Generalized moment-angle complexes, graph products of groups and related constructions

Mike Davis

IAS and OSU
Banff
November 9, 2010
(1) Polyhedral products: definitions and examples

- Examples
- Cohomology

2 Graph products of groups

- The fundamental group of a polyhedral product
(3) When is a polyhedral product aspherical?
- The main theorem

Data

- A simplicial complex L with vertex set I. (Apology: The letter K will be used for something else.)
- A family of pairs of spaces $(\mathbf{A}, \mathbf{B})=\left\{\left(A_{i}, B_{i}\right)\right\}_{i \in I}$, indexed by I.

Notation

- $\mathcal{S}(L):=\{$ vertex sets of simplices in $L\}$ (including \emptyset)
- For $\mathbf{x}:=\left(x_{i}\right)_{i \in I}$, a point in $\prod_{i \in I} A_{i}$, put

$$
\operatorname{Supp}(\mathbf{x}):=\left\{i \in I \mid x_{i} \in A_{i}-B_{i}\right\} .
$$

Definition (cf. Denham - Suciu)

The polyhedral product $Z_{L}(\mathbf{A}, \mathbf{B})$ is the subset of $\prod_{i \in I} A_{i}$ consisting of those \mathbf{x} such that $\operatorname{Supp}(\mathbf{x}) \in \mathcal{S}(L)$.
$Z_{L}(\mathbf{A}, \mathbf{B})$ is also called the generalized moment angle complex.

Alternate definition

For each $J \in \mathcal{S}(L)$, put

$$
Z_{J}(\mathbf{A}, \mathbf{B}):=\prod_{i \in J} A_{i} \times \prod_{i \in I-J} B_{i} \quad \text { and }
$$

$$
Z_{L}(\mathbf{A}, \mathbf{B})=\bigcup_{J \in \mathcal{S}(L)} Z_{J}(\mathbf{A}, \mathbf{B})
$$

If all $\left(A_{i}, B_{i}\right)$ are the same, say (A, B), then we omit the boldface and write $Z_{L}(A, B)$ instead of $Z_{L}(\mathbf{A}, \mathbf{B})$.

Example

- Suppose $(A, B)=([0,1], 1)$.
- Put $K(L):=Z_{L}([0,1], 1)$ (and call it a chamber).
- $K(L)$ is a subcomplex of the cube, $\prod_{i \in I}[0,1]$.
$K(L)$ is homeo to the cone on L (the empty set provides the cone point). If L is the boundary complex of a simplicial polytope, then $K(L)$ can be identified with
 the dual polytope.

Example

- $(A, B)=\left(D^{1}, S^{0}\right)(=([-1,1],\{ \pm 1\}))$.
- $\mathbf{C}_{2}(=\{ \pm 1\})$ is the cyclic group of order 2. It acts on $[-1,1]$. Hence, $\left(C_{2}\right)^{\prime} \curvearrowright[-1,1]^{\prime}$.
- $Z_{L}\left(D^{1}, S^{0}\right)$ is a $\left(\mathbf{C}_{2}\right)^{\prime}$-stable subspace.

Remarks

- The space $Z_{L}\left(D^{1}, S^{0}\right)$ is generally not simply connected.
- In fact, the group of all lifts of the $\left(\mathbf{C}_{2}\right)^{\prime}$-action to the universal cover is the right-angled Coxeter gp (or RACG), W, corresponding to the 1 -skeleton of L. Moreover,

$$
1 \rightarrow \pi_{1}\left(Z_{L}\left(D^{1}, S^{0}\right) \rightarrow W \rightarrow\left(\mathbf{C}_{2}\right)^{\prime} \rightarrow 1\right.
$$

Polyhedral products: definitions and examples

Classical moment-angle complex

Example

- $(A, B)=\left(D^{2}, S^{1}\right)$.
- The gp $S^{1}(=S O(2))$ acts on D^{2}.
- Put $m=\operatorname{Card}(I), T^{m}=\left(S^{1}\right)^{\prime}$. Then $T^{m} \curvearrowright Z_{L}\left(D^{2}, S^{1}\right)$.

