃i−1), i = 1, . . . ,n. (43)

If ui 6= 0 then (43) is a strict inequality.



Illustrative Example

As the obtained results are new for problems with a state
equation resolved with respect to the derivative, we consider
the problem Pε of minimizing the functional

Jε(u,x)= Jε(u)=
1
2
((x(4)−100)2+(y(4)−100)2)+

ε
2
((x(1)+5000)2+

+(y(1)−5000)2 +(x(2)−4000)2 +(y(2)+3000)2+

+(x(3)+1000)2 +(y(3)−100)2)+

4∫

0

u2dt (44)

on trajectories of the system

dx
dt = y+ et , x(0) = 1,
dy
dt = u, y(0) = 100,

(45)

when ε = 0.1.



Illustrative Example

Fig.1. x = x(t) Fig.2. y = y(t)
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Fig.3. u = u(t)
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The exact solution is denoted by blue continuous line, the zero approximation

for the solution is denoted by red circles, and the first approximation is

denoted by diamonds.



Singularly Perturbed Problems for Discontinuous
Systems

The formalism of asymptotics constructing for solutions of
singularly perturbed linear-quadratic optimal control problems
with discontinuous coefficients is based on immediate
substituting a postulated asymptotic expansion of boundary
layer type for a solution into the problem condition and on
defining four types of optimal control problems for finding
asymptotics terms.
The unique solvability of the problems, the solutions of which
form the asymptotic solution, is proved.
We note that the asymptotic analysis of singularly perturbed
linear-quadratic optimal control problems was previously made
only for the case of continuous coefficients.



Problem Formulation

We consider linear-quadratic optimal control problem Pε of the
form

Jε(u) =
1
2

2

∑
j=1

∫ t j

t j−1

{〈
( j)
z (t,ε),

( j)
W(t,ε)

( j)
z (t,ε)

〉
+

+

〈
( j)
u (t,ε),

( j)
R(t,ε)

( j)
u (t,ε)

〉}
dt → min

u
,

(46)

E(ε)
˙( j)
z (t,ε) =

( j)
A(t,ε)

( j)
z (t,ε) +

( j)
B(t,ε)

( j)
u (t,ε), t ∈ [t j−1, t j], j = 1,2,

(1)
z (0,ε) = z0

,
(1)
z (t1,ε) =

(2)
z (t1,ε).

(47)



Problem Formulation

Here 0 = t0 < t1 < t2 = T , the values t j( j = 0,1,2) are fixed;

E(ε) = diag(I,εI), (48)

z = (x′,y′)′,
( j)
x =

( j)
x (t,ε) ∈ Rn,

( j)
y =

( j)
y (t,ε) ∈ Rm,

( j)
u =

( j)
u (t,ε) ∈ Rr;

ε ≥ 0 is a small parameter, matrices
( j)
W(t,ε),

( j)
R(t,ε),

( j)
A(t,ε),

( j)
B(t,ε) are sufficiently smooth for all t ∈ [t j−1, t j] and ε ≥ 0;

matrices
( j)
W(t,ε) and

( j)
R(t,ε) are symmetric,

( j)
W(t,0) > 0,

( j)
R(t,0) > 0 for all t ∈ [t j−1, t j], j = 1,2.

If ε = 0, then, in general case, the solution of the state equation
does not satisfy given conditions and the fast variable may be
discontinuous function although trajectories of the perturbed
problem are continuous.



