BIRS Workshop
Evolutionary Games

Equilibrium transitions in stochastic models of finite populations

Jacek Miękisz
Institute of Applied Mathematics
University of Warsaw

Population dynamics

A and B are two possible behaviors, fenotypes or strategies of each individual

Matching of individuals

everybody interacts with everybody
random pairing of individuals
space - structured populations

Main Goals

Equilibrium selection in case of multiple Nash equilibria
Evolutionary stability of cooperation

Dependence of the long-run behavior of population on
--- its size
--- mutation level
--- topology of interactions

Equilibrium transitions

Stochastic dynamics of finite unstructured populations

n - \# of individuals
z_{t} - \# of individuals playing A at time t
$\Omega=\{0, \ldots, n\}$ - state space
selection
$z_{t+1}>z_{t}$ if "average payoff" of $A>$,average payoff" of B mutation
each individual may mutate and switch to the other strategy with a probability ε

Markov chain with $\mathrm{n}+1$ states and a unique stationary state $\mu^{\varepsilon}{ }_{n}$

Definition

$Z \in \Omega$ is stochastically stable if $\lim _{\epsilon \rightarrow 0} \mu_{n}^{\epsilon}(Z)>0$
extinctions
fixations
another approach: fixation probabilities
in systems with absorbing states

Previous results

Playing against the field, Kandori-Mailath-Rob 1993

$$
\begin{array}{cl}
\mathrm{A} & \mathrm{~B} \\
\mathrm{~A} \quad \mathrm{a} & \mathrm{~b} \\
\mathrm{~B} \quad \mathrm{c} & \mathrm{~d} \\
\mathrm{a}>\mathrm{c}, \mathrm{~d}>\mathrm{b}, \mathrm{a}>\mathrm{d}, \\
\mathrm{a}+\mathrm{b}<\mathrm{c}+\mathrm{d}
\end{array} \quad \begin{aligned}
& \mathrm{A}, \mathrm{~A}) \text { and }(\mathrm{B}, \mathrm{~B}) \text { are Nash equilibria } \\
& \pi_{A}\left(z_{t}\right)=\frac{a\left(z_{t}-1\right)+b\left(n-z_{t}\right)}{n-1} \\
& \pi_{B}\left(z_{t}\right)=\frac{c z_{t}+d\left(n-z_{t}-1\right)}{n-1} \\
& z_{t+1}>z_{t} \text { if a risk-dominant strategy } \pi_{A}\left(z_{t}\right)>\pi_{B}\left(z_{t}\right) \\
& z_{t+1}<z_{t} \text { if } \pi_{A}\left(z_{t}\right)<\pi_{B}\left(z_{t}\right) \\
&
\end{aligned}
$$

Theorem
For sufficiently large n, strategy B is stochastically stable, that is

$$
\lim _{\epsilon \rightarrow 0} \mu_{n}^{\epsilon}(0)=1
$$

Random matching of players, Robson - Vega Redondo, 1996

p_{t} \# of crosspairings

$$
\begin{gathered}
\tilde{\pi}_{A}\left(z_{t}, p_{t}\right)=\frac{a\left(z_{t}-p_{t}\right)+b p_{t}}{z_{t}} \\
\tilde{\pi}_{B}\left(z_{t}, p_{t}\right)=\frac{c p_{t}+d\left(n-z_{t}-p_{t}\right)}{n-z_{t}}
\end{gathered}
$$

Theorem
For sufficiently large n, strategy A is stochastically stable, that is

$$
\lim _{\epsilon \rightarrow 0} \mu_{n}^{\epsilon}(n)=1
$$

Our results, JM J. Theor. Biol, 2005

so far n was fixed and $\epsilon \rightarrow 0$
now ϵ is fixed and $n \rightarrow \infty$

Theorem (random matching model)

Spatial games with local interactions

$$
\begin{aligned}
& \Lambda \subset \mathbf{Z}^{d} \\
& S=\{1, \ldots, k\} \quad-\quad \text { set of strategies } \\
& \Omega_{\Lambda}=S^{\Lambda}-\text { set of population states } \\
& N_{i}-\text { neighbourhood of the } i-t h \text { player } \\
& U: S \times S \rightarrow \mathbf{R}-\text { payoff matrix } \\
& \text { Let } X \in \Omega_{\Lambda}, \text { then } \quad \nu_{i}(X)=\sum_{j \in N_{i}} U\left(X_{i}, X_{j}\right) \quad-\quad \text { payoff of the } i-\text { th player }
\end{aligned}
$$

Definition
$X \in \Omega_{\Lambda}$ is a Nash configuration if for every $i \in \Lambda$ and $Y_{i} \in S$,

$$
\nu_{i}\left(X_{i}, X_{-i}\right) \geq \nu_{i}\left(Y_{i}, X_{-i}\right)
$$

Deterministic dynamics

the best-response rule

imitation

Stochastic dynamics

a) perturbed best response
with the probability $1-\varepsilon$, a player chooses the best response with the probability $\varepsilon \quad$ a player makes a mistake
b) log-linear rule or Boltzmann updating

$$
\begin{aligned}
& p_{i}^{\epsilon}\left(X_{i}^{t+1} \mid X_{-i}^{t}\right)=\frac{e^{\frac{1}{\epsilon} \nu_{i}\left(X_{i}^{t+1}, X_{-i}^{t}\right)}}{\sum_{Y_{i} \in S} e^{\frac{1}{\epsilon} \nu_{i}\left(Y_{i}, X_{-i}^{t}\right)}} \\
& \lim _{\epsilon \rightarrow 0} p_{i}^{\epsilon}=B r
\end{aligned}
$$