Remarks

- $K(L)\left(=Z_{L}([0,1], 1)\right.$ is the orbit space of $\left(\mathbf{C}_{2}\right)^{m}$ on $Z_{L}\left(D^{1}, S^{0}\right)$, as well as, the orbit space of T^{m} on $Z_{L}\left(D^{2}, S^{1}\right)$.
- If L is a triangulation of S^{n-1}, then $K(L)$ is an n-disk, $Z_{L}\left(D^{1}, S^{0}\right)$ is a n-mfld and $Z_{L}\left(D^{2}, S^{1}\right)$ is an $(n+m)$-mfld.

Toric manifolds (or "quasi-toric mflds")

- Let L be a triangulation of S^{n-1} (eg L could be ∂ (simplicial polytope) in which case $K(L)$ is dual polytope.
- Suppose \exists epimorphism λ : $T^{m} \rightarrow T^{n}$ s.t. the kernel N acts freely on $Z_{L}=Z_{L}\left(D^{2}, S^{1}\right)$. Then

$$
M^{2 n}:=Z_{L} / N
$$

is called the toric mfld associated to L and λ.

- $T^{n} \curvearrowright M^{2 n}$ and $M^{2 n} / T^{n}=K(L)$.
- This is generalization of Delzant's construction of Hamiltonian T^{n}-action on symplectic mfld where $K(L) \subset \mathbb{R}^{n}$ is simple convex polytope with edges parallel to rational vectors and where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is defined by using normals to the facets.

Small covers

- Similarly, if \exists epimorphism $\lambda:\left(\mathbf{C}_{2}\right)^{m} \rightarrow\left(\mathbf{C}_{2}\right)^{n}$ s.t. the kernel N acts freely on $Z_{L}\left(D^{1}, S^{0}\right)$, then $M^{n}:=Z_{L}\left(D^{1}, S^{0}\right) / N$ is called the associated small cover of $K(L)$ (thought of as an orbifold).
- $\left(\mathbf{C}_{2}\right)^{n} \curvearrowright M^{n}$ and $M^{n} /\left(\mathbf{C}_{2}\right)^{n}=K(L)$.
- Later we will see that $\pi_{1}\left(M^{n}\right)$ is the kernel of $W_{L} \rightarrow\left(\mathbf{C}_{2}\right)^{m}$ where W_{L} is the RACG associated to L^{1}. Moreover, if L is a flag cx, then M^{n} is a $K(\pi, 1)$.

DJ - space

$E S^{1} \rightarrow B S^{1}=\mathbb{C} P^{\infty}$ and $E C_{2} \rightarrow B C_{2}=\mathbb{R} P^{\infty}$ are the universal S^{1} - and \mathbf{C}_{2}-bundles, respectively. Similarly, $E T^{m} \rightarrow B T^{m}=\left(\mathbb{C} P^{\infty}\right)^{m}$ and $E\left(\mathbf{C}_{2}\right)^{m} \rightarrow B\left(\mathbf{C}_{2}\right)^{m}=\left(\mathbb{R} P^{\infty}\right)^{m}$.

Definition

The Borel construction on $Z_{L}\left(D^{2}, S^{1}\right)$ is Davis-Januszkiewicz space, $D J(L)$, i.e.,

$$
D J(L):=Z_{L}\left(D^{2}, S^{1}\right) \times_{T^{m}} E T^{m}
$$

Similiarly, real DJ space is

$$
\mathbb{R} D J(L):=Z_{L}\left(D^{1}, S^{0}\right) \times\left(\mathbf{C}_{2}\right)^{m} E\left(\mathbf{C}_{2}\right)^{m}
$$

Let $D(\xi)$ be canonical D^{2}-bundle over $B S^{1}$ and $S(\xi)\left(=E S^{1}\right)$ the S^{1}-bundle. So, $D(\xi) \sim B S^{1}$ and $S(\xi) \sim *$.

