Evolution of cooperation and network structure

Institute of Zoology
 Chinese Academy of Sciences
 Cong Li

- 1. Introduction \& Background
- 2. Games from regular to random networks
- 3. Effect of selection intensity
- 4. Effect of fixed contribution
- 5. Games in scale-free network

1. Introduction

- A simple rule for the evolution of cooperation on graphs and social networks (Ohtsuki et al. 2006)

- Social diversity promotes the emergence of cooperation in public goods games
(Santos et al. 2008)

Fixed Contribution

Questions:

■ How does the network structure work on the evolution of cooperation?

- Will different network structures work on the same way?

■ Is there the best network structure for increasing cooperation?

2. Results from regular to random

■ Small-World network structure (Watts, 1998)

- Games: Prisoner's Dilemma
- Payoff: Two strategy: C, D. All defectors (D) do nothing. C in PD, $-1 \rightarrow r$, to each neighbor

Games: Prisoner's Dilemma

- Payoff: Two strategy: C, D. All defectors (D) do nothing. C in PD, $-1 \rightarrow r$, to each neighbor

- Games: Prisoner's Dilemma
- Payoff: Two strategy: C, D. All defectors (D) do nothing. C in PD, $-1 \rightarrow r$, to each neighbor

- Games: Public Goods

■ Payoff: C in PG, -1 \rightarrow r ($\mathrm{r} /(\mathrm{k}+1)$ for each one), each neighborhood centred in vertex.

- Games: Public Goods

■ Payoff: C in PG, -1 \rightarrow r (r/(k+1) for each one), each neighborhood centred in vertex.

- Games: Public Goods

■ Payoff: C in PG, -1 \rightarrow r (r/(k+1) for each one), each neighborhood centred in vertex.

- Fitness=(1-w) $+\mathrm{w} \times$ Payoff
- Evolution model: Death-Birth process
- Fixation Probability of a C invade an all D's network.
- $\mathrm{N}=100$, times=10^6, 10 different graphs for each parameter (p, k, r)

Results under the weak selection

PD game $r<k$
$\mathrm{r}=5, \mathrm{k}=6, \quad \mathrm{w}=0.01$

rewiring probability p

PD game $r>k$

$$
\mathrm{r}=9, \mathrm{k}=6, \quad \mathrm{w}=0.01
$$

rewiring probability p

PD game $r \gg k$

$$
\mathrm{r}=11, \mathrm{k}=6, \quad \mathrm{w}=0.01
$$

rewiring probability p

PG game
$\mathrm{r}=4, \mathrm{k}=6, \quad \mathrm{w}=0.01$

rewiring probability p

PD games for different r and k

$r=8, w=0.01$

Rewiring Probability P

1. The change of fixation probability with the increase of p is small for given r and k.
2. This implies that for PD game, the effect of network structure on cooperation should be small under the weak selection.

PG games for different r and k

$k=6, w=0.01$

$k=8, w=0.01$

1. The fixation probability decreases with the increase of p.
2. Why?

3. Effect of selection intensity

- Fixation probability under the weak selection:
$w=0.01$, regular, PD game
$w=0.01$, regular, PG game

*The Benefit-to-Cost Ratio $r>k$ rule in PGG means $r>(k+1) / 2$

PD games for different w values

PG games for different w values

Small-World and random networks promote cooperation more efficiently than regular under the strong selection.

Effect of w and $r>k$ rule

$w=0.1$, regular, PD game

Strong selection will result in the rapid increase of the fixation probability with the increase of r if $r \gg k$, and the increase of the fixation probability with the increase of r will be slow if r is only little larger than k.

4. Fixed Contribution

In each game, the cost of C is $1 / k$ in PD, $1 /(k+1)$ in $P G$, and the benefit to his neighbor is r / k in PD, $r /(k+1)$ to each neighbourhood in PG.

PD game

4. Fixed Contribution

