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I In 1978 C. Camacho, N. Kuiper and J. Palis
published their work on the topological
classification of holomorphic complex flows.

I A crucial example was the hyperbolic linear
complex system of differential equations:

żi = λizi i = 1, . . . n

Hyperbolic means no two of the λi ∈ C are
linearly dependent over the reals.
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This system has an immediate solution:

żi = λizi i = 1, . . . n

ziτ = zi0e
λiτ i = 1, . . . n

(where τ is a complex parameter).



ziτ = zi0e
λiτ i = 1, . . . n

But behind this simple solution a great deal of geometry is
hidden.

The solutions are real surfaces (complex 1-dimensional),
usually called leaves.
We cannot draw the complex system. Here is a real analog
that gives a partial idea:



ẋ = x ẏ = −y



Leaves that approach the origin are called Poincaré leaves (in
black) and those that keep their distance from the origin are called
Siegel leaves (in color).



Poincaré leaves are responsible for the non-Haussdorff behavior of
the system: observe how a sequence of Siegel leaves converges to
two different Poincar’e leaves. In the complex case they also
converge spiraling to the Poincaré leaves. This gives rise to moduli
for the homeomorphism classification.



In the complement U of the arrangement of Poincaré
subspaces the geometry is nice: in each Siegel leave there is a
unique point closest to the origin. The set of such points is a
transversal: it is the quotient of U by the action of C whose
orbits are the leaves, but it lies inside U .



This means that the space of Siegel leaves is Hausdorff and in
fact it is a variety: it is the set of non-zero z ∈ Cn that satisfy
the following equation:

Σλi |zi |2 = 0



This transversal is radial; it is enough to consider its intersection Z
with the unit sphere.

Σλi |zi |2 = 0

Σ |zi |2 = 1



I Questions:

When is Z a smooth variety?

What are all the possible cases?

What is the topological type of Z?

I In January 1984 Alberto Verjovsky organized a
seminar on Dynamical Systems at the Institute
of Mathematics, UNAM, where he gave several
talks about the Camacho-Kuiper-Palis results
and raised the above questions.
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Everything depends on the position of the origin
with respect to the coefficients λi .



If they are all on one side of the origin Z is empty.

Σλi |zi |2 = 0

Σ |zi |2 = 1



I Z is smooth, provided Λ satisfies the weak hyperbolicity
condition:

The origin is not in the segment joining two λi .



This has some immediate but very important
consequences:

1 One can have two or more equal eigenvalues.

2 This gives many examples: take a regular polygon
with an odd number of sides and take the i − th
vertex with multiplicity ni .

3 The smooth type of Z does not change if we
deform the coefficients as long as we do not violate
the weak hyperbolicity condition.



First result: Every configuration can be deformed as
above into a polygonal form with multiplicities. So
any regular type can be specified by an odd cyclic
partition n: n = n1 + n2 + · · ·+ nm, define up to
cyclic permutation of the ni .









But now, how to discover the topological type of Z for each
partition n = n1 + n2 + · · ·+ nk?

For this I observed that Z has a natural action of the n-torus
T n = S1 × S1 · · · × S1.

Σλi |zi |2 = 0

Σ |zi |2 = 1

Just multiply every coordinate by a unit complex number.



The second observation was that the quotient of this action had a
simple description:

Every point z is equivalent under this action to a unique point all
whose coordinates are real and non-negative.

This is a transversal to the action: The quotient P can be realized
as a subset of Z .

Σλi |xi |2 = 0

Σ |xi |2 = 1

xi ≥ 0

So Z can be recovered from P × T n just by identifying points
according to the stabilizer corresponding to each point of P.



P is some sort of spherical polytope

which can be straightened by passing to the coordinates
ri = x2

i (= |zi |2).



Σλi |xi |2 = 0

Σ |xi |2 = 1

xi ≥ 0

Σλi ri = 0

Σri = 1

ri ≥ 0

P can be seen as a convex polytope. The facets of P are given by
the condition ri = 0 (if not empty) which corresponds to the points
of Z with zi = 0, that is points where the i-th factor of the torus
acts trivially.



So all the topology of Z is determined by either:
1. The odd cyclic partition n = n1 + n2 + · · ·+ nm or, equivalently,
2. A simple convex polytope of dimension d with at most d + 3
facets, where d = n − 3.
The combinatorial properties of P can be deduced from 1: its faces
are the non-empty intersections Z ∩ {zi = 0, i ∈ J} where
J ⊂ {1, . . . , n}.
But we know when such intersection is not empty: when the rest
of the λi have the origin in their convex hull.
In the inverse direction, it is easy to put any such P in the above
form.
But, how make these combinatorial data spill out the information
they hide?