Alternate definition of $D J$ - space

$$
D J(L)=Z_{L}(D(\xi), S(\xi)) \sim Z_{L}\left(B S^{1}, *\right) . \quad \text { Similarly }
$$

$$
\mathbb{R} D J(L) \sim Z_{L}\left(B C_{2}, *\right)
$$

RAAG s

Recall $Z_{L}(A, B) \subset \prod_{,} A$.
Example

- $(A, B)=\left(S^{1}, *\right)$
- Then $Z_{L}\left(S^{1}, *\right)$ is a subcx of the torus T^{m}, where $m=\operatorname{Card}(I)$. It is a union of subtori determined by L.
- The fundamental group of $Z_{L}\left(S^{1}, *\right)$ is the right-angled Artin group (= RAAG) determined by the graph L^{1}

Identify opposite faces to get $T^{2} \vee T^{1}$.

The face ring (or Stanley-Reisner ring)

- La simplicial cx with vertex set l.
- R a commutative ring, $\mathbf{x}=\left(x_{i}\right)_{i \in 1}$, and $R[\mathbf{x}]$ is the polynomial algebra.
- The face ring $R[L]$ is the quotient of $R[\mathbf{x}]$ by the ideal \mathcal{I}, where \mathcal{I} is the ideal generated by all square free monomials of the form $x_{i_{1}} \cdots x_{i_{k}}$, with $\left\{i_{1}, \ldots i_{m}\right\} \notin \mathcal{S}(L)$.

Recall $D J(L)=Z_{L}\left(B S^{1}, *\right)$ and $H^{*}\left(B T^{m}\right) \cong \mathbb{Z}[\mathbf{x}]$.

Theorem

$$
H^{*}(D J(L)) \cong \mathbb{Z}[L]:=\mathbb{Z}[\mathbf{x}] / \mathcal{I}
$$

Recall $H^{*}\left(T^{m}\right)=\bigwedge[\mathbf{x}]$ (the exterior algebra).

Theorem

$H^{*}\left(Z_{L}\left(S^{1}, *\right)\right) \cong \bigwedge[L]:=\bigwedge[\mathbf{x}] / \mathcal{I}$, the "exterior face ring".

Theorem (Bahri, Bendersky, Cohen, Gitler)

Suppose that for each $\left(A_{i}, B_{i}\right)$, the space B_{i} is contractible. Let k be a field. Then

$$
H^{*}\left(Z_{L}(\mathbf{A}, \mathbf{B}) ; k\right) \cong \bigotimes H^{*}\left(A_{i} ; k\right) / \mathcal{I} .
$$

Data

- A simplicial graph L^{1} with vertex set l.
- A family of discrete gps $\mathbf{G}=\left\{G_{i}\right\}_{i \in I}$

Definition

The graph product of the G_{i} is the group Γ formed quotienting the free product of the G_{i} by the normal subgroup generated by all commutators of the form $\left[g_{i}, g_{j}\right]$ where $\{i, j\} \in \operatorname{Edge}\left(L^{1}\right)$, $g_{i} \in G_{i}$ and $g_{j} \in G_{j}$.

Example

- If all $G_{i}=\mathbf{C}_{2}$, then Γ is the RACG determined by L^{1}.
- If all $G_{i}=\mathbb{Z}$, then Γ is the RAAG determined by L^{1}.

Relative graph products

More data

For each $i \in I$, besides G_{i}, suppose given a G_{i}-set E_{i}.
Put (ConeE, E) $:=\left\{\left(\text { Cone } E_{i}, E_{i}\right)\right\}_{i \in I \text {. }}$.

- Form the polyhedral product Z_{L} (Cone E, E). It is not simply connected. Let
$\tilde{Z}_{L}($ Cone $\mathbf{E}, \mathbf{E}):=$ the univ cover of $Z_{L}($ Cone $\mathbf{E}, \mathbf{E})$.
- $G=\prod_{i \in I} G_{i} \curvearrowright Z_{L}$ (Cone \mathbf{E}, \mathbf{E}). Let Γ be the gp of all lifts of G-action to $\widetilde{Z}_{L}($ Cone $\mathbf{E}, \mathbf{E})$. Γ is the graph product of the G_{i} relative to the E_{i}. (Only the 1 -skeleton, L^{1}, matters in this defn.) (This defn needs to be tweaked if G does not act effectively on $\prod E_{i}$.)