Formalism of Asymptotic Expansions Construction

We will seek a solution of the perturbed problem in the series
form

( j)
v (t,ε) = ∑

i≥0

ε i( j)
vi (t,ε) = ∑

i≥0

ε i(
( j)
vi (t) +

( j)
Π iv(τ j−1) +

( j)
Q iv(τ j)),

(49)

where v = (u′,z′)′, symbols
( j)
Π, j ∈ {1,2}, denote boundary

value functions of the exponential type in a neighborhood of left

hand sides of the segments [0, t1] and [t1,T ], and
( j)
Q , j ∈ {1,2},

denote boundary value functions of the exponential type in a
neighborhood of right hand sides of the same segments,

τ0 =
t
ε
,τ1 =

t − t1
ε

,τ2 =
t −T

ε
. (50)



Formalism of Asymptotic Expansions Construction

We substitute the last expansions into problem conditions and
write the right hand side of the state equation and integrand
function in the asymptotic series form with respect to powers of
ε with coefficients depending on t,τ0,τ1,τ2.

Separately equating the coefficients of like powers of ε
depending on t,τ0,τ1,τ2 in the state equation, we obtain the
equations for the terms of the decompositions.

Then the functional to be minimized may be written in the form

Jε(u,x) = ∑
j≥0

ε jJ j. (51)

We will determine a series of optimal control problems in order
to find the coefficients of the expansions.



Formalism of Asymptotic Expansions Construction

We will use the following notations for the expansion of any
function h = h(ε) with respect to powers of ε:

h(ε) = ∑
i≥0

ε ihi =

= {h}n−1 + εn[h]n +α(εn+1), [h]n = hn,{h}n−1 =
n−1

∑
i=0

ε ihi. (52)

We will also use the notation
( j)

ṽn (t,ε) =
n

∑
i=0

ε i
( j)
vi (t),

( j)

Π̃nv(τ j−1,ε) =
n

∑
i=0

ε i
( j)
Π iv(τ j−1),

( j)

Q̃nv(τ j,ε) =
n

∑
i=0

ε i
( j)
Q iv(τ j),

( j)
f (

( j)
z ,

( j)
u , t,ε) =

( j)
A(t,ε)

( j)
z +

( j)
B(t,ε)

( j)
u ,

( j)
d (

( j)
z ,

( j)
ω , t,ε) =

( j)
W(t,ε)

( j)
z −

( j)
A(t,ε)′

( j)
ω , (53)

( j)
g (

( j)
u ,

( j)
ω , t,ε) =

( j)
R (t,ε)

( j)
u −

( j)
B(t,ε)′

( j)
ω .



Formalism of Asymptotic Expansions Construction

So, we have the following systems for coefficients in (49).

[E(ε)
˙( j)
z (t,ε)]i =

( j)
A0(t)

( j)
zi +

( j)
B0(t)

( j)
ui + [

( j)

f̂i−1]i, t j−1 ≤ t ≤ t j, j = 1,2,

(54)

d
( j)
Π iz

dτ j−1
= E2(

( j)
A0(t j−1)

( j)
Π iz +

( j)
B0(t j−1)

( j)
Π iu) +E1[

( j)

Π̂ i−1 f ]i +E2[

( j)

Π̂ i−1 f ]i−1,

(55)

d
( j)
Q iz

dτ j
= E2(

( j)
A0(t j)

( j)
Q iz +

( j)
B0(t j)

( j)
Q iu) +E1[

( j)

Q̂ i−1 f ]i +E2[

( j)

Q̂ i−1 f ]i−1,

(56)

where
E1 = diag(I,0), E2 = diag(0, I). (57)



Formalism of Asymptotic Expansions Construction

Functions
( j)
u0,

( j)
z0 may be found from the problem

P0 : J0(u0) =
1
2

2

∑
j=1

∫ t j

t j−1

(〈
( j)
z0 ,

( j)
W0(t)

( j)
z0

〉
+

+

〈
( j)
u0,

( j)
R0(t)

( j)
u0

〉)
dt → min

(
(1)
u0 ,

(2)
u0)

,

E1

˙( j)
z0 =

( j)
A0(t)

( j)
z0 +

( j)
B0(t)

( j)
u0, t ∈ [t j−1, t j], j = 1,2,

E1

(1)

z0 (0) = E1z0
, E1

(2)

z0 (t1) = E1

(1)

z0 (t1).

