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§0. Toric manifolds and fans

.

Definition

.

.

.

. ..

.

.

A toric variety X n of dimC = n
⇐⇒
a normal algebraic variety of dimC = n with an effective action of
(C∗)n having an open dense orbit.

(C∗)n = open dense orbit ⊂ X n x (C∗)n

Toric manifold
def
= compact smooth toric variety
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.

Fundamental theorem in toric geometry

.

.

.

. ..

.

.

{ toric varieties X n x (C∗)n} ⇐⇒ {fans in Rn}

Hirzebruch surface
Fa = P(C ⊕O(a)) → CP1

(a = −2)

v1

v2

v3

v4

K =
˘

∅, {1}, {2}, {3}, {4},

{1, 2}, {2, 3}, {3, 4}, {4, 1}
¯

A (simplicial) fan ∆X may be viewed as a pair (K , {vi}).
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Correspondence X → ∆X when X is a toric manifold

Let X1, . . . , Xm be invariant divisors of a toric manifold X
each is fixed under some C∗-subgroup of (C∗)n.

We deduce two data.

[1] K := {I ⊂ {1, . . . , m} |
⋂

i∈I Xi 6= ∅}
abstract simplicial complex of dim n − 1

[2] vi ∈ Zn = Homalg (C∗, (C∗)n) is characterized by

.

.

.

1 vi (C∗) fixes Xi pointwise,

.

.

.

2 vi (g)∗(ξ) = gξ for ξ ∈ (τX |Xi
)/τXi .

The pair (K , {vi}m
i=1) is essentially the fan ∆X .

M. Masuda Cohomological rigidity problem etc.
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Interpretation via equivariant cohomology

Let X be a toric manifold of dimC = n.

H∗
(C∗)n(X ) := H∗(E (C∗)n ×(C∗)n X )

Remember X1, . . . , Xm are invariant divisors of X and
(1) K := {I ⊂ {1, . . . , m} |

⋂
i∈I Xi 6= ∅}

• xi := Poincaré dual of Xi ∈ H2
(C∗)n(X ).

.

Lemma

.

.

.

. ..

.

.

H∗
(C∗)n(X ) = Z[x1, . . . , xm]/(

∏
i∈I xi | I /∈ K ) as rings

M. Masuda Cohomological rigidity problem etc.
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Remember
(2) vi ∈ Zn = Homalg (C∗, (C∗)n)

We note

H∗
(C∗)n(X ) := H∗(E (C∗)n ×(C∗)n X ) algebra over H∗(B(C∗)n)

through π∗ : H∗(B(C∗)n) → H∗
(C∗)n(X ).

.

Lemma

.

.

.

. ..

.

.

There exists a unique vi ∈ H2(B(C∗)n) for each i satisfying

π∗(u) =
m∑

i=1

〈u, vi 〉xi ∈ H2
(C∗)n(X ) for ∀u ∈ H2(B(C∗)n)

• vi ∈ H2(B(C∗)n) = [BC∗, B(C∗)n] = Homalg (C∗, (C∗)n) = Zn
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§1. Cohomological rigidity problem and related problems

H∗
(C∗)n(X ) distinguishes toric manifolds X as varieties.

.

Question

.

.

.

. ..

.

.

What does the cohomology ring H∗(X ) distinguish?

H∗(B(C∗)n)
π∗
−→ H∗

(C∗)n(X ) ³ H∗(X )

.

Theorem (Danilov(1978 general case)-Jurkiewicz(projective case))

.

.

.

. ..

.

.

Let ∆X = (K , {vi}m
i=1). Then H∗(X ) = Z[x1, . . . , xm]/I where

deg xi = 2 and the ideal I is generated by

.

.

.

1
∏

i∈I xi for I /∈ K

.

.

.

2
∑m

i=1〈u, vi 〉xi for u ∈ Zn = H2(B(C∗)n)

M. Masuda Cohomological rigidity problem etc.
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.

A simple observation

.

.

.

. ..

.

.

H∗(Fa) = Z[x , y ]/(x2, y(y + ax)) (a ∈ Z)

One can easily check
H∗(Fa) ∼= H∗(Fb) ⇐⇒ a ≡ b (2) ⇐⇒ Fa

∼= Fb diffeo

.

Cohomological rigidity problem for toric manifolds

.

.

.

. ..

.

.

H∗(X ) ∼= H∗(Y ) as graded rings =⇒ X ∼= Y diffeo (or homeo) ?

.

Homotopical rigidity problem for toric manifolds

.

.

.

. ..

.

.