Example

If each $G_{i}=\mathbf{C}_{2}$, then $Z_{L}\left(\right.$ Cone $\left.\mathbf{C}_{2}, \mathbf{C}_{2}\right)$ is the space $Z_{L}\left(D^{1}, S^{0}\right)$ considered previously.

Remarks

- If each $E_{i}=G_{i}$, then the group of lifts, Γ, agrees with the first definition of graph product.
- The inverse image of $\prod_{i \in I} E_{i}$ in \tilde{Z}_{L} (Cone \mathbf{E}, \mathbf{E}) is the set of (centers of) chambers in a "right-angled building" (a RAB).
- If L is a flag complex (to be defined later), then $\widetilde{Z}_{L}\left(D^{1}, S^{0}\right)$ is the standard contractible complex for the RACG W and $\bar{Z}_{L}($ Cone $\mathbf{E}, \mathbf{E})$ is the standard realization of the RAB.
- Let $(\mathbf{A}, \mathbf{B})=\left(A_{i}, B_{i}\right)_{i \in I}$. Suppose each A_{i} is path connected. Let $p_{i}: \widetilde{A}_{i} \rightarrow A_{i}$ be the univ cover.
- Put $G_{i}=\pi_{1}\left(A_{i}\right)$ and let E_{i} be the set of path components of $p_{i}^{-1}\left(B_{i}\right)$ in \widetilde{A}_{i}. So, E_{i} is a G_{i}-set.

Proposition

$\pi_{1}\left(Z_{L}(\mathbf{A}, \mathbf{B})\right)=\Gamma$, where Γ is the relative graph product of the $\left(G_{i}, E_{i}\right)$ and G is their direct product.

Remember: $G=\prod G_{i}$ acts on $Z_{L}($ Cone $\mathbf{E}, \mathbf{E})$ and Γ is gp of lifts of G-action to $\widetilde{Z}_{L}($ Cone $\mathbf{E}, \mathbf{E})$.

Proof of Proposition.

$(\widetilde{\mathbf{A}}, \widetilde{\mathbf{B}}):=\left(\widetilde{A}_{i}, p_{i}^{-1}\left(B_{i}\right)\right) . Z_{L}(\widetilde{\mathbf{A}}, \widetilde{\mathbf{B}}) \rightarrow Z_{L}(\mathbf{A}, \mathbf{B})$ is an intermediate covering space and G is the $g p$ of deck transformations. The univ cover $\tilde{Z}_{L}(\mathbf{A}, \mathbf{B}) \rightarrow Z_{L}(\widetilde{\mathbf{A}}, \mathbf{B})$ is induced from $\tilde{Z}_{L}($ Cone $E, E) \rightarrow Z_{L}($ Cone $E, E)$.

When is a polyhedral product aspherical?

Suppose L is a flag cx (to be defined). Earlier, we said that $Z_{L}(A, B)$ is aspherical in the following cases:

- $Z_{L}\left(B C_{2}, *\right)=B W_{L}$, where W_{L} is the associated RACG.
- $Z_{L}\left(S^{1}, *\right)=B A_{L}$, where A_{L} is the associated RAAG.
- $Z_{L}\left(D^{1}, S^{0}\right)=B \pi$, where $\pi=\operatorname{Ker}\left(W_{L} \rightarrow\left(\mathbf{C}_{2}\right)^{m}\right)$.

What is the common generalization?

Definition

A simplicial cx L is a flag complex if any finite, nonempty set of vertices, which are pairwise connected by edges, bounds a simplex. Equivalently, L is a flag cx if every minimal nonface is a nonedge.

Definition

A pair of CW complexes (A, B) is aspherical, if A is aspherical, each path component of B is aspherical and the fundamental gp of any such component injects into $\pi_{1}(A)$.

Definition

A vertex i of a simplicial cx L is conelike if it is connected by an edge to every other vertex.