(58)

It is proved that this problem has a unique solution. Its adjoint

variable is denoted by
( j)
ω0.



Formalism of Asymptotic Expansions Construction

Transforming the expression for J1 and reject addends which
are known after solving problem P0 we obtain the sum

Π1J0 +Π2J0 +Π3J0, (59)

where



Π1J0 = Π1J0(
(1)

Π0u) =
1
2

∫ +∞

0

{〈
(1)

Π0z,
(1)

W0(0)
(1)

Π0z

〉
+

〈
(1)

Π0u,
(1)

R0(0)
(1)

Π0u

〉}
dτ0,

Π2J0 = Π2J0(
(1)

Q0u,

(2)

Π0u) =

〈
(1)

Q0z(0),E2

(1)

ω0(t1)

〉
−

〈
(2)

Π0z(0),E2

(2)

ω0(t1)

〉
+

+
1
2

∫ 0

−∞

{〈
(1)

Q0z,
(1)

W0(t1)
(1)

Q0z

〉
+

〈
(1)

Q0u,
(1)

R0(t1)
(1)

Q0u

〉}
dτ1+

+
1
2

∫ +∞

0

{〈
(2)

Π0z,
(2)

W0(t1)
(2)

Π0z

〉
+

〈
(2)

Π0u,
(2)

R0(t1)
(2)

Π0u

〉}
dτ1,

Π3J0 = Π3J0(
(2)

Q0u) =

〈
(2)

Q0z(0),E2

(2)

ω0(T )

〉
+

+
1
2

∫ 0

−∞

{〈
(2)

Q0z,
(2)

W0(T )
(2)

Q0z

〉
+

〈
(2)

Q0u,
(2)

R0(T )
(2)

Q0u

〉}
dτ2.

(60)



Formalism of Asymptotic Expansions Construction

As the equations for finding boundary layer coefficients depend
only on one type from four considered types of boundary layer
functions therefore coefficients of boundary layers series in zero
approximation may be found from following three problems:

Π1P0 : Π1J0(
(1)

Π0u) → min
(1)

Π0u

,

d
(1)

Π0z
dτ0

= E2(
(1)

A0(0)
(1)

Π0z +
(1)

B 0(0)
(1)

Π0u), τ0 ≥ 0,

E1

(1)

Π0z(+∞) = 0, E2

(1)

Π0z(0) = E2(z
0 −

(1)

z0 (0)),

(61)



Formalism of Asymptotic Expansions Construction

Π2P0 : Π2J0(
(1)

Q0u,
(2)

Π0u) → min
(
(1)

Q0u,

(2)

Π0u)

,

d
(1)

Q0z
dτ1

= E2(
(1)

A0(t1)
(1)

Q0z +
(1)

B 0(t1)
(1)

Q0u), τ1 ≤ 0,

d
(2)

Π0z
dτ1

= E2(
(2)

A0(t1)
(2)

Π0z +
(2)

B 0(t1)
(2)

Π0u), τ1 ≥ 0,

(1)

Q0z(−∞) = 0, E1

(2)

Π0z(+∞) = 0,

E2

(2)

Π0z(0) = E2(
(1)

z0 (t1) +
(1)

Q0z(0) −
(2)

z0 (t1)),

(62)



Formalism of Asymptotic Expansions Construction

Π3P0 : Π3J0(
(2)

Q0u) → min
(2)

Q 0u

,

d
(2)

Q0z
dτ2

= E2(
(2)

A0(T )
(2)

Q0z +
(2)

B 0(T )
(2)

Q0u), τ2 ≤ 0,

(2)

Q0z(−∞) = 0.

(63)

These problems have unique solutions. Control optimality
conditions for these problems have be obtained.