X ' Y homotopy eq. =⇒ X ∼= Y diffeo (or homeo) ?

These are toric versions of Poincaré conjecture.

No counterexamples are known and there are some partial
affirmative solutions.

M. Masuda Cohomological rigidity problem etc.
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No counterexamples are known and there are some partial
affirmative solutions.

M. Masuda Cohomological rigidity problem etc.



. . . . . .

Toric manifolds and fans
Cohomological rigidity problem and related problems

Topological toric manifolds
Face numbers of simplicial cell manifolds

Bott manifolds
Pontryagin class
Real toric manifolds
Real Bott manifolds

.

A simple observation

.

.

.

. ..

.

.

H∗(Fa) = Z[x , y ]/(x2, y(y + ax)) (a ∈ Z)

One can easily check
H∗(Fa) ∼= H∗(Fb) ⇐⇒ a ≡ b (2) ⇐⇒ Fa

∼= Fb diffeo

.

Cohomological rigidity problem for toric manifolds

.

.

.

. ..

.

.

H∗(X ) ∼= H∗(Y ) as graded rings =⇒ X ∼= Y diffeo (or homeo) ?

.

Homotopical rigidity problem for toric manifolds

.

.

.

. ..

.

.

X ' Y homotopy eq. =⇒ X ∼= Y diffeo (or homeo) ?

These are toric versions of Poincaré conjecture.
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Bott manifolds

A Bott tower of height n is a sequence of CP1-bundles

Mn
CP1

−→ Mn−1
CP1

−→ · · · CP1

−→ M2
CP1

−→ M1
CP1

−→ M0 = {a point}

where Mi = P(C⊕ Li ) → Mi−1 and Li → Mi−1 is a C-line b’dle.

• We call Mn a Bott manifold, M2 is a Hirzebruch surface.

.

Theorem

.

.

.

. ..

.

.

Cohomological rigidity holds for Bott manifolds Mn’s
when n = 3 (Choi-M-Suh) and n = 4 (Choi).

M. Masuda Cohomological rigidity problem etc.
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.

Problem (Invariance of Pontryagin classes)

.

.

.

. ..

.

.

X , Y : toric manifolds
If ϕ : H∗(X ) → H∗(Y ) is an iso. =⇒ ϕ(p(X )) = p(Y )?

This problem is purely algebraic because
H∗(X ) = Z[x1, . . . , xm]/I and it is known that

p(X ) =
m∏

i=1

(1 + x2
i ).

• Affirmative for Bott manifolds (Choi, 2010)

M. Masuda Cohomological rigidity problem etc.
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Real toric manifolds

X (R) = the set of real points in a toric manifold X

.

Example

.

.

.

. ..

.

.

.

.

.

1 When X = CPn, X (R) = RPn

.

.

.

2 When X = Fa (Hirzebruch surface), X (R) is a torus or Klein
bottle.

• X (R) is not simply conn. and often an aspherical manifold.
• H∗(X (R); Z2) = H2∗(X ; Z) ⊗ Z2

.

Cohomological rigidity problem for real toric manifolds

.

.

.

. ..

.

.

H∗(X (R); Z2) ∼= H∗(Y (R); Z2) =⇒ X (R) ∼= Y (R) diffeo?

Not true in general but true in some cases.
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Real Bott manifolds

A real Bott tower of height n is a sequence of RP1-bundles

Mn
RP1

−→ Mn−1
RP1

−→ · · · RP1

−→ M2
RP1

−→ M1
RP1

−→ M0 = {a point}

where Mi = P(R⊕ Li ) → Mi−1 and Li → Mi−1 is a R-line b’dle.

• We call Mn a real Bott manifold.

• M1 = RP1 = S1, M2 is a torus or Klein bottle.

• Mn admits a flat Riemannian metric.
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• Li → Mi−1 is characterized by w1(Li ) ∈ H1(Mi−1; Z2) ∼= Zi−1
2 .

Putting w1(Li ) in the i-th column, we obtain

A =

0

B

B

B

B

B

B

@

0 A1
2 A1

3 . . . A1
n−1 A1

n

0 0 A2
3 . . . A2

n−1 A2
n

...
...

. . .
...

...
...

0 0 0 . . . 0 An−1
n

0 0 0 . . . 0 0

1

C

C

C

C

C

C

A

(Ai
j ∈ Z2 = {0, 1})

and Mn is determined by A, so we denote Mn by M(A).

• H∗(M(A); Z2) = Z2[x1, . . . , xn]/(x2
j + xj

∑j−1
i=1 Ai

jxi | j = 1, . . . , n)
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.