Theorem

$Z_{L}(\mathbf{A}, \mathbf{B})$ is aspherical
(i) Each A_{i} is aspherical.
(ii) For each non-conelike vertex $i \in I,\left(A_{i}, B_{i}\right)$ is aspherical.
(iii) L is a flag $c x$.

Corollary

If $\left(A_{i}, B_{i}\right)=\left(B G_{i}, *\right)$ and L is a flag $c x$, then $Z_{L}(\mathbf{A}, \mathbf{B})=B \Gamma$, the classifying space for the graph product Γ.

Corollary

Suppose each $\left(A_{i}, B_{i}\right)=\left(M_{i}, \partial M_{i}\right)$ is a mfld with bdry and an aspherical pair. Also suppose L is a flag triangulation of a sphere. Then $Z_{L}(\mathbf{A}, \mathbf{B}) \subset \prod M_{i}$ is a closed aspherical mfld.

Ingredients for the proof

Retraction Lemma

Suppose $L^{\prime} \subset L$ is a full subcx on vertex set I^{\prime}. Then the map $r: Z_{L}(\mathbf{A}, \mathbf{B}) \rightarrow Z_{L^{\prime}}(\mathbf{A}, \mathbf{B})$ induced by $\prod_{i \in I} A_{i} \rightarrow \prod_{i \in I^{\prime}} A_{i}$ is a retraction.

RAB Lemma

Suppose $\mathbf{E}=\left(E_{i}\right)_{i \in I}$ is a collection of sets (each with the discrete topology). Then \tilde{Z}_{L} (Cone \mathbf{E}, \mathbf{E}) is contractible $\Longleftrightarrow L$ is a flag complex. Moreover, if this is the case, then $\widetilde{Z}_{L}($ Cone $\mathbf{E}, \mathbf{E})$ is the "standard realization" of a RAB of type W_{L}.

Theorem

$Z_{L}(\mathbf{A}, \mathbf{B})$ is aspherical \Longleftrightarrow
(i) Each A_{i} is aspherical.
(ii) For each non-conelike vertex $i \in I,\left(A_{i}, B_{i}\right)$ is aspherical.
(iii) L is a flag $c x$.

Comment

What is the point of Condition (ii)? If L is flag, then the set of conelike vertices spans a simplex Δ and L decomposes as a join, $L=L^{\prime} * \Delta$, and Z_{L} as a product:

$$
Z_{L}(\mathbf{A}, \mathbf{B})=Z_{L^{\prime}}(\mathbf{A}, \mathbf{B}) \times \prod_{i \in \operatorname{Vert} \Delta} A_{i},
$$

so the B_{i} for conelike vertices do not enter the picture.

Theorem

$Z_{L}(\mathbf{A}, \mathbf{B})$ is aspherical \qquad
(i) Each A_{i} is aspherical.
(ii) For each non-conelike vertex $i \in I,\left(A_{i}, B_{i}\right)$ is aspherical.
(iii) L is a flag $c x$.

Sketch of proof in \Longrightarrow direction

- Retraction Lemma \Longrightarrow (i) and (ii).
- RAB Lemma \Longrightarrow (iii)
Γ is the graph product of G_{i} w.r.t. $L^{1} . L$ is its flag $c x$.

Theorem (with Boris Okun)

Assume each G_{i} is infinite. Then

$$
H^{n}(\Gamma ; k \Gamma)=\bigoplus_{\substack{J \in \mathcal{S}(L) \\ p+q=n}} H^{p}(\operatorname{Cone}(\operatorname{Lk} J), L k J) \otimes\left[H^{q}\left(G_{J} ; k G_{J}\right) \otimes_{G_{J}} k \Gamma\right]
$$

where $G_{J}:=\prod_{i \in J} G_{i}$ and

$$
H^{*}\left(G_{J} ; k G_{J}\right)=\bigotimes_{i \in J} H^{*}\left(G_{i} ; k G_{i}\right)
$$

M.W. Davis and B. Okun, Cohomology computations for Artin groups, Bestvina-Brady groups and graph products, arXiv:1002.2564.

