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1. Moment-angle complexes and manifolds.

K an (abstract) simplicial complex on the set [m] = {1, . . . , m}.

I = {i1, . . . , ik} ∈ K a simplex. Always assume ∅ ∈ K.
Allow {i} /∈ K for some i (ghost vertices).

Consider the unit polydisc in Cm,

Dm =
{
(z1, . . . , zm) ∈ Cm : |zi| 6 1, i = 1, . . . , m

}
.

Given I ⊂ [m], set

BI :=
{
(z1, . . . , zm) ∈ Dm : |zj| = 1 for j /∈ I

}
.

Following [BP] define the moment-angle complex

ZK =
⋃

I∈K
BI ⊂ Dm

It is invariant under the coordinatewise action of the standard torus

Tm =
{
(z1, . . . , zm) ∈ Cm : |zi| = 1, i = 1, . . . , m

}

on Cm.
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Constr 1 (K-power). Let X be a space, and W a subspace of X. Given
I ⊂ [m], set

(X, W )I =
{
(x1, . . . , xm) ∈ Xm : xj ∈ A for j /∈ I

} ∼=
∏

i∈I

X ×
∏

i/∈I

W,

and define the K-power (also known as the polyhedral product) of (X, W ) as

(X, W )K =
⋃

I∈K
(X, W )I ⊂ Xm.

Then ZK = (D,T)K, where T is the unit circle.

Another important example is the complement of the coordinate subspace
arrangement corresponding to K:

U(K) = Cm \
⋃

{i1,...,ik}/∈K
{z ∈ Cm : zi1 = . . . = zik = 0},

namely,

U(K) = (C,C×)K,

where C× = C \ {0}.

Clearly, ZK ⊂ U(K). Moreover, ZK is a Tm-equivariant deformation retract of
U(K) for every K [BP, Th. 8.9].
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Prop 1 ([BP]). Assume |K| ∼= Sn−1 (a sphere triangulation with m vertices).

Then ZK is a closed manifold of dimension m + n.

We refer to such ZK as moment-angle manifolds.

If K = KP is the dual triangulation of a simple convex polytope P , then

ZP = ZKP
embeds in Cm as a nondegenerate (transverse) intersection of m−n

real quadratic hypersurfaces [BM], [BP]. Therefore, ZP can be smoothed

canonically.

Now we shall look at a wider class of simplicial complexes K:

starshaped spheres, or underlying complexes of complete simplicial fans.
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A set of vectors a1, . . . ,ak ∈ Rn generates a convex polyhedral cone

σ = {µ1a1 + . . . + µkak : µi ∈ R, µi > 0}.
A cone is rational if its generators can be chosen from Zn ⊂ Rn, and is strongly

convex if it does not contain a line. A cone is simplicial (respectively, regular)

if it is generated by a part of basis of Rn (respectively, Zn).

A fan is a finite collection Σ = {σ1, . . . , σs} of strongly convex cones in Rn

such that every face of a cone in Σ belongs to Σ and the intersection of any

two cones in Σ is a face of each. A fan Σ is rational (respectively, simplicial,

regular) if every cone in Σ is rational (respectively, simplicial, regular). A fan

Σ = {σ1, . . . , σs} is complete if σ1 ∪ . . . ∪ σs = Rn.

Let Σ be a simplicial fan in Rn with m one-dimensional cones generated by

a1, . . . ,am. Its underlying simplicial complex is

KΣ =
{
I ⊂ [m] : {ai : i ∈ I} spans a cone of Σ

}

Note: Σ is complete iff |KΣ| is a triangulation of Sn−1.
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Now consider the linear map

ΛR : Rm → Rn, ei 7→ ai,

where e1, . . . ,em is the standard basis of Rm. Set

Rm
> = {(y1, . . . , ym) ∈ Rm : yi > 0},

and define

RΣ := exp(Ker ΛR) =
{
(y1, . . . , ym) ∈ Rm

> :
m∏

i=1

y
〈ai,u〉
i = 1 for all u ∈ Rn

}
,

Note: RΣ
∼= Rm−n

> if Σ is complete (or contains an n-dimensional cone).

Both Rm
> and its subgroup RΣ act on the complement U(KΣ) ⊂ Cm by coor-

dinatewise multiplications.

Thm 1. Let Σ be a complete simplicial fan in Rn with m one-dimensional
cones, and let K = KΣ be its underlying simplicial complex. Then

(a) the group RΣ acts on U(K) freely and properly, and the quotient U(K)/RΣ
has a canonical structure of a smooth (m + n)-dimensional manifold;

(b) U(K)/RΣ is Tm-equivariantly homeomorphic to ZK.

