Generalized moment-angle complexes, graph products of groups and related constructions

Mike Davis

IAS and OSU

Banff November 9, 2010

1 Polyhedral products: definitions and examples

- Examples
- Cohomology

2 Graph products of groups

• The fundamental group of a polyhedral product

When is a polyhedral product aspherical?

The main theorem

Examples Cohomology

Data

- A simplicial complex L with vertex set I.
 (Apology: The letter K will be used for something else.)
- A family of pairs of spaces (A, B) = {(A_i, B_i)}_{i∈I}, indexed by *I*.

Notation

- S(L) := {vertex sets of simplices in L} (including ∅)
- For $\mathbf{x} := (x_i)_{i \in I}$, a point in $\prod_{i \in I} A_i$, put

$$\mathsf{Supp}(\mathbf{x}) := \{i \in I \mid x_i \in A_i - B_i\}.$$

Examples Cohomology

Definition (cf. Denham - Suciu)

The *polyhedral product* $Z_L(\mathbf{A}, \mathbf{B})$ is the subset of $\prod_{i \in I} A_i$ consisting of those **x** such that $\text{Supp}(\mathbf{x}) \in S(L)$. $Z_L(\mathbf{A}, \mathbf{B})$ is also called the *generalized moment angle complex*.

Alternate definition

For each $J \in \mathcal{S}(L)$, put

$$egin{aligned} Z_J(\mathbf{A},\mathbf{B}) &:= \prod_{i\in J} A_i imes \prod_{i\in I-J} B_i \quad ext{and} \ Z_L(\mathbf{A},\mathbf{B}) &= igcup_{J\in\mathcal{S}(L)} Z_J(\mathbf{A},\mathbf{B}). \end{aligned}$$

Examples Cohomology

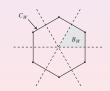
If all (A_i, B_i) are the same, say (A, B), then we omit the boldface and write $Z_L(A, B)$ instead of $Z_L(\mathbf{A}, \mathbf{B})$.

Example

• Put $K(L) := Z_L([0, 1], 1)$ (and call it a *chamber*).

• K(L) is a subcomplex of the cube, $\prod_{i \in I} [0, 1]$.

K(L) is homeo to the cone on L(the empty set provides the cone point). If L is the boundary complex of a simplicial polytope, then K(L) can be identified with the dual polytope.

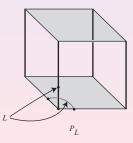


Examples Cohomology

Example

•
$$(A, B) = (D^1, S^0) (= ([-1, 1], \{\pm 1\})).$$

- C_2 (= {±1}) is the cyclic group of order 2. It acts on [-1,1]. Hence, $(C_2)^{\prime} \sim [-1,1]^{\prime}$.
- $Z_L(D^1, S^0)$ is a $(\mathbf{C}_2)^{l}$ -stable subspace.

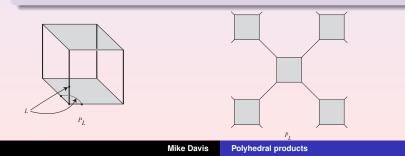


Examples Cohomology

Remarks

- The space $Z_L(D^1, S^0)$ is generally not simply connected.
- In fact, the group of all lifts of the (C₂)¹-action to the universal cover is the right-angled Coxeter gp (or RACG), W, corresponding to the 1-skeleton of L. Moreover,

$$1
ightarrow \pi_1(Z_L(D^1, S^0)
ightarrow W
ightarrow (\mathbf{C}_2)'
ightarrow 1$$



Examples Cohomology

Classical moment-angle complex

Example

- $(A, B) = (D^2, S^1).$
- The gp S^1 (= SO(2)) acts on D^2 .
- Put $m = \operatorname{Card}(I)$, $T^m = (S^1)^I$. Then $T^m \curvearrowright Z_L(D^2, S^1)$.

Remarks

- $K(L) (= Z_L([0, 1], 1)$ is the orbit space of $(\mathbf{C}_2)^m$ on $Z_L(D^1, S^0)$, as well as, the orbit space of T^m on $Z_L(D^2, S^1)$.
- If *L* is a triangulation of S^{n-1} , then K(L) is an *n*-disk, $Z_L(D^1, S^0)$ is a *n*-mfld and $Z_L(D^2, S^1)$ is an (n + m)-mfld.