Formalism of Asymptotic Expansions Construction

Let us introduce the recurrent formulas for finding expansions
terms with positive indexes. Let the problems Pi, Π1Pi, Π2Pi,
Π3Pi, 0≤ i ≤ n−1, have been solved. We denote the adjoint

variables for these problems respectively by
( j)
ω i(t), j = 1,2,

(1)

Πiω(τ0), (
(1)

Qiω(τ1),
(2)

Πiω(τ1)),
(2)

Qiω(τ2).



Formalism of Asymptotic Expansions Construction

The functions vn(t), t ∈ [0,T ], are found from the problem Pn of
minimizing the functional

Jn(un) = 〈
(1)

zn (t1),E1

(1)

Qn−1ω(0)〉−〈
(2)

zn (t1),E1

(2)

Πn−1ω(0)〉+

+〈
(2)

zn (T ),E1

(2)

Qn−1ω(0)〉+
2

∑
j=1

∫ t j

t j−1

(〈
( j)
zn (t),

1
2

( j)
W0(t)

( j)
zn (t)+

+[
( j)

q̂n−1]n −E ′
2

˙( j)
ω n−1(t)

〉
+

〈
( j)
un (t),

1
2

( j)
R0(t)

( j)
un (t)+ [

( j)

ĝn−1]n

〉)
dt

(64)



on trajectories of the system (54) when i = n under the
conditions

E1

(1)

zn (0) = −E1

(1)

Πnz(0),

E1(
(2)

zn (t1) −
(1)

zn (t1)) = E1(
(1)

Qnz(0) −
(2)

Πnz(0)).

(65)

Here the symbols
( j)

q̂n−1,
( j)

ĝn−1 mean the values of the functions
( j)
q ,

( j)
g when

( j)
v =

( j)

ṽn−1,
( j)
ω =

( j)

ω̃n−1.



Formalism of Asymptotic Expansions Construction

The functions
(1)

Πnv(τ0), τ0 ∈ [0,+∞), are found from the problem
Π1Pn of minimizing the functional

Π1Jn(
(1)

Πnu) =
∫ +∞

0

(〈
(1)

Πnz(τ0),
1
2

(1)

W0(0)
(1)

Πnz(τ0)+ [

(1)

Π̂n−1q]n

〉
+

+

〈
(1)

Πnu(τ0),
1
2

(1)

R0(0)
(1)

Πnu(τ0)+ [

(1)

Π̂n−1g]n

〉)
dτ0

(66)
on trajectories of the system (55) when j = 1, i = n under the
conditions

E1

(1)

Πnz(+∞) = 0, E2

(1)

Πnz(0) = −E2

(1)

zn (0). (67)



Formalism of Asymptotic Expansions Construction

The functions
(1)

Qnv(τ1), τ1 ∈ (−∞,0] and
(2)

Πnv(τ1), τ1 ∈ [0,+∞) are
found from the problem Π2Pn of minimizing the functional

Π2Jn(
(1)

Qnu,

(2)

Πnu) = 〈
(1)

Qnz(0),E2

(1)

ωn(t1)〉−〈
(2)

Πnz(0),E2

(2)

ωn(t1)〉+

+
∫ 0

−∞

(〈
(1)

Qnz(τ1),
1
2

(1)

W0(t1)
(1)

Qnz(τ1)+ [

(1)

Q̂n−1q]n

〉
+

+

〈
(1)

Qnu(τ1),
1
2

(1)

R0(t1)
(1)

Qnu(τ1)+ [

(1)

Q̂n−1g]n

〉)
dτ1+

+
∫ +∞

0

(〈
(2)

Πnz(τ1),
1
2

(2)

W0(t1)
(2)

Πnz(τ1)+ [

(2)

Π̂n−1q]n

〉
+

+

〈
(2)

Πnu(τ1),
1
2

(2)

R0(t1)
(2)

Πnu(τ1)+ [

(2)

Π̂n−1g]n

〉)
dτ1

(68)



on trajectories of the system (55) when j = 2, i = n and (56)
when j = 1, i = n under conditions

(1)

Qnz(−∞) = 0, E1

(2)

Πnz(+∞) = 0,

E2(
(2)

Πnz(0) −
(1)

Qnz(0)) = E2(
(1)

zn (t1) −
(2)

zn (t1)).