Example 1 JM, J. Phys. A 2004

square lattice with nearest-neighbour interactions, log-linear rule

$\mathrm{U}=$| | A | B | C |
| :---: | :---: | :---: | :---: |
| A | 1.5 | 0 | 1 |
| B | 0 | 2 | 1 |
| C | 1 | 1 | 2 |

$X^{A}, X^{B}, X^{C} \quad$ Nash configurations

$$
\mu_{\Lambda}^{\epsilon}(X)=\frac{e^{\frac{1}{\epsilon} \sum_{i j} U\left(X_{i}, X_{j}\right)}}{\sum_{Z \in \Omega_{\Lambda}} e^{\frac{1}{\epsilon} \sum_{i j}^{i j U\left(Z_{i}, Z_{j}\right)}}}
$$

$$
\lim _{\epsilon \rightarrow 0} \mu_{\Lambda}^{\epsilon}\left(X^{k}\right)=1 / 2, k=B, C
$$

$$
\lim _{\Lambda \rightarrow \mathbf{Z}^{2}} \mu_{\Lambda}^{\epsilon}(X)=0 \text { for every } X \in \Omega=S^{\mathbf{Z}^{2}}
$$

Gibbs states

$\mathrm{U}=$| | A | B | C |
| :---: | :---: | :---: | :---: |
| A | 1.5 | 0 | 1 |
| B | 0 | 2 | 1 |
| C | 1 | 1 | 2 |

Theorem

$$
\begin{array}{ll}
\mu^{\epsilon}\left(X_{0}=C\right)=1-\delta(\epsilon) & \text { counting lo } \\
& \\
\delta(\epsilon) \rightarrow 0 \text { when } \epsilon \rightarrow 0 & \text { BBBBBBB } \\
& \text { BBBCBBB } \\
& \text { BBBBBBB }
\end{array}
$$

Proof

counting lowest cost excitations

CCCCCCC	CCCCCCC
CCCACCC	CCCBCCC
CCCCCCC	CCCCCCC

Example 2 JM, J. Phys. A 2004

A B C

A	0	0.1	1	without A \quad B is stochastically stable
B	0.1	$2+\alpha$	1.1	A is a dominated strategy
C	1.1	1.1	2	with A

where $\alpha>0$

stochastic stability

number of players fixed, noise $\rightarrow 0$

ensemble stability

noise fixed, number of players $\rightarrow \infty$

Snow Drift with Agata Powałka and Christoph Hauert

b-prize
c-cost

$$
r=c /(2 b-c)
$$

C
D C b-c/2 b-c
D b 0
replicator dynamics
$d x / d t=2 /(c-2 b) x(1-x)(x-(1-r))$
$x=1-r$ is the mixed Nash equlibrium

letters to nature

Spatial structure often inhibits the evolution of cooperation in the snowdrift game

Christoph Hauert \& Michael Doebeli
Departments of Zoology and Mathematics, University of British Columbia,
6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
pairwise comparisons
randomly chosen players imitate randomly chosen neighbors with probability proportional to the difference of payoffs

Figure 1 Frequency of cooperators as a function of the cost-to-benefit ratio $r=$ $c /(2 b-c)$ in the snowdritt game for different lattice geometries. a, Triangular lattice, neighbourhood size $N=3$; \mathbf{b}, square lattice, $N=4$; \mathbf{c}, hexagonal lattice, $N=6$; d, square lattice, $N=8$. For small r, spatial structure promotes cooperation; however, for

random matching model

$E(C)=b-c+(k-1)(x(b-c / 2)+(1-x)(b-c))$,

$$
E(D)=b+(k-1) x b .
$$

From $E(C)=E(D)$ it follows that

$$
\begin{gathered}
x=1-r \frac{k+1}{k-1} \quad \text { extinction threshold for cooperation } \\
r=\frac{k-1}{k+1}
\end{gathered}
$$

If the neighborhood of imitation is idependent of the neighborhood of interaction, then

$$
\begin{aligned}
& E(C)=k(x(b-c / 2)+(1-x)(b-c)), \\
& \qquad E(D)=k x b \\
& \text { and } \mathrm{E}(\mathrm{C})=\mathrm{E}(\mathrm{D})
\end{aligned}
$$

gives the replicator dynamic coexistence

$$
x=1-r
$$

Prisoner's Dilemma on random graphs

joint work with Bartosz Sułkowski

and Jakub Łącki

	C	D
C	3	0
D	5	1

(D,D) is the only Nash equilibrium

Erdos - Renyi random graphs

Each pair of vrtices is joint by an edge with probability ε
Distribution of vertex degrees is Poissonian

Scale-free graphs of Barabasi-Albert

Preferential linking
Distribution of vertex degrees $\sim k^{-\lambda}$
imitation dynamic

C D
C D
$\begin{array}{llllll}C & 3 & 0 & C & 2 & -1\end{array}$
$\begin{array}{lllll}\text { D } & 5 & 1 & \text { D } & 4\end{array}$

left players earn	3	left players earn	2
middle player	6	middle player right player	3
right player	5	4	
D changes into C		middle C changes into D	

spatial game with linking cost Matsuda 2007

				C	D
C	1	D	C	$1-\gamma$	$-\gamma$
D	T	0	D	$\mathrm{~T}-\gamma$	$-\gamma$
				linking cost	

imitation dynamic
a random player imitates the best strategy in the neighborhood with theprobability $1-\varepsilon$
makes a mistake with the probability ε

level of cooperation

time series

phase transition ?

That's it for today