Toric manifolds (or "quasi-toric mflds")

- Let *L* be a triangulation of S^{n-1} (eg *L* could be ∂ (simplicial polytope) in which case K(L) is dual polytope.
- Suppose ∃ epimorphism λ : T^m → Tⁿ s.t. the kernel N acts freely on Z_L = Z_L(D², S¹). Then

$$M^{2n} := Z_L/N$$

is called the *toric mfld* associated to L and λ .

- $T^n \curvearrowright M^{2n}$ and $M^{2n}/T^n = K(L)$.
- This is generalization of Delzant's construction of Hamiltonian T^n -action on symplectic mfld where $K(L) \subset \mathbb{R}^n$ is simple convex polytope with edges parallel to rational vectors and where $\lambda = (\lambda_1, \ldots, \lambda_m)$ is defined by using normals to the facets.

Polyhedral products: definitions and examples

Graph products of groups When is a polyhedral product aspherical?

Small covers

- Similarly, if ∃ epimorphism λ : (C₂)^m → (C₂)ⁿ s.t. the kernel *N* acts freely on Z_L(D¹, S⁰), then Mⁿ := Z_L(D¹, S⁰)/N is called the associated *small cover* of K(L) (thought of as an orbifold).
- $(\mathbf{C}_2)^n \curvearrowright M^n$ and $M^n/(\mathbf{C}_2)^n = K(L)$.
- Later we will see that $\pi_1(M^n)$ is the kernel of $W_L \to (\mathbf{C}_2)^m$ where W_L is the RACG associated to L^1 . Moreover, if *L* is a flag cx, then M^n is a $K(\pi, 1)$.

Examples Cohomology

 $ES^1 o BS^1 = \mathbb{C}P^{\infty}$ and $EC_2 o BC_2 = \mathbb{R}P^{\infty}$ are the universal S^1 - and C_2 -bundles, respectively. Similarly, $ET^m o BT^m = (\mathbb{C}P^{\infty})^m$ and $E(C_2)^m o B(C_2)^m = (\mathbb{R}P^{\infty})^m$.

Definition

DJ - space

The Borel construction on $Z_L(D^2, S^1)$ is *Davis-Januszkiewicz* space, DJ(L), i.e.,

$$DJ(L) := Z_L(D^2, S^1) \times_{T^m} ET^m.$$

Similiarly, real DJ space is

$$\mathbb{R} DJ(L) := Z_L(D^1, S^0) imes_{(\mathbf{C}_2)^m} E(\mathbf{C}_2)^m$$

Examples Cohomology

Let $D(\xi)$ be canonical D^2 -bundle over BS^1 and $S(\xi)$ (= ES^1) the S^1 -bundle. So, $D(\xi) \sim BS^1$ and $S(\xi) \sim *$.

Alternate definition of *DJ* - space

 $DJ(L) = Z_L(D(\xi), S(\xi)) \sim Z_L(BS^1, *).$ Similarly,

 $\mathbb{R}DJ(L) \sim Z_L(B\mathbf{C}_2, *)$

Examples Cohomology

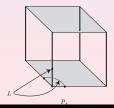
RAAG s

Recall $Z_L(A, B) \subset \prod_I A$.

Example

•
$$(A, B) = (S^1, *)$$

- Then Z_L(S¹, *) is a subcx of the torus T^m, where
 m = Card(I). It is a union of subtori determined by L.
- The fundamental group of Z_L(S¹, *) is the right-angled Artin group (= RAAG) determined by the graph L¹



Identify opposite faces to get $T^2 \vee T^1$.

The face ring (or Stanley-Reisner ring)

- L a simplicial cx with vertex set I.
- *R* a commutative ring, **x** = (x_i)_{i∈I}, and *R*[**x**] is the polynomial algebra.
- The *face ring* R[L] is the quotient of R[**x**] by the ideal *I*, where *I* is the ideal generated by all square free monomials of the form x_{i₁} ··· x_{ik}, with {i₁, ... i_m} ∉ S(L).

Examples Cohomology

Recall
$$DJ(L) = Z_L(BS^1, *)$$
 and $H^*(BT^m) \cong \mathbb{Z}[\mathbf{x}]$.

Theorem

$$H^*(DJ(L)) \cong \mathbb{Z}[L] := \mathbb{Z}[\mathbf{x}]/\mathcal{I}$$

Recall $H^*(T^m) = \bigwedge [\mathbf{x}]$ (the exterior algebra).

Theorem

 $H^*(Z_L(S^1, *)) \cong \bigwedge [L] := \bigwedge [\mathbf{x}]/\mathcal{I}$, the "exterior face ring".

