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Software:

e GPOPS: General Pseudospectral OPtimal Control Software

— MATLAB software with interface to optimizer such as
SNOPT

— Free (GNU license)

— @Gauss, Radau, Lobatto



Model Control Problem

min ®(x(1))

d
subject to d—’t‘ — f(x(t),u(t)), —-1<t<4+1, x(—1)=xo,

f:R?» x R™M - R"* Xo given.



Gauss Pseudospectral Scheme

T1,72,..., TNy = Gauss quadrature points
0 = —1 and TNH41 = +1.

Lagrange interpolating polynomials:

N
T T4
Li(m) = [ —%, (i=0,...,N)
j=0"Ti 7 Tj
J7F=i

State approximation:

N N
z; (1) = 'Z:o x5 Li(T)

Derivative approximation:

N N
fbé’V(Tk) — Z wijLi(Tk) — Z Dyixij, Dy = L;(1y)
i=0 i=0



Gauss Pseudospectral Scheme (continued)

Dynamics matrix:
Fi;(X,U) = f;(X;,U;), 1<i<N, 1<j<n.
Collocated dynamics:
DX = F(X,U)

State at end point:
N N 1N
Xyi1, =2V (1) =N (1) +/_1 N (r)dr
End state after quadrature (w = quadrature weights):

Xy41 = Xo+w DX =w!'F(X,U)



The Gauss Pseudospectral Problem

minimize ®(Xpy41)
subject to DX = F(X,U)
Xn+1 = Xo+w!'F(X,U)

Xpo = Xg



The Counterexample

minimize /Ol(u(t) —1)%dt

d
subject to d—’: — Mz du, 0<t< 41,

Obvious solution: u =1,

z(t) = (eM —1)/\.

x(0)



The Pseudospectral approximation

minimize SN w;(u; — 1)2
subject to DX =X+ U,
where
T _
X (CB1,$2,...,£UN) ’ xO_O
U (’U,]_,’UQ,...,’U,N)T
D is Nby N

If A is an eigenvalue of D, then the linear system for X is singular!



A FiIx

Dynamics: X = AD7I1X + D~1U where p(D~1) < 2/3 for
N>?2

Scaling: If the time interval is scaled by h, then D1 scales
by h.

hp: If we partition time interval into subintervals of width h,
and use a pseudospectral scheme on each subinterval, then
AD—1 =0(h) — 0 as h — 0. Hence, the linear system for X
IS nonsingular when h is sufficiently small.

Alternatively: Since p(D~1) tends to zero as N tends to
infinity, it follows that by taking N sufficiently large, Ap(D~1)
tends to zero as N — oo and the linear system for X becomes
invertible.

Note: Gaussian elimination with partial pivots should not
work since the error could grow like 2™ in worst case; nonethe-
less, Gaussian elimination is routinely used to solve Ax = b.
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Euler Discrete Control Problem

min ®(xpy)

subject to Xk+1 = Xk + hf(xk,uk), O<kE<N-—-1.

h = 2/N = mesh spacing

Convergence Theory:
° X}: —x*(t) = O(h) = u,’; —u*(ty)

e theory developed in papers of Dontchev, Hager, Malanowski,
Veliov

e Need N =~ 1,000,000 for error ~ 10=°.
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Pseudospectral Approach

Approximate x by a polynomial

Use collocation for system dynamics

The hope: for N = 10 the error ~ 10°.

lL.obatto collocation: Fahroo, Kang, Ross, and Pietz

Radau collocation: Larry Biegler and Shiva Kameswaran,
Fahroo and Ross, Benson, Darby, Francilon, Garg, Hager,
Huntington, Patterson, Rao

Gauss collocation: Benson, Garg, Hager, Huntington, Pat-
terson, Rao

12



Continuous Optimality Conditions
(Pontryagin Minimum Principle)

A(=1) = p
A(l) = Vo(x(1))
N(t) = —=Va(A@®), f(x(t),ut)))

0 = VA1), f(x(t),u(t)))
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KKT Conditions
Lagrangian: (A,B) =222 A4 Byj
LA AN41, 0, X, Xyy1,U) = P(Xn41) + (A F(X,U) — DX)
+{(AN41, W F(X,U) + Xo — Xn41) + (1, %0 — Xo).
Partial with respect to X4 1:

ANt = VxP(Xpy41)
Partial with respect to Xj:
N
Y DijA; = Vx (A, (X}, U))+w;Vx(Any1,f(X;, U0 ), 1<j<N.
i=1
Partial with respect to Xp:

= Aynit1—DgA,

Partial with respect to Uj:

Vu(A;, £1(X4,U5)) + wiVy(Ang1, £(X;,U;) =0, 1<j53<N
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Transformed Adjoint and Differentiation Matrix
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Transformed Adjoint Optimality Conditions

A0
AN+1

D}y A +Di AN+

I
VxP(Xyt1)
—Vx (A F(X, U))

N
An+1+ D wiVx(M, f(X,;,U;))
j=1

VN F(X,U))
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Properties of D and Df

1. D and DT are both differentiation matrices

2. D operates on polynomial values p; = p(7;), 0 < i < N:

(Dp); =p'(7;), 1<i<N

3. Df operates on polynomial values ¢; = q(7;), 1 <i< N 4 1:
D'q)i=d(r), 1<i<N

4. Dq.)y and DJ{:N are both invertible

—1 _ — (Dl N-1pT
5. Dy yDo=—-1=(Dj.5)" "Dnyq
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Inverses of Dq., and D‘i:N

1 . Ti
DL = /1L;f.(¢)d7

(LM = [ Liar

+1
N o

i) = [ —~
i=1 "1~ Ti
i3]
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Compact Transformed Optimality Conditions

Ai = Ang1 B Vx(AFXU)), 0<i<N
AN+1 = Vx®P(Xny41)
0 = VyAFX, U))

A1y = Dl Anvpr=w'

By = (D].y)"} Bo=-w'
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Continuous Optimality Conditions
(Pontryagin Minimum Principle)

x'(t) = f(x(t),u(?))
N(t) = —Va(A@),f(x(),u(t)))
A1) = Vo (x(1))

0 = VA1), f(x(t),u(t)))
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Comment and Question

e If some given U, X and X satisfy the state and costate equa-
tions, then V(A F(X,U)) is the gradient of objective func-
tion with respect to the control.

e What are the eigenvalues of Dq.n7

e Suppose f(x,u) = vx + g(u):
Di:nyX1:ny =7X1:ny — DoXo + G(U)
When ~ is an eigenvalue of Dq.5, cannot solve for Xq:.n as

a function of U.
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Example

min —y(5) subject to ¢ = —y+yu—u?, y(0)=1.

Solution:

y*(t) = 4/(1+ 3exp(t)),

u (t) = y*(t)/2,

Ay(t) = —exp(2In(1 + 3exp(t)) —t)/(exp(=5) + 6 + 9exp(5)).
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Costate

0.1

—= GPM
——-RPM
——LPM
—— EXacty




Journal articles at

http://www.math.ufl.edu/~hager/papers/Control
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