Therefore, ZK can be smoothed canonically.
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Rem 1. The construction of the smooth structure on ZKΣ
from Thm 1 does

depend on the geometry of the fan Σ.

However, we expect that the smooth structures coming from fans Σ and Σ′
are equivalent whenever the underlying simplicial complexes KΣ and KΣ′ are

the same. This question is equivalent to that the quotients ZKΣ
/Tm and

ZKΣ′/T
m are diffeomorphic as manifolds with corners whenever KΣ = KΣ′. It

is true in the polytopal case, and also for those fans Σ which are shellable.

Question 1. Describe the class of sphere triangulations K for which the

moment-angle manifold ZK admits a smooth structure.
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2. Complex-analytic structures.

We shall show that the even-dimensional moment-angle manifold ZK corre-

sponding to a complete simplicial fan admits a structure of a complex man-

ifold. The idea is to replace the action of Rm−n
> on U(K) (whose quotient

is ZK) by a holomorphic action of C
m−n

2 on the same space.

Rem 2. Complex structures on polytopal moment-angle manifolds ZP were

described by Bosio and Meersseman. Existence of complex structure on

moment-angle manifolds corresponding to complete simplicial fans has been

also recently and independently established by Tambour.

Assume m − n is even from now on. We can always achieve this by formally

adding an ‘empty’ one-dimensional cone to Σ; this corresponds to adding a

ghost vertex to K, or multiplying ZK by a circle. The column of matrix ΛR
corresponding to the ‘empty’ 1-cone is set to be zero.

Set ` = m−n
2 .

8



Constr 2. Choose a linear map Ψ: C` → Cm satisfying two conditions:

(a) Re ◦Ψ: C` → Rm is a monomorphism.

(b) ΛR ◦Re ◦Ψ = 0.

This corresponds to choosing a complex structure and specifying a complex

basis in the real vector space Ker ΛR
∼= R2`. We also obtain that the composite

map of the top line in the following diagram is zero:

C` Ψ−→ Cm Re−−→ Rm ΛR−−→ Rnyexp

yexp

yexp

(C×)m |·|−→ Rm
>

expΛR−−−−−→ Rn
>

where | · | denotes the map (z1, . . . , zm) 7→ (|z1|, . . . , |zm|). Now set

CΨ,Σ = expΨ(C`) =
{(

e〈ψ1,w〉, . . . , e〈ψm,w〉) ∈ (C×)m
}

where w = (w1, . . . , w`) ∈ C`, ψi denotes the ith row of the m × `-matrix

Ψ = (ψij).

Then CΨ,Σ
∼= C` is a complex-analytic (but not algebraic) subgroup in (C×)m.

It acts on U(K) by holomorphic transformations.
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Ex 1. Let K be empty on 2 elements (that is, K has two ghost vertices).
We therefore have n = 0, m = 2, ` = 1, and ΛR : R2 → 0 is a zero map.
Let Ψ: C→ C2 be given by z 7→ (z, αz) for some α ∈ C, so that

C = CΨ,Σ =
{
(ez, eαz)} ⊂ (C×)2.

Condition (b) of Constr 2 is void, while (a) is equivalent to that α /∈ R.
Then expΨ: C→ (C×)2 is an embedding, and the quotient (C×)2/C with the
natural complex structure is a complex torus T2

C with parameter α ∈ C:

(C×)2/C ∼= C/(Z⊕ αZ) = T2
C(α).

Similarly, if K is empty on 2` elements (so that n = 0, m = 2`), we may obtain
any complex torus T2`

C as the quotient (C×)2`/CΨ,Σ [Meersseman].

Thm 2. Let Σ be a complete simplicial fan in Rn with m one-dimensional
cones, and let K = KΣ be its underlying simplicial complex. Assume that
m− n = 2`. Then

(a) the holomorphic action of the group CΨ,Σ on U(K) is free and proper, and
the quotient U(K)/CΨ,Σ has a canonical structure of a compact complex
manifold of complex dimension m− `;

(b) there is a Tm-equivariant diffeomorphism U(K)/CΨ,Σ
∼= ZK defining a

complex structure on ZK in which Tm acts holomorphically. 10



Rem 3. Unlike the smooth structure, the complex structure on ZK depends
on both the geometry of Σ and the choice of Ψ. (The latter is already clear
from the torus example (Ex 1).