One first idea is to find somewhere else a torus action with section
on some manifold with quotient P.

This works out well for the triangular case n = p + q + r : By
working out the combinatorics it follows that P is the product of 3
simplices P = ∆p−1 ×∆q−1 ×∆r−1 and it is clear that the
standard action of T n on the sphere S2n−1 has ∆n−1 as its
quotient:

Σ |zi |2 = 1

Σri = 1, ri ≥ 0.

Therefore, in this case Z is S2p−1 × S2q−1 × S2r−1.



The next case would be the pentagonal one:
n = n1 + n2 + n3 + n4 + n5 and take the simplest possibility:

5 = 1 + 1 + 1 + 1 + 1

Working out the combinatorics it follows that P is a pentagon.



WANTED:

Compact manifold of dimension 7.

It is simply connected.

Particular characteristic: it has an action of T 5 with
a pentagon as transversal.



SURPRISE!

In a list by Dennis McGavran appears such a manifold:

Z = (S3 × S4)#(S3 × S4)#(S3 × S4)#(S3 × S4)#(S3 × S4)



Unfortunately the method stops here.

There are not enough lists of torus actions in which
to search for candidates: not a single additional
example was found.

Nevertheless, MacGavran’s example was a decisive
clue as to what to expect.



How does one prove that a simply connected
7-manifold is such a connected sum?

I understood that I had to use the experience of the
theory of surgery of manifolds, which says that in
cases like this one should:

A.- Check the homotopy data: in this case the
homology groups.

B.- Check the tangential data.



A.- Check the homotopy data: in this case the homology groups.
B.- Check the tangential data.

Part B is trivial, our manifolds have trivial tangent bundle, being
smooth affine varieties of odd dimension.

Part A is messier, but possible: The faces of P and the subtori of
T n form a cell decomposition from which you can calculate
everything in terms of the polytope. Actually there is a nice
splitting of the homology groups in terms of relative homology
groups of pairs formed by the polytope and unions of its facets.



But it is well-known that this is not enough to determine the
manifold, the earliest example being that of the exotic spheres: the
homotopy and tangential data are the same for all homotopy
spheres.

Starting from this case it was established that to understand a
manifold M it is necessary to find a manifold Q whose boundary is
M and study the questions A and B above for Q. If all goes well,
one can determine the smooth type of Q (in many cases with the
help of the h-cobordism theorem) a therefore also that of M. For a
homotopy sphere one tries first to see what kind of manifold it
bounds (there is always one). If it does not bound a parallelizable
manifold then it is not standard. If it does, one studies the
invariants of that manifold to see which sphere is its boundary.



In our case is easy to find such manifold for Z : Add one more real
variable x0 and duplicate the first coefficient to obtain a close
manifold Z ′ of one more dimension:

λ1x
2
0 + λ1 |z1|2 + Σn

i=2λi |zi |2 = 0

x2
0 + |z1|2 + Σn

i=2 |zi |2 = 1

Z is the intersection of this manifold with the hyperplane
x0 = 0 and if we intersect Z ′ with the half space x0 ≥ 0 we
obtain a manifold Z ′+ whose boundary is Z .









Now we have to repeat the steps A and B above for Z ′+: it is
different from Z in two ways:

It is only half a manifold and even the whole manifold is different:

λ1x2
0 + Σλi |zi |2 = 0

x2
0 + Σ |zi |2 = 1

It has one real variable so it does not fit in the above scheme.

This practically obliged me to start all over again with the more
general analogous situation with real coordinates:



So now Z will be now the manifold in Rn given by
the equations

Σλix
2
i = 0

Σx2
i = 1

Which is the real part of the previous manifold,
which we will now denote by ZC:

Σλi |zi |2 = 0

Σ |zi |2 = 1

[I wonder why I call them now Z ’s,
......................they used to be M ’s (for manifolds).]



Z is again smooth under the same hypothesis, it’s
tangent bundle is not necessarily trivial but only
stably trivial, which is good enough. As before, it
bounds a parallelizable manifold Z ′+.

Now it has a Zn
2 action with the same quotient P as

before. And Z can be recovered from P just as
above, but in an even more geometrical way:

P lies in (R+)n and one obtains Z by reflecting P
successively in all the hyperplanes xi = 0.