Examples Cohomology

Theorem (Bahri, Bendersky, Cohen, Gitler)

Suppose that for each (A_i, B_i) , the space B_i is contractible. Let k be a field. Then

$$H^*(Z_L(\mathbf{A},\mathbf{B});k)\cong\bigotimes H^*(A_i;k)/\mathcal{I}.$$

Data

- A simplicial graph L^1 with vertex set *I*.
- A family of discrete gps $\mathbf{G} = \{G_i\}_{i \in I}$

Definition

The graph product of the G_i is the group Γ formed quotienting the free product of the G_i by the normal subgroup generated by all commutators of the form $[g_i, g_j]$ where $\{i, j\} \in \text{Edge}(L^1)$, $g_i \in G_i$ and $g_j \in G_j$.

Example

- If all $G_i = \mathbf{C}_2$, then Γ is the RACG determined by L^1 .
- If all $G_i = \mathbb{Z}$, then Γ is the RAAG determined by L^1 .

Relative graph products

More data

For each $i \in I$, besides G_i , suppose given a G_i -set E_i . Put (Cone **E**, **E**) := {(Cone E_i, E_i)} $_{i \in I}$.

• Form the polyhedral product *Z*_L(Cone **E**, **E**). It is not simply connected. Let

 $\widetilde{Z}_L(\text{Cone }\mathbf{E},\mathbf{E}) := \text{ the univ cover of } Z_L(\text{Cone }\mathbf{E},\mathbf{E}).$

G = ∏_{i∈I} G_i ∼ Z_L(Cone E, E). Let Γ be the gp of all lifts of G-action to Z̃_L(Cone E, E). Γ is the graph product of the G_i relative to the E_i. (Only the 1-skeleton, L¹, matters in this defn.) (This define needs to be tweaked if G does not act effectively on ∏ E_i.)

Example

If each $G_i = \mathbf{C}_2$, then $Z_L(\text{Cone } \mathbf{C}_2, \mathbf{C}_2)$ is the space $Z_L(D^1, S^0)$ considered previously.

Remarks

- If each *E_i* = *G_i*, then the group of lifts, Γ, agrees with the first definition of graph product.
- The inverse image of ∏_{i∈I} E_i in Z_L(Cone E, E) is the set of (centers of) chambers in a "right-angled building" (a RAB).
- If *L* is a flag complex (to be defined later), then $\widetilde{Z}_L(D^1, S^0)$ is the standard contractible complex for the RACG *W* and $\widetilde{Z}_L(\text{Cone } \mathbf{E}, \mathbf{E})$ is the standard realization of the RAB.

- Let (A, B) = (A_i, B_i)_{i∈I}. Suppose each A_i is path connected. Let p_i : A_i → A_i be the univ cover.
- Put G_i = π₁(A_i) and let E_i be the set of path components of p_i⁻¹(B_i) in A_i. So, E_i is a G_i-set.

Proposition

 $\pi_1(Z_L(\mathbf{A}, \mathbf{B})) = \Gamma$, where Γ is the relative graph product of the (G_i, E_i) and G is their direct product.

Remember: $G = \prod G_i$ acts on $Z_L(\text{Cone } \mathbf{E}, \mathbf{E})$ and Γ is gp of lifts of *G*-action to $\widetilde{Z}_L(\text{Cone } \mathbf{E}, \mathbf{E})$.

Proof of Proposition.

 $(\widetilde{\mathbf{A}}, \widetilde{\mathbf{B}}) := (\widetilde{A}_i, p_i^{-1}(B_i)). Z_L(\widetilde{\mathbf{A}}, \widetilde{\mathbf{B}}) \to Z_L(\mathbf{A}, \mathbf{B})$ is an intermediate covering space and *G* is the gp of deck transformations. The univ cover $\widetilde{Z}_L(\mathbf{A}, \mathbf{B}) \to Z_L(\widetilde{\mathbf{A}}, \widetilde{\mathbf{B}})$ is induced from $\widetilde{Z}_L(\text{Cone } \mathbf{E}, \mathbf{E}) \to Z_L(\text{Cone } \mathbf{E}, \mathbf{E}).$

When is a polyhedral product aspherical?

Suppose *L* is a flag cx (to be defined). Earlier, we said that $Z_L(A, B)$ is aspherical in the following cases:

- $Z_L(BC_2, *) = BW_L$, where W_L is the associated RACG.
- $Z_L(S^1, *) = BA_L$, where A_L is the associated RAAG.