(69)



Formalism of Asymptotic Expansions Construction

The functions
(2)

Qnv(τ2), τ2 ∈ (−∞,0], are found from the problem
Π3Pn of minimizing the functional

Π3Jn(
(2)

Qnu) = 〈
(2)

Qnz(0),E2

(2)

ωn(T )〉+

+
∫ 0

−∞

(〈
(2)

Qnz(τ2),
1
2

(2)

W0(T )
(2)

Qnz(τ2)+ [

(2)

Q̂n−1q]n

〉
+

+

〈
(2)

Qnu(τ2),
1
2

(2)

R0(T )
(2)

Qnu(τ2)+ [

(2)

Q̂n−1g]n

〉)
dτ2

(70)

on trajectories of the system (56) when j = 2, i = n,
−∞ < τ2 ≤ 0, under the condition

(2)

Qnz(−∞) = 0. (71)



Formalism of Asymptotic Expansions Construction

In problems Π1Pn, Π2Pn, Π3Pn, the symbols

( j)

Π̂n−1q,

( j)

Π̂n−1g,

( j)

Q̂n−1q,

( j)

Q̂n−1g (72)

mean the values of the functions
( j)
q ,

( j)
g with arguments

depending on asymptotics terms of lower order than n.
It has been proved that the problems Pn, Π1Pn, Π2Pn, Π3Pn

(n ≥ 0) have unique solutions. These solutions may be found
from the obtained control optimality conditions.



Formalism of Asymptotic Expansions Construction

The following two theorem explain the form of the problems for
finding asymptotics terms.

We denote the coefficients in an asymptotic expansion of the
adjoint variable for the perturbed problem:
( j)

ζ (t,ε) = (
( j)

ξ (t,ε ′,
( j)
η (t,ε)′)′ by

( j)

ζ i (t),
( j)
Π iζ (τ j−1),

( j)
Q iζ (τ j).

(73)



Formalism of Asymptotic Expansions Construction

Theorem 6. Problems obtained from the control optimality
conditions for the problems

Pn, Π1Pn, Π2Pn, Π3Pn (74)

coincide with the problems for the functions

(
( j)
vn ,

( j)

ξ n,
( j)
ηn), j = 1,2, (

(1)

Πnv,
(1)

Πn+1ξ ,
(1)

Πnη),

(
(1)

Qnv,
(1)

Qn+1ξ ,

(1)

Qnη ,
(2)

Πnv,
(2)

Πn+1ξ ,
(2)

Πnη), (
(2)

Qnv,
(2)

Qn+1ξ ,

(2)

Qnη)
(75)

from the asymptotic expansion of the solution of the problem
following from the control optimality conditions for the perturbed
problem Pε .



Formalism of Asymptotic Expansions Construction

Theorem 7. The performance index Jn is a result of a
transformaton of the coefficient J2n in the expansion (51), and
the sum of the performance indexes Π1Jn +Π2Jn +Π3Jn is a
result of a transformation of the coefficient J2n+1 in the
expansion (51).



Estimates of Approximate Solution

Let u∗(.,ε), z∗(.,ε) be a solution of the perturbed problem Pε
and ũn(t,ε), z̃n(t,ε) be an approximate asymptotic solution.

Theorem 8. The following estimates

‖ũn(t,ε)−u∗(t,ε)‖ ≤ cεn+1
, ‖z̃n(t,ε)− z∗(t,ε)‖ ≤ cεn+1

,

Jε(ũn)− Jε(u∗) ≤ cε2(n+2)
,

(76)

are true for all t ∈ [0,T ] and sufficiently small ε > 0.

A constant c does not depend on t and ε.