In the triangular case n = p + q + r we get again a triple
product of spheres, each of which can now have even or odd
dimension: Sp−1 × Sq−1 × S r−1

For the pentagon, Z is a surface and one can compute its
Euler characteristic:

Z is formed by:

32 pentagons, 5× 16 = 80 edges and 5× 8 = 40 vertices.

So the Euler characteristic is -8 ...



...and we conclude that it is the surface of genus 5:

Z = (S1×S1)#(S1×S1)#(S1×S1)#(S1×S1)#(S1×S1)

The fact that the old manifold ZC corresponding to
the pentagon is

(S3×S4)#(S3×S4)#(S3×S4)#(S3×S4)#(S3×S4)

is no longer surprising!!



With the same natural idea one can compute the homology groups:

The faces of P and all their reflections form a cell decomposition
of Z from which I could compute the homology groups. In fact the
result and the proof are very geometric:

Hi (Z ) ∼= ⊕
J

Hi (P ,PJ)

[no shift in dimensions!] where the sum is over all
subsets J ⊂ {1, . . . , n} and PJ is the union of all facets of P
corresponding to i ∈ J .

This splitting is very explicit geometrically, is valid at the chain
level and it uses explicitly the action of Zn

2, so it includes the
information of the action of this group on the homology.



I Then I had to do all over again the geometry and the
splitting for the homology of the manifold with boundary
Z ′+.

With that, and a few more technical lemmas, I could
prove that the manifold with boundary Z ′ was exactly the
one that one could expect and so is then the manifold Z :

I It is either a triple product of spheres (in the triangular
case), or

I It is a connected sum of sphere products Sai × Sbi (in all
the other cases), where the number of summands and
ai , bi are determined by the combinatorial data.
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There is a problem with the proof: the use of the h-cobordism
theorem works only if the manifold Z ′+ is simply connected and of
dimension at least 6.

This implies that the above result was proved only under those
assumptions, which exclude some of the pentagonal cases and one
heptagonal one, for all of which the result is surely also true.
But for the original question, the topology of the manifolds Z C,
this causes no problem: the proof covers them all and so they are
all triple products or connected sums.



The next step would have been the topological
description of the intersection of more quadrics:

ΣΛix
2
i = 0

Σx2
i = 1

where Λi ∈ Rk .



I Most of the parts of the above proof work:

I The regularity of the system is equivalent to a higher
dimensional version of weak hyperbolicity.

I Every Z is equivalent to one obtained from a primitive
configuration with multiplicities.

I Z is always stably parallelizable and bounds a parallelizable
manifold.

I There is the Zn
2 action with a simple polytope as

quotient-section. The polytope can be any simple polytope P
and determines completely the manifold (and the action).

I The same splitting formula works for the homology of Z in
terms of P and its unions of facets.
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I The only obstacle to obtaining a general
theorem was the difficulty of describing all the
primitive configurations. If these were the odd
regular polytopes for k = 2, now they would be
certain constellations in the unit sphere Sk−1

whose enumeration, even in the case k = 3,
seemed difficult.

I I still thought that in all cases Z could be
constructed from spheres by taking products,
connected sums, products of connected sums,
etc. Some of these can be shown to exist by
taking products of the known examples.
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I All this I knew essentially by the end of 1984, although some
of the details of the proof were checked later.

I In 1986 I learned that there was some previous work on the
subject: Marc Chaperon had studied the same objects, as
”pseudo-quotients” of actions of Rn or Cn, Hirzebruch had
described all the 2-dimensional ones which appeared to him in
a problem of Algebraic Geometry; and C.T.C. Wall had
studied the case k = 2 as above from questions in the Theory
of Singularities of Maps). From him I learned that the
correspondence between configurations Λi and convex
polytopes was known as the Gale Transform.
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I This did not affect my main result: the connected sums were
not in any of those works.

I But it affected my projects, especially in combinatorics: my
description of all the possibilities for k = 2 was not far from a
classification of all d dimensional polytopes with at most
d + 3 facets. So in 1986 I learned that this had already been
done and that the analog result for d + 4 facets was extremely
difficult.

I So I published in 1987 my main results for k = 2 with just all
too brief remarks about which parts of the proof were valid for
any k . There were also the techniques used and the new
group actions (including not only those of the torus and Zn

2,
but also the action of the symmetry group of P), but there
was no reaction from the topologists.
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I As a consequence the work moved in other direction which
was the study of some partial quotients of these manifolds,
which include the projectivizations of the manifolds Z C.