Theorem (Choi-M-Oum, 2010)

.

.

.

. ..

.

.

Let A and B be upper triangular binary matrices with zero
diagonals. The following are equivalent.

.

.

.

1 M(A) ∼= M(B) diffeo,

.

.

.

2 H∗(M(A); Z2) ∼= H∗(M(B); Z2) as rings,

.

.

.

3 A ! B via three matrix operations (Op1), (Op2), (Op3)

.

.

.

4 DA ! DB via three graph operations (Op1)’, (Op2)’, (Op3)’

where DA is the labeled acyclic digraph associated with A.

(Op1) is conjugation by a permutation matrix
(Op2) is a variant of simultaneous column addition
(Op3) is a row addition under certain condition
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Example (The case n = 3)

.

.

.

. ..

.

.

There are 23 = 8 upper triangular binary matrices of size 3 with
zero diagonal entries.

1?. The zero matrix of size 3. M(A) = (S1)3.

2.
0

@

0 0 0
0 0 1
0 0 0

1

A ,

0

@

0 0 1
0 0 0
0 0 0

1

A ,

0

@

0 1 0
0 0 0
0 0 0

1

A ,

0

@

0 0 1
0 0 1
0 0 0

1

A

M(A) = S1 × (Klein bottle).

3?.
0

@

0 1 1
0 0 0
0 0 0

1

A

M(A) = P(γ ⊕ γ)
T 2

−→ S1.

4.
0

@

0 1 0
0 0 1
0 0 0

1

A ,

0

@

0 1 1
0 0 1
0 0 0

1

A
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{Diffeomorphism classes of real Bott manifolds of dim n}
⇐⇒
{Upper triangular binary matirces of size n}/(Op1), (Op2), (Op3)

⇐⇒
{Labeled acyclic digraphs with n vertices}/(Op1)′, (Op2)′, (Op3)′

The number of real Bott manifolds.

n 1 2 3 4 5 6 7 8 9 10
Diffn 1 2 4 12 54 472 8,512 328,416 ? ?
Orin 1 1 2 3 8 29 222 3,607 131,373 ?

Sympn 1 2 6 31 416
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.

Theorem (Unique decomposition property)

.

.

.

. ..

.

.

The decomposition of real Bott manifolds into a product of
indecomposable real Bott manifolds is unique up to permutation of
factors.

.

Corollary (Cancellation property)

.

.

.

. ..

.

.

If S1 ×M ∼= S1 ×M ′ for real Bott manifolds M, M ′, then M ∼= M ′.

The cancellation property does not hold for compact flat
Riemannian manifolds in general (Charlap 1965).

M. Masuda Cohomological rigidity problem etc.



. . . . . .

Toric manifolds and fans
Cohomological rigidity problem and related problems

Topological toric manifolds
Face numbers of simplicial cell manifolds

Bott manifolds
Pontryagin class
Real toric manifolds
Real Bott manifolds

.

Theorem (Unique decomposition property)

.

.

.

. ..

.

.

The decomposition of real Bott manifolds into a product of
indecomposable real Bott manifolds is unique up to permutation of
factors.

.

Corollary (Cancellation property)

.

.

.

. ..

.

.

If S1 ×M ∼= S1 ×M ′ for real Bott manifolds M, M ′, then M ∼= M ′.

The cancellation property does not hold for compact flat
Riemannian manifolds in general (Charlap 1965).

M. Masuda Cohomological rigidity problem etc.



. . . . . .

Toric manifolds and fans
Cohomological rigidity problem and related problems

Topological toric manifolds
Face numbers of simplicial cell manifolds

Bott manifolds
Pontryagin class
Real toric manifolds
Real Bott manifolds

.

Theorem (Unique decomposition property)

.

.

.

. ..

.

.

The decomposition of real Bott manifolds into a product of
indecomposable real Bott manifolds is unique up to permutation of
factors.

.

Corollary (Cancellation property)

.

.

.

. ..

.

.

If S1 ×M ∼= S1 ×M ′ for real Bott manifolds M, M ′, then M ∼= M ′.

The cancellation property does not hold for compact flat
Riemannian manifolds in general (Charlap 1965).

M. Masuda Cohomological rigidity problem etc.



. . . . . .

Toric manifolds and fans
Cohomological rigidity problem and related problems

Topological toric manifolds
Face numbers of simplicial cell manifolds

Bott manifolds
Pontryagin class
Real toric manifolds
Real Bott manifolds

.

Theorem (H. Ishida 2010)

.

.

.

. ..

.

.

The following are equivalent for real Bott manifolds M.