It follows from this theorem that {ũn(·,ε)} is a minimizing
sequence for the considered functional.



Estimates of Approximate Solution

It is proved that the sequence

{Jε(ũi} (77)

is decreasing for fixed ε.

Theorem 9. For sufficiently small ε > 0, we have

Jε(ũi) ≤ Jε(ũi−1), i = 1, . . . ,n. (78)



Illustrative Example

Let us consider the problem

Pε : Jε(u) =
1
2

∫ 1

0

(
(
(1)
x )2 +2

(1)
x

(1)
y + 3(

(1)
y )2 +(

(1)
u )2
)

dt +

+
1
2

∫ 2

1

(
(
(2)
x )2 +(

(2)
y )2 +

1
3
(
(2)
u )2
)

dt,

˙(1)
x = (1+ ε)

(1)
x , ε

˙(1)
y = −

(1)
y +

(1)
u ,

(79)

˙(2)
x = ε

(2)
x , ε

˙(2)
y =

(2)
x −

(2)
y +

(2)
u ,

(1)
x (0,ε) = 1,

(2)
x (1,ε) =

(1)
x (1,ε),

(1)
y (0,ε) = 1,

(2)
y (1,ε) =

(1)
y (1,ε).

The results of evaluations, when ε = 0.1, are presented for the
solutions of the perturbed and degenerate problems and for the
approximations of zero and first orders in Fig. 4-6 for the
functions u(·), x(·), y(·) respectively.



Illustrative Example

Fig.4. u(·) Fig.5. x(·) Fig.6. y(·)

The solution of the perturbed problem is denoted by blue line, the solution of

the degenerate problem is denoted by red line, the zero order approximation

is denoted by black line and the first order approximation is denoted by violet

line.



Feedback control

The feedback form for optimal control and asymptotics of a
solution of a matrix differential Riccati equation are used for
constructing asymptotic solution of singularly perturbed
linear-quadratic optimal control problems. Applying this
method, we avoid solving boundary value problems.



Problem statement

Let us consider the problem Pε :

Jε(u) =
1
2

〈
(2)
z (T,ε),F(ε)

(2)
z (T,ε)

〉
+

+
1
2

2

∑
j=1

∫ t j

t j−1

{〈
( j)
z (t,ε),

( j)
W(t,ε)

( j)
z (t,ε)

〉
+

+

〈
( j)
u (t,ε),

( j)
R(t,ε)

( j)
u (t,ε)

〉}
dt → min

u
,

(80)

E(ε)
˙( j)
z (t,ε) =

( j)
A(t,ε)

( j)
z (t,ε) +

( j)
B(t,ε)

( j)
u (t,ε), t ∈ [t j−1, t j], j = 1,2,

(81)
(1)
z (0,ε) = z0

,
(1)
z (t1,ε) =

(2)
z (t1,ε), (82)



Optimal feedback control

We formulate the theorem, which gives the optimal control in a
feedback form.



Optimal feedback control

Theorem 10. Let the operator–function K(·), consisting of
( j)
K,

be a solution of the problem

E(ε)′
˙( j)
K = −

( j)

K
′
( j)
A −

( j)

A
′
( j)
K +

( j)

K
′
( j)
S

( j)
K −

( j)
W,

( j)
S =

( j)
B

( j)

R
−1

( j)

B
′
,

t ∈ [t j−1, t j], j = 1,2,

E(ε)′
(2)

K(T,ε) = F(ε),
(1)

K(t1,ε) =
(2)

K(t1,ε).

(83)

Let also z∗(·), consisting of
( j)
z∗ (·,ε), be a solution of the problem

E(ε)
˙( j)
z∗ =

(
( j)
A −

( j)
S

( j)
K

)
( j)
z∗ , t ∈ [t j−1, t j], j = 1,2,

(1)
z∗ (0,ε) = z0

,
(2)
z∗ (t1,ε) =

(1)
z∗ (t1,ε).