I These turn out to be interesting examples of complex,
non-symplectic manifolds, that come equipped with natural
deformation spaces and foliations.

I Further quotients produce many toric varieties, including all
smooth ones.

I Work by LdM, Verjovsky, Meersseman, Bosio, Loeb and
Nicolau. This study has generated even fundamental work in
the theory of complex manifolds (recent work by
Meersseman). Some new consequences will be presented in
the talk by Ernesto Lupercio next Thursday.
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I In 2000 Bosio and Meersseman made a very deep and
thorough study of those complex manifolds, that also included
remarkable advances on the topology of the manifolds Z C

themselves, among them:

I a) They showed that for k ≥ 3 the manifold Z C can be
considerably more complicated than what was known for the
case k = 2. But they also proved than that under certain
conditions one obtains again the same kind of connected
sums. They also conjectured that the same would be true for
a wide family.

I b) They described the transition between different types of
the manifolds (”wall-crossing”).

I c) They gave an explicit formula for computing the
cohomology ring of Z C.
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Seade, Gómez Mont, Ruas, Verjovsky, Pichon, Cisneros, Oka,
Vinicio Gómez have worked on some manifolds given by polynomial
equations on zi , z̄i , in general of higher degree, except for Vinicio
who has studied intersections of quadrics with crossed terms (zi z̄j

with i 6= j).

Mathilde Kammerer, Chaperon and myself proved that all Z C

manifolds can be born stably as invariant manifolds in the
bifurcation of dynamical systems, in the same way as S1 is born in
the Hopf bifurcation.



But this is not the end of the story.

In October 2007 I heard a talk by Sam Gitler about
the Generalized Moment-Angle Complexes and the
Polyhedral product functor.

I did not understand anything, but everything was
very familiar:

There was a polyhedron K that dictated how to
construct certain spaces, whose homology was then
computed through a splitting determined by certain
subpolyhedra KJ , there were group actions and ...



Through this I discovered that there was a whole
school that had been studying for decades (among
many other objects) my dear old manifolds under
the very strange names of Moment-angle manifolds
(the complex ones) and Universal abelian covers
(the real ones).
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MOMENT-ANGLE
COMPLEXES.

Demazure
...

Atiyah
Guillemin-Sternberg

Delzant, Audin
...

Davis-Januzskiewicz
...

Buchstaber-Panov
Franz, Masuda, Ray

...
Denham-Suciu

Bahri-Bendersky-
-Cohen-Gitler.



The dots on the right hand column reflect mainly my ignorance of
what is now called Toric Topology. Of course, the list itself reflects
my own interpretation of a story I know not well enough, hoping
that those directly involved will correct me...

Of course we knew about toric manifolds and Delzant’s actions
(and Meersseman-Verjovsky established a relation between
quadrics and those objects explicitly). Yet, as a real connection
between the two schools, Bosio-Meersseman and Denham-Suciu
are, to my knowledge, the first on each side of the list to quote the
work of someone on the other. In the case of Bosio-Meersseman,
they quote mainly the previous computation of the cohomology
ring of Z C by Buchstaber-Panov.

A curious fact is that, although the same objects appear on both
sides, most of the main results are very different and actually
complementary. Much work is devoted in both sides to different
quotients of the common objects: the complex LV-M-B manifolds
on one side and the (quasi-)toric manifolds on the other.



In the quadrics side we were overly optimistic and thought for
sometime that all the Z C manifolds were nice and simple, until
Bosio-Meersseman showed us that it was not so, and yet we keep
looking for the nice and simple ones up to this day. In the
moment-angle side they knew some really bad examples, far more
complicated than the any of Bosio-Meersseman or than our worst
nightmares, but somehow missed most of the nice, simple ones.

Some things are a lot simpler from the quadrics point of view: for
example, the one-line proof above that the manifolds Z (and
therefore all the Z C which are a subfamily) bound parallelizable
manifolds. Compare with the proof in Buchstaber-Panov that they
bound. I am sure that they would have proved without any
problem that they bound parallelizable manifolds if they had found
it necessary, for me it was an essential ingredient of the proofs.

Of the things proved from the moment-angle complexes side, some
simple ones I can see immediately in the context of quadrics. But
most of them I still have not the faintest idea of how to prove
using the quadrics approach.



For example, the splitting of the suspension of the moment-angle
complexes shows that, in the case of manifolds, the homology
fundamental class becomes spherical after one suspension, a fact
that I do not know how to prove otherwise.