.

.

.

1 M admits a Kähler structure.

.

.

.

2 M admits a symplectic structure.

.

.

.

3 M is cohomologically symplectic.

Conclusion.
(Real) Bott manifolds have several “rigidity” properties.
So (real) toric manifolds probably have some rigidity
property.
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§2. Topological toric manifolds
(by Ishida-Fukukawa-M, 2010)

.

Local charts of a toric manifold

.

.

.

. ..

.

.

A toric manifold X n x (C∗)n has invariant local charts {(Uσ, ϕσ)}
such that

ϕσ : Uσ
≈−→ Cn x (C∗)n sum of 1-dim algebraic rep’s.

Transition functions are Laurent monomials

(w1, . . . , wn) → (
n∏

j=1

w
a1j

j , . . . ,
n∏

j=1

w
anj

j ) (aij ∈ Z)
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.

Definition (Topological toric manifold)

.

.

.

. ..

.

.

A closed smooth manifold M2n x (C∗)n is topological toric if

.

.
.

1 the action has an open dense orbit,

.

.

.

2 M has local charts each equivariantly diffeomorphic to sum of
1-dim smooth rep’s of (C∗)n.

• Homalg (C∗, C∗) = Z g 7→ g v for v ∈ Z

However, since C∗ = R>0 × S1 as smooth groups,

• Homsmooth(C∗, C∗) = C × Z g 7→ |g |b(g/|g |)c for (b, c) ∈ C × Z
This homomorphism is algebraic ⇐⇒ b = c.

{toric manifolds} ( {topological toric manifolds}
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CP2#CP2 is not toric but topological toric. 　

It can be obtained by gluing four C2 as follows.

C2 (w−1
1 , w−1

1 w̄1w2) ←−−−− (w1, w2) C2y y
C2 (w̄−1

1 w̄2, w̄1w
−1
1 w̄−1

2 ) ←−−−− (w1w
−1
2 , w−1

2 ) C2

Transition funcitons are Laurent monomials in w1, w2 and
w̄1, w̄2.
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A (simplicial) fan was a pair (K , {vi}) where

.

. .
1 K is an abstract simplicial complex,

.

.
.

2 vi ∈ Homalg (C∗, (C∗)n) = Zn.

satisfying certain conditions.

.

Definition (Topological fan)

.

.

.

. ..

.

.

A (simplicial) topological fan is a pair (K , {βi}) where

.

.

.

1 K is an abstract simplicial complex,

.

.

.

2 βi = (bi , ci ) ∈ Homsmooth(C∗, (C∗)n) = Cn × Zn.

satisfying certain conditions.

A topological fan is an ordinary fan when bi = ci .
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Quotient construction of toric manifolds work in our setting.
To ∆ = (K , {βi}m

i=1) topological fan, we have

.

.
.

1 U(K ) := Cm\Z x (C∗)m

.

.
.

2 βi ∈ Homsmooth(C∗, (C∗)n) = Cn × Zn define

λ :=
m∏

i=1

βi : (C∗)m → (C∗)n.

Then X (∆) := U(K )/ ker λ x (C∗)m/ ker λ = (C∗)n

.

Theorem (Ishida-Fukukawa-M, 2010)

.

.

.

. ..

.

.

The correspondence ∆ → X (∆) gives a bijection:

{complete non-singular topological fans}
→ {Omnioriented topological toric manifolds}
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Topological toric manifolds M2n x (C∗)n have similar
properties to toric manifolds.

For instance, M/(S1)n is a manifold with corners s.t.

.

.

.

1 every face (even M/(S1)n itself) is contractible,

.

.

.

2 any intersection of faces is connected unless empty.

So, M/(S1)n looks like a simple polytope and hence
H∗(M) is generated by H2(M) as a ring.

But M/(S1)n is not necessarily a simple polytope.
∃ a topological toric manifold M8 s.t. ∂(M/(S1)4) is dual to
the Barnette sphere (a non-polytopal simplicial 3-sphere).
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Quasitoric manifolds (by Davis-Januszkiewicz, 1991)

.

Definition

.

.

.

. ..

.

.

A quasitoric manifold is a closed smooth manifold M2n with
smooth action of (S1)n s.t.

.

.

.

1 the action is locally isomorphic to a rep. of (S1)n,

.

.

.

2 M/(S1)n is a simple polytope.

.

Theorem (Ishida-Fukukawa-M, 2010)

.

.

.

. ..

.

.