•
$$Z_L(D^1, S^0) = B\pi$$
, where $\pi = \text{Ker}(W_L \to (\mathbf{C}_2)^m)$.

What is the common generalization?

The main theorem

Definition

A simplicial cx L is a *flag complex* if any finite, nonempty set of vertices, which are pairwise connected by edges, bounds a simplex. Equivalently, L is a flag cx if every minimal nonface is a nonedge.

Definition

A pair of CW complexes (A, B) is *aspherical*, if A is aspherical, each path component of B is aspherical and the fundamental gp of any such component injects into $\pi_1(A)$.

Definition

A vertex *i* of a simplicial cx *L* is *conelike* if it is connected by an edge to every other vertex.

Theorem

- $Z_L(\mathbf{A}, \mathbf{B})$ is aspherical \iff
 - (i) Each A_i is aspherical.
 - (ii) For each non-conelike vertex $i \in I$, (A_i, B_i) is aspherical.
- (iii) L is a flag cx.

Corollary

If $(A_i, B_i) = (BG_i, *)$ and L is a flag cx, then $Z_L(\mathbf{A}, \mathbf{B}) = B\Gamma$, the classifying space for the graph product Γ .

Corollary

Suppose each $(A_i, B_i) = (M_i, \partial M_i)$ is a mfld with bdry and an aspherical pair. Also suppose L is a flag triangulation of a sphere. Then $Z_L(\mathbf{A}, \mathbf{B}) \subset \prod M_i$ is a closed aspherical mfld.

The main theorem

Ingredients for the proof

Retraction Lemma

Suppose $L' \subset L$ is a full subcx on vertex set I'. Then the map $r : Z_L(\mathbf{A}, \mathbf{B}) \to Z_{L'}(\mathbf{A}, \mathbf{B})$ induced by $\prod_{i \in I} A_i \to \prod_{i \in I'} A_i$ is a retraction.

RAB Lemma

Suppose $\mathbf{E} = (E_i)_{i \in I}$ is a collection of sets (each with the discrete topology). Then $\widetilde{Z}_L(\text{Cone }\mathbf{E},\mathbf{E})$ is contractible $\iff L$ is a flag complex. Moreover, if this is the case, then $\widetilde{Z}_L(\text{Cone }\mathbf{E},\mathbf{E})$ is the "standard realization" of a RAB of type W_L .

Theorem

- $Z_L(\mathbf{A}, \mathbf{B})$ is aspherical \iff
 - (i) Each A_i is aspherical.
 - (ii) For each non-conelike vertex $i \in I$, (A_i, B_i) is aspherical.

The main theorem

(iii) L is a flag cx.

Comment

What is the point of Condition (ii)? If *L* is flag, then the set of conelike vertices spans a simplex Δ and *L* decomposes as a join, $L = L' * \Delta$, and Z_L as a product:

$$Z_L(\mathbf{A},\mathbf{B}) = Z_{L'}(\mathbf{A},\mathbf{B}) imes \prod_{i \in \operatorname{Vert} \Delta} A_i,$$

so the B_i for conelike vertices do not enter the picture.

Theorem

- $Z_L(\mathbf{A},\mathbf{B})$ is aspherical \iff
 - (i) Each A_i is aspherical.
 - (ii) For each non-conelike vertex $i \in I$, (A_i, B_i) is aspherical.
 - (iii) L is a flag cx.

Sketch of proof in \implies direction

- Retraction Lemma \implies (i) and (ii).
- RAB Lemma \implies (iii)

The main theorem

 Γ is the graph product of G_i w.r.t. L^1 . L is its flag cx.

Theorem (with Boris Okun)

Assume each G_i is infinite. Then

$$H^{n}(\Gamma; k\Gamma) = \bigoplus_{\substack{J \in \mathcal{S}(L) \\ p+q=n}} H^{p}(\text{Cone}(\text{Lk } J), \text{Lk } J) \otimes [H^{q}(G_{J}; kG_{J}) \otimes_{G_{J}} k\Gamma]$$

where $G_J := \prod_{i \in J} G_i$ and $H^*(G_J; kG_J) = \bigotimes_{i \in J} H^*(G_i; kG_i).$

M.W. Davis and B. Okun, Cohomology computations for Artin groups, Bestvina-Brady groups and graph products, arXiv:1002.2564.