This fact suggests (but does not prove) that all the moment-angle
manifolds could be hypersurfaces, and in fact all the ones that we
know explicitly are so. One could try to prove this geometrically,
which would give a new proof of sphericity of the suspension of the
fundamental class.

Of course the quadrics approach does not produce results about
moment-angle complexes which are not manifolds. Nevertheless,
the results (and crucial examples) about the special case give ideas
of what to expect (or not) in the general setting.



I Continuing with my story, Sam and I got into an intense
process of discussion through which I began to understand
slowly the relations between their abstract functorial
construction and my very concrete varieties with their second
degree equations.

I Finally I managed to see that all my old manifolds (real and
complex, closed or with boundary... or even with corners, if
needed) and the constructions on them (Z0, Z ′, Z+,
multiplicities, etc.) fitted inside this most abstract framework,
but actually not in any of the previous ones.

I And there was this fantastic geometric splitting for
moment-angle complexes that allowed, among many other
things, the computation of the homology groups of all the old
objects once and for all. This allowed us to get a global view
of all the objects and their interrelations which, once spotted,
could be naturally proved.
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I With this vision we looked at the Bosio-Meersseman
conjecture, and we managed to prove much more.

I We proved that if P is an even dimensional neighborly
polytope then Z is a connected sum of sphere products and so
is any manifold Z J obtained from Z by introducing
multiplicities.

I And that means a lot of examples: there are many neighborly
polytopes in each dimension (it is claimed that in a certain
sense most polytopes are neighborly) and for each of them
there is an infinite family PJ all of which are not, and they all
produce manifolds that are connected sums of sphere
products.
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I Then we looked at another question raised by Bosio and
Meersseman: the transition between types of manifolds when
the weak hyperbolicity condition is broken.

I We analyzed what happens when the polytope P is altered by
cutting off a vertex or an edge. We obtained a good result for
the manifolds Z , thus giving in particular new infinite families
of connected sums of sphere products.
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The result for the manifolds ZC is limited, but good
enough to understand another question of Bossio
and Meersseman concerning a very interesting
example of them: the truncated cube.



I By rather elementary methods we showed that the
corresponding manifolds are:

Z = 2(S1 × S1 × S1)#7(S2 × S1)

Z C = G(S3 × S3 × S3)#3(S3 × S7)#3(S4 × S6)#(S5 × S5)

(here G(M) is a simple operation: remove a disk from M,
multiply times D2 and take the boundary.)

I These two manifolds have the same homology groups, if one
forgets the grading. This is consistent with the splitting
results. It was expected that the cohomology rings would also
be, at least with Z2 coefficients, since there are questions of
sign in different dimensions.
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I For a long time we tried to prove that it was so, without
success. Finally we turned our failure into a proof that they
are in fact not isomorphic as ungraded rings with Z2

coefficients.

I This is very surprising, contradicts some published results and
shows that a very different rule applies for the cup product of
the Z and the Z C manifolds. The proof is actually quite
simple and elementary and can be easily checked by anyone:
just verify the elementary constructions that give the
topological type of Z and verify the algebraic proof that the
two rings are not isomorphic. (The more involved construction
giving the topological type of Z C need not be checked, its
cohomology ring was computed by Bosio and Meersseman and
also follows directly from the well-known results on the
cohomology ring of moment-angle manifolds).
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I Conclusions:

I 1.- I deeply appreciate this opportunity to talk in front of my
old and my new friends about my old work, which is not well
known. As you have seen, there were some things which I
discovered, rediscovered or prediscovered.

I 2.- But my real point is not to say “I did this first” or “I can
do this better” or “I can do this faster”. (And it is quite
messy to elucidate in this complicated story who said what
first, in which context and with what generality).

I My real point is that I have done some things differently and
that it is very useful to have two different points of view and
to combine them in a given problem. This happened in my
recent work with Sam which combined the concrete
topological methods and the abstract functorial approach.
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I Recent results Jelena, by Taras and his students Yuri and
Nicolai, by Laurent’s student Jérôme Tambour and by Javier
Fernández de Bobadilla have also shown that it is useful to
look at both sides of the story. But there are yet many
questions for which these combinations will surely produce
interesting and sometimes surprising answers.

I 3.- My other point is that, if you want to understand some
question about the Z C manifolds (a.k.a. moment-angle
manifolds or (D2,S1) moment-angle complexes) it is a good
idea to study simultaneously the corresponding question for
the Z manifolds (a.k.a. universal abelian covers or (D1, S0)
generalized moment angle complexes).
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