{Quasitoric manifolds}
( {top. toric manifolds with restricted compact torus actions}

up to equivariant homeomorphism.
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§3. Face numbers of simplicial cell manifolds
P: an n-polytope.
fi = fi (P) = #of i-dim faces of P, (f0, f1, . . . , fn−1) f -vector
The h-vector (h0, h1, . . . , hn) of P is defined by

n∑
i=0

hi t
n−i =

n∑
j=0

fj−1(t − 1)n−j (f−1 = 1)

.

g-theorem (Billera-Lee, Stanley, 1980)

.

.

.

. ..

.

.

An integer vector (h0, h1, . . . , hn) with h0 = 1 is the h-vector of a
simplicial n-polytope iff the following hold.

.

.

.

1 hi = hn−i for ∀i (Dehn-Sommerville eq’s)

.

.

.

2 1 = h0 ≤ h1 ≤ · · · ≤ h[n/2]

.

.

.

3 hi+1 − hi ≤ (hi − hi−1)
〈i〉 for 1 ≤ i ≤ [n/2] − 1
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Torus manifolds and simplicial cell spheres

S2n (n ≥ 2) cannot be a topological toric manifold because
H∗(S2n) is not generated by H2(S2n). However, S2n admits a
smooth action of (S1)n and S2n/(S1)n is a manifold with
corners s.t.

.

.

.

1 every face is contractible, but

.

.

.

2 intersections of faces can be disconnected.
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More generally,

.

Theorem (Panov-M, 2006)

.

.

.

. ..

.

.

If a (torus) manifold M2n x (S1)n satisfies Hodd(M) = 0, then
M/(S1)n is a manifold with corners and

.

.

.

1 every face is acyclic, and

.

.

.

2 any intersection of faces is connected iff H∗(M) is generated
by H2(M) as a ring.

The dual of ∂(M/(S1)n) is (often) a simplicial cell
(n − 1)-sphere.
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.

Theorem (Stanley 1991, Masuda 2005)

.

.

.

. ..

.

.

An integer vector (h0, h1, . . . , hn) with h0 = 1 is the h-vector of a
simplicial cell (n − 1)-sphere P iff the following hold.

.

.
.

1 hi = hn−i for ∀i (Dehn-Sommerville eq’s)

.

.

.

2 hi ≥ 0 for 1 ≤ i ≤ n − 1

.

.

.

3 If hi = 0 for some i , then
∑n

i=0 hi is even.

Note. (1, 0, 1, 0, 1) does not occur but (1, 0, 2, 0, 1) does.

.

Example

.

.

.

. ..

.

.

If P is obtained by gluing two 2-simplices along their boundary
(= ∂(S6/(S1)3)∗), then

(h0, h1, h2, h3) = (1, 0, 0, 1).
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.
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1 hi = hn−i for ∀i (Dehn-Sommerville eq’s)

.

.

.

2 hi ≥ 0 for 1 ≤ i ≤ n − 1

.

.

.

3 If hi = 0 for some i , then
∑n

i=0 hi is even.

Idea of proof of necessity. Suppose P = ∂(M2n/(S1)n)∗ for
some M2n x (S1)n with Hodd(M) = 0. Then hi = rankH2i (M).
(1) and (2) follow from this. Moreover

w(M) =
∏

(1 + xi ) (mod 2) for xi ∈ H2(M).

If hi = 0 for some 1 ≤ i ≤ n − 1, then w2n(M) = 0 and hence

0 = w2n(M)[M] ≡ χ(M) =
∑

hi .
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Face numbers of simplicial cell manifolds

.

Problem

.

.

.

. ..

.

.

Fix a manifold N and characterize h-vectors of all simplicial cell
complexes homeomorphic to N.

This is solved when N is
• Sn−1 (Stanley, M)
• RPn−1 and Sp × Sq (Murai 2010)

and studied when N is
• Dn (Kolins 2010)
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Those results suggest

.

A naive conjecture

.

.

.

. ..

.

.

For a closed manifold N of dim n − 1, ∃ri (N) ∈ Z s.t. an integer
vector (h0, h1, . . . , hn) with h0 = 1 is the h-vector of a simplicial
cell complexes homeomorphic to N iff the following hold.

.

.

.

1 hn−i − hi = (−1)i
(n

i

)
(χ(N) − χ(Sn−1)) for ∀i (DS eq’s),

.

.

.

2 hi ≥ ri (N) for 1 ≤ i ≤ n − 1,

.

.

.

3 If hi = ri (N) for some i , then
∑n−1

i=1 (hi − ri (N)) is even.

Novik-Swartz show that each hi has a lower bound. It is best
possible in some cases but not in general.
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