Ex 2 (Hopf manifold). Let Σ be the complete fan in Rn whose cones are
generated by all proper subsets of n + 1 vectors e1, . . . ,en,−e1 − . . .− en.

To make m− n even we add one ‘empty’ 1-cone. We have m = n + 2, ` = 1.
Then ΛR : Rn+2 → Rn is given by the matrix (0 I −1), where I is the unit n×n

matrix, and 0, 1 are the n-columns of zeros and units respectively.

We have that K is the boundary of an n-dim simplex with n + 1 vertices and
1 ghost vertex, ZK ∼= S1 × S2n+1, and U(K) = C× × (Cn+1 \ {0}).
Take Ψ: C→ Cn+2, z 7→ (z, αz, . . . , αz) for some α ∈ C, α /∈ R. Then

C = CΨ,Σ =
{
(ez, eαz, . . . , eαz): z ∈ C

}
⊂ (C×)n+2,

and ZK acquires a complex structure as the quotient U(K)/C:

C× ×
(
Cn+1 \ {0}

)/
{(t,w)∼ (ezt, eαzw)} ∼=

(
Cn+1 \ {0}

)/
{w∼ e2πiαw},

where t ∈ C×, w ∈ Cn+1 \ {0}. The latter quotient of Cn+1 \ {0} is known as
the Hopf manifold.
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3. Holomorphic bundles over toric varieties and Hodge numbers.

Manifolds ZK corresponding to complete regular simplicial fans are total

spaces of holomorphic principal bundles over toric varieties with fibre a com-

plex torus, by a generalisation of the construction of Meersseman and Ver-

jovsky. This allows us to calculate invariants of complex structures on ZK.

A toric variety is a normal algebraic variety X on which an algebraic torus

(C×)n acts with a dense orbit.

Toric varieties are classified by rational fans. Under this correspondence,

complete fans ←→ compact varieties

normal fans of polytopes ←→ projective varieties

regular fans ←→ nonsingular varieties

simplicial fans ←→ orbifolds
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Σ complete, simplicial, rational;

a1, . . . ,am primitive integral generators of 1-cones.

Constr 3 (‘Cox construction’). Let ΛC : Cm → Cn, ei 7→ ai,

expΛC : (C×)m → (C×)n,

(z1, . . . , zm) 7→
( m∏

i=1

z
ai1
i , . . . ,

m∏

i=1

z
ain
i

)

Set GΣ = Ker expΛC.
This is an (m− n)-dimensional algebraic subgroup in (C×)m.

It acts almost freely (with finite isotropy subgroups) on U(KΣ).

If Σ is regular, then GΣ
∼= (C×)m−n and the action is free.

XΣ = U(KΣ)/GΣ the toric variety associated to Σ.

The quotient torus (C×)m/GΣ
∼= (C×)n acts on XΣ with a dense orbit.
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Observe that CΨ,Σ ⊂ GΣ as a complex `-dimensional subgroup.

Prop 2.

(a) The toric variety XΣ is homeomorphic to the quotient of ZKΣ
by the

holomorphic action of GΣ/CΨ,Σ.

(b) If Σ is regular, then there is a holomorphic principal bundle ZKΣ
→ XΣ

with fibre the compact complex torus GΣ/CΨ,Σ of dimension `.

Rem 4. For singular varieties XΣ the quotient projection ZKΣ
→ XΣ is a holo-

morphic principal Seifert bundle for an appropriate orbifold structure on XΣ

(same as in the projective case of [Meersseman–Verjovsky]).
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Given a complex n-dimensional manifold M , there is a decomposition
Ω∗
C(M) =

⊕
Ωp,q(M) of the space of differential C-forms on M into a di-

rect sum of the subspaces of (p, q)-forms for 1 6 p, q 6 n, and the Dolbeault
differential ∂̄ : Ωp,q(M) → Ωp,q+1(M).
hp,q(M) = dimH

p,q
∂̄

(M): the Hodge numbers of M .

The Dolbeault cohomology of a complex torus is given by

H
∗,∗
∂̄

(T2`
C ) ∼= Λ[ξ1, . . . , ξ`, η1, . . . , η`],

where ξ1, . . . , ξ` ∈ H
1,0
∂̄

(T2`
C ), η1, . . . , η` ∈ H

0,1
∂̄

(T2`
C ). Hence, hp,q(T2`

C ) =
(

`
p

)(
`
q

)
.