(84)



Optimal feedback control

Then the function u∗(·,ε), consisting of

( j)
u∗= −

( j)

R
−1

( j)

B
′
( j)
K

( j)
z∗ , t ∈ [t j−1, t j], j = 1,2,

(85)

is an optimal control for the considered problem and the
minimal value of the performance index is

Jε(u∗) =
1
2

〈
z0

,E(ε)′
(1)

K(0,ε)z0
〉

.



Optimal feedback control

In this section, it is assumed that one of two following
conditions is valid.

1. The pairs (
( j)
A 4(t,0),

( j)
B 2(t,0)), t ∈ [t j−1, t j], j = 1,2, are

controllable.

2.
( j)
B 2(t,0) = 0 and the operators

( j)
A 4(t,0) are stable,

t ∈ [t j−1, t j], j = 1,2.



Formalism of Asymptotic Expansions Construction

We will seek asymptotic solutions of the above problems in the
series form

( j)
K (t,ε) = ∑

k≥0

εk

(
( j)

Kk(t) +
( j)
QkK(τ j)

)
,

( j)
z (t,ε) = ∑

k≥0

εk

(
( j)
zk (t) +

( j)
Πkz(τ j−1) +

( j)
Qkz(τ j)

)
.

(86)

Then the optimal control may be written in the form

( j)
u∗ (t,ε) = ∑

k≥0

εk

(
( j)
uk (t) +

( j)
Πku(τ j−1) +

( j)
Qku(τ j)

)
. (87)



Estimates of Approximate Solution

Let us assume that n+1 terms of the expansions (86)- (87)
have been found. Introduce the notations

( j)

K̃n(t,ε) =
n

∑
k=0

εk

(
( j)

Kk(t) +
( j)
QkK(τ j)

)
,

( j)

z̃ n(t,ε) =
n

∑
k=0

εk

(
( j)
zk (t) +

( j)
Πkz(τ j−1) +

( j)
Qkz(τ j)

)
,

( j)

ũ n(t,ε) =
n

∑
k=0

εk

(
( j)
uk (t) +

( j)
Πku(τ j−1) +

( j)
Qku(τ j)

)
.

(88)

The following theorem has been proved.
Theorem 11. The order of the values

( j)
K(t,ε)−

( j)

K̃n(t,ε),
( j)
z∗ (t,ε)−

( j)

z̃n (t,ε),
( j)
u ∗(t,ε)−

( j)

ũn (t,ε), (89)

is εn+1.



Estimates of Approximate Solution

Let us denote the solution of the problem

E(ε)
˙( j)

ẑn =


( j)

A −
( j)
S

( j)

K̃n




( j)

ẑn ,

(1)

ẑn (0,ε) = z0
,

(2)

ẑn (t1,ε) =
(1)

ẑn (t1,ε).

(90)

by
( j)

ẑn and introduce the notation

( j)

ûn= −
( j)

R
−1

( j)

B
′
( j)

K̃n

( j)

ẑn . (91)

Theorem 12. The estimates

‖
( j)
u∗ (t,ε)−

( j)

ûn (t,ε)‖ ≤ cεn+1
,‖

( j)
z∗ (t)−

( j)

ẑn (t)‖ ≤ cεn+1
, j = 1,2,

Jε(ûn)− Jε(u∗) ≤ cε2(n+1)
.

are true for all t ∈ [0,T ] and sufficiently small ε > 0.



Illustrative Example

Let us consider the problem Pε of minimizing the functional

Jε(u) =
1
2

(
(
(2)
x (2,ε))2 + ε(

(2)
y (2,ε))2

)
+

+
1
2

∫ 1

0

(
(
(1)
x )2 +3(

(1)
y )2 +(

(1)
u )2
)

dt+

+
1
2

∫ 2

1

(
4(

(2)
x )2 +8

(2)
x

(2)
y + 8(

(2)
y )2 +(

(2)
u )2
)

dt

(92)



on trajectories of the system

˙(1)
x =

(1)
x , ε

˙(1)
y = −

(1)
y +

(1)
u , t ∈ [0,1],

˙(2)
x = 0, ε

˙(2)
y =

(2)
x −

(2)
y −

(2)
u , t ∈ [1,2], (93)

(1)
x (0,ε) = 1,

(1)
y (0,ε) = 1,

(2)
x (1,ε) =

(1)
x (1,ε),

(2)
y (1,ε) =

(1)
y (1,ε),

when ε = 0,15.



Illustrative Example

Fig.1. K1(t,ε) Fig.2. K3(t,ε)

Fig.3. K4(t,ε) Fig.4. u(t,ε)

The exact solution is denoted by blue continuous line, the zero approximation

for the solution is denoted by red circles, and the first approximation is

denoted by diamonds.



Illustrative Example

Fig.5. x(t,ε) Fig.6. y(t,ε)

The exact solution is denoted by blue continuous line, the zero approximation

for the solution is denoted by red circles, and the first approximation is

denoted by diamonds.



Inverse problem for variational calculus for systems
with deviating argument

The Euler equation for a functional

J(y(·)) =

b∫

a

F(x,y(x),y(x−θ),y′(x))dx (94)

with conditions

y(x) = ϕ(x), x ∈ [a−θ ,a], y(b) = yb (95)

has the form

Ay′′(x)+B+Cy′(x−θ)+ D̃ = 0, x ∈ [a,b−θ ],

Ay′′(x)+B+Cy′(x−θ) = 0, x ∈ (b−θ ,b],
(96)

where twice continuously differentiable functions A, B, C, D
depend on x,y(x),y(x−θ),y′(x) and

D̃ = D(x+θ ,y(x+θ),y(x),y′(x+θ)). (97)



Inverse problem for variational calculus for systems
with deviating argument

The inverse problem for variational calculus demands to find a
functional of the form (94), the Euler equation for which
coincides with the given equation of the form (96) for any twice
continuously differentiable function y(·), satisfying (95).



Inverse problem for variational calculus for systems
with deviating argument

Theorem 13. The inverse problem for variational calculus has a
solution if and only if the functions A, B, C, D from (96) satisfy
the relations

By′(x)−Ax − y′(x)Ay(x) = 0, x ∈ [a,b],

Cy′(x)−Ay(x−θ) = 0, x ∈ [a,b],

Dy′(x) +C = 0, x ∈ [a+θ ,b],

Dy(x) +

y′(x)∫

0

Cy(x)dy′(x)−Gy(x)y(x−θ) = 0, x ∈ [a+θ ,b],

(98)

where



Inverse problem for variational calculus for systems
with deviating argument

G = G(x,y(x),y(x−θ)) =

y(x)∫

0

(B−

y′(x)∫

0

By′(x)dy′(x)+Ex)dy(x)+Q,

(99)

Q =





0,x ∈ (b−θ ,b],
y(x)∫

0
(D̃+

y′(x+θ)∫

0
C̃dy′(x+θ)− G̃y(x))dy(x),x ∈ [a,b−θ ],

(100)

E = E(x,y(x),y(x−θ))=

y(x−θ)∫

0

(

y′(x)∫

0

Ay(x−θ)dy′(x)−C)dy(x−θ),x∈ [a,b],

(101)
the function Q when x ∈ [a,b−θ ] is successively found on the
intervals (b− kθ ,b− (k−1)θ ],k = 2, . . . : b− kθ ≥ a.



Inverse problem for variational calculus for systems
with deviating argument

The function F, defining a solution of an inverse problem for
variational calculus, may be determined by the formula

F = −

y′(x)∫

0

(

y′(x)∫

0

Ady′(x))dy′(x)+Ey′(x)+G, x ∈ [a,b]. (102)



Thank you for your attention!


