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VLSI circuit simulation

e Circuit simulation uses computational methods to simulate
and analyze the behavior of electronic circuits

e A circuit can be viewed as a of electronic
transistors, resistors, capacitors, inductors, . ..

e Today’s VLSI circuits can have ©(109) transistors



Are we really just solving DAES?

e Network topology is described by a graph:
m Kirchhoff’s current laws

m Kirchhoff’s voltage laws

e Equations that characterize the circuit devices:

f(i,v) =0, g<7j, %v) = 0,

e All these equations can be summarized as a system of DAESs:

F(X, %X, t) =0



T he catch

o F: RY xRN x R i— RY where N is of the order of the number
of devices in the circuit

e For a state-of-the-art circuit: N = ©(109)

e No way!

e \We are always using today's computers to design tomorrow's
largest and more complicated machines



The VLSI circuit design process
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State-of-the-art VLSI circuits
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VLSI interconnect parasitics

e \Wires are not ideal:
m Resistance
m Capacitance

m Inductance

e Consequences:
m Timing behavior
m Noise
m Energy consumption

m Power distribution




Interconnect parasitics extraction

F:'%_:W --------
1 ] T T




Need for model order reduction
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RCL networks as directed graphs
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RCL network directed graph

e Network topology Graph incidence matrix A



RCL network equations

e Kirchhoff's current laws: A =20

e Kirchhoff's voltage laws: ATy =g

e Equations for R's, C's, and L's:

R C L
o— o0 o H o o—T¥i—o0
D .~ d ., d.
v = Rl 'c‘C(ﬁY: VL_Ld_tIL



RCL networks as descriptor systems

e System of linear time-invariant DAEs of the form

d
C ax(t) + Gx(t) = Bu(t)
y(t) = B x(t)
where C, G € RVXN and B € RVxm

e x(t) € RY is the unknown vector of state variables
e Large state-space dimension N

e m iNputs, m outputs



Reduced-order models

e System of DAEs of the same form:

d
Cn az(t} + Grz(t) = Bru(t)

y(t) = B! z(¢)

e But now:

Cn, G, e R"™™ and B, eR"™
where n < N



Transfer functions

e Original descriptor system:

H(s)=B' (sC+G) 'B

e Reduced-order model:

H,.(s) =B, (sCn+ Gn) !By,

e ‘'Good’ reduced-order model
‘Good’ approximation H,, ~ H



e Original dimension N ~ 104-°

(
H(s) =

e Reduced dimension n < N (n ~ 100_2)

—1
Hn(S): S—I_



Moment matching

e Choose a suitable expansion point sg € C and expand H(s)
about that point

H(s) = Mg+ M (s —sp) + -+ M; (s —sg)' + - -

e Determine reduced-order transfer function Hy,(s) such that
Hn(S) o MO —|— Ml (3 — 30) _|_ c . _|_ Mq—l (S _ So)q_l
+ (S — SO)q + (S — So)q+1 4+ ...

= H(s) + O ((s — s0)?)
for some g = q(n)



Padé and Pade-type approximation

o . Cp, G € R B, € R"*™ such that

Hy(s) = H(s) + O ((s — 50)7™)

and g(n) is maximal

e g(n) >2 {%J with equality in the ‘generic’ case

Hn(s) = H(s) 4 O ((s — 50)™)

- : : - n
where ¢(n) is no longer maximal, e.g., ¢(n) = {—J
m



Some history

o (Pillage and Rohrer, ‘90):
Explicit computation and matching of moments

o (Feldmann and F., ‘94 and ‘95):
Avoids numerical issues of AWE by computing Padé reduced-
order models via the Lanczos process

o (Silveira et al, ‘96):
Padé-type reduced-order models via the Arnoldi process



AN RCL network
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Padé may produce unstable poles
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Some more history

° (Odabasioglu, Celik, and Pileggi, '97):
Passive reduced-order models via explicit projection onto Krylov
subspaces

° (F., '04, '09, and '11)

tructure- reserving educed nterconnect acromodeling



Projection-based order reduction

e Choose an N x n matrix

and explicitly project the data matrices of

d
C &X(t) + Gx(t) = Bu(t)

y(t) = BTx(¢)
onto the subspace spanned by the columns of V,,



Projection-based order reduction

e Resulting reduced-order model:

Ch, %z(t} 1+ Gpz(t) = Byu(t)

y(t) =B, z(t)
where

C,:=V'/CV, G,=V'GV, B,=V'B

e Preserves

C=0, G+G'>0 Cn>0, Gp,+G!>0



Choice of projection matrix

e Choose expansion point sg € C for transfer function and rewrite:

1
H(s) =B' (sC+G) !B = BT(I— (S—SO)A) R
where

A:=—(50C+G)t'C and R:=(spC+G)'B

I (A,R) := colspang; [R AR AZR }



Krylov Projection = Padé-type

e n-th block Krylov subspace:

K5 (A, R) := colspanj; [R AR A°R

e Choose the projection matrix V,, such that

K;:(A,R) C Range'Vy,

e Krylov subspace 4+ Projection =

Ho(s) = H(s) + O ((s —s0)?), where §>|a/m)]

e PRIMA and SPRIM are methods of this type
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Preservation of RCL structure




General RCL network equations

e System of linear time-invariant DAEs of the form

where
Ci

0 0

C=|0 C, 0

0

e Passivity:

0 0

C>0

y(t) = BTx(t)

and G+GT >0

d
C ax(t} + Gx(t) = Bu(t)

[ G; Gy G3]
-GJ 0 0
-G] 0 0

B; 0
0 0
0 B,




PRIMA does not preserve structure

e PRIMA = projection onto n-th block Krylov subspace:

RangeV, = Kn(A,R)

e Block structure of the data matrices:

C;y 0 O] [ G; Gy G3] B; O]
C=|0 C, o0, G=|-GJ 0 0|, B=|0 o0
0 0 0 -GJ 0 0 0 By

e PRIMA reduced-order matrices:

=[] - [0 ==




SPRIM does preserve block structure

e Structure of SPRIM reduced-order matrices:

Ci; 0 O [ G Gy G3] By 0]
C,=|0 C, 0/,Gp,=|-GJ 0 0|,B,=|0 0
0 0 O] -Gl 0 o0 0 By

e Projection onto Krylov subspaces guarantees a Padé-type
property:

Hn(s) = H(s) + O ((s — s0))
with g the same integer as for PRIMA

e For SPRIM, we actually observe higher accuracy



An RCL network with mostly C’s and L’s
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SPRIM

e Let V5 be any matrix such that

e Recall:

C =

C; 0 O]
0 Cyr O
0 0 0

RangeV; = K5(A,R)

[ @ ©9 @

-GJ 0

2.
—-G3 0

0
0

B; 0
0 0
0 B,




SPRIM, continued

e Partition V5 accordingly:

_V(l)_

N n
v

oForl=1,2,3: |
If Ranng“) < n, replace Vg“) by matrix of full column rank



SPRIM, continued

e Set

e Block structure is preserved:

Cfn,:

_~1
0
0

0
Co
0

0
)
0

7Gn

e K;5(A,R) =RangeV; C RangeV,

B; 0
0 O
0 Bo]

Padé-type property!



An RCL network with mostly C’s and L’s

Exact and models corresponding to n = 90



An RCL network with mostly C’s and
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A package example

— — — PRIMA model
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A package example
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Padeé-type property of SPRIM

e General theory of projection onto block Krylov subspaces:
PRIMA and SPRIM produce Padé-type models with

Hy(s) = H(s) + O ((s —s0)?), where §> |A/m)|

e Theorem (F., '08)
The n-th SPRIM model satisfies

H,(s) = H(s) + O ((s —s0)?), where §>2|n/m)|
e [wice as accurate as PRIMA!

e T his is a consequence of structure preservation!



Outline

e Numerical simulation of electronic circuits

e DAES arising in VLSI interconnect analysis

e Structure-preserving model order reduction

e [ hick restarts and multiple expansion points
(with Efrem B. Rensi)

e Open problems



Need for restarts

e [0 obtain a Padé-type property, projection matrix V, with

K;:(A,R) C RangeVy

e Need to first generate V5 such that

Kﬁ(A,R) — RaHQQVﬁ
e Use suitable (band) variant of the Arnoldi process
e But: prohibitive for large n

e Remedy: (thick) restarts



Using restarts

e Motivated by recent work by Eiermann et al.
e Restart after each cycle of » Arnoldi steps

e EXxtract ‘good’ eigenvector information Y from the last batch
of r Arnoldi vectors

e Use the columns of Y as the first vectors in the next cycle
e Repeat

e Project with

VvV, = vl v(©) ... V(l)]



‘Good’ eigenvector information

e Recall:

H(s) =BT <I e — e A>_1R

e Poles of H are of the form

1
SZSO+X, A€ o(A)

e ‘Good’ eigenvector information:

Good approximate eigenvectors corresponding to poles close
to the frequency range of interest



Without restarts
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Obtaining ‘good’ eigenvector information

rel err = 0.709149

Single point sp = 1 x 108



Obtaining ‘good’ eigenvector information

rel err = 0.79426

Single point sg = 250 x 108



Obtaining ‘good’ eigenvector information

rel err = 0.987105

Single point sg = (1 4+ 2501i) x 108



Changing expansion points

e EXxtract ‘good’ eigenvector information Y from the last batch
of r Arnoldi vectors

e At each restart allow for changing expansion point:

A(sg) = —(s0C+G) 1 C A(Go)=-(5C+G)tC

e ‘'Converged’ eigenvectors v do not change:
A(sg)v=Av A(Gg)v=2Av
where

= 50 — S0

> | =
> =



Multiple expansion points

e Due to changing expansion points

RORNG (1)

: ) ooy Y s

the resulting reduced-order model is characterized by a
Hn(s)=H(S)—|—(9<<S—ng))q‘j), j=1,2,...,1

e Except for s(gl), the other expansion points are complex



Single vs. multiple expansion points
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Single vs. multiple expansion points

rel err =0.011652 rel err =0.0117639

Single point — no restarts Three points — thick restarts
n = 80 n =42
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Open problems

e SPRIM preserves the block structures of RCL networks
e Preservation of the fine structure of the blocks?
e Optimal structure-preserving Padé-type reduction?

e Automated selection of changing expansion points to make
thick restarts practical?

e \We still cannot handle RCL descriptor systems as large as
we would need to

e Meaningful reduced-order models for very inaccurate system
data?