The Dolbeault cohomology of a complete nonsingular toric variety XΣ is given
by [Danilov–Jurkiewicz]:

H
∗,∗
∂̄

(XΣ) ∼= C[v1, . . . , vm]/(IKΣ
+ JΣ),

where vi ∈ H
1,1
∂̄

(XΣ),

IKΣ
=

(
vi1 · · · vik : {i1, . . . , ik} /∈ KΣ

)
(the Stanley–Reisner ideal),

JΣ = (
∑m

k=1 akjvk, 1 6 j 6 n).

We have hp,p(XΣ) = hp, where (h0, h1, . . . , hn) is the h-vector of KΣ, and
hp,q(XΣ) = 0 for p 6= q.
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By an application of the Borel spectral sequence to the holomorphic bundle
ZK → XΣ we obtain the following description of the Dolbeault cohomology.

Thm 3. Let Σ be a complete rational nonsingular fan. Then the Dolbeault
cohomology group H

p,q
∂̄

(ZK) is isomorphic to the (p, q)-th cohomology group
of the differential bigraded algebra

[
Λ[ξ1, . . . , ξ`, η1, . . . , η`]⊗H

∗,∗
∂̄

(XΣ), d
]

whose differential d of bidegree (0,1) is defined on the generators as

dvi = dηj = 0, dξj = c(ξj), 1 6 i 6 m, 1 6 j 6 `,

where c : H
1,0
∂̄

(T2`
C ) → H2(XΣ,C) = H

1,1
∂̄

(XΣ) is the first Chern class map of
the torus principal bundle ZK → XΣ.

This result may be compared to the analogous description of the ordinary
cohomology of ZK from [BP]:

Thm 4. H∗(ZK) is isomorphic to the cohomology of the dga
[
Λ[u1, . . . , um−n]⊗H∗(XΣ), d

]
,

with deguj = 1, deg vi = 2, and differential d defined on the generators as

dvi = 0, duj = γj1v1 + . . . + γjmvm, 1 6 i 6 m, 1 6 j 6 m− n.
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Thm 5. Let ZK be as in Thm 3, and let k be the number of ghost vertices

in K. Then the Hodge numbers hp,q = hp,q(ZK) satisfy

(a)
(
k−`
p

)
6 hp,0 6

(
[k/2]

p

)
for p > 0;

(b) h0,q =
(
`
q

)
for q > 0;

(c) h1,q = (`− k)
(

`
q−1

)
+ h1,0

(
`+1

q

)
for q > 1;

(d) `(3`+1)
2 − h2(K)− `k + (` + 1)h2,0 6 h2,1 6 `(3`+1)

2 − `k + (` + 1)h2,0.

Rem 5. At most one ghost vertex is required to make dimZK = m + n even.

Note that k 6 1 implies hp,0(ZK) = 0, so that ZK does not have holomorphic

forms of any degree in this case.

If ZK is a torus, then m = k = 2`, and h1,0(ZK) = h0,1(ZK) = `. Otherwise

Thm 5 implies that h1,0(ZK) < h0,1(ZK), and therefore ZK is not Kähler (this

was observed by [Meersseman] in the polytopal case).
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Ex 3 (Calabi–Eckmann manifold). Let XΣ = CP p × CP q with p 6 q, so n =
p + q, m = n + 2 and ` = 1. The cohomology ring is C[x, y]/(xp+1, yq+1).
Choose Ψ = (1, . . . ,1, α, . . . , α)t where the number of units is p+1 and α /∈ R.
This provides ZK ∼= S2p+1 × S2q+1 with a structure of a complex manifold.
It is the total space of a holomorphic principal bundle over CP p × CP q with
fibre a complex torus C/(Z⊕ αZ), a Calabi–Eckmann manifold CE(p, q).

By Thm 3, H
∗,∗
∂̄

(
CE(p, q)

) ∼= H
[
Λ[ξ, η]⊗ C[x, y]/(xp+1, yq+1), d

]
,

where dx = dy = dη = 0 and dξ = x− y for an appropriate choice of x, y.
We therefore obtain

H
∗,∗
∂̄

(
CE(p, q)

) ∼= Λ[ω, η]⊗ C[x]/(xp+1),

where ω ∈ H
q+1,q
∂̄

(
CE(p, q)

)
is the cohomology class of the cocycle ξxq+1−yq+1

x−y .
This calculation is originally due to Borel.

Ex 4. The product S3 × S3 × S5 × S5 has has two complex structures as
a product of Calabi–Eckmann manifolds, namely, CE(1,1) × CE(2,2) and
CE(1,2)×CE(1,2).

In the first case h2,1 = 1, and h2,1 = 0 in the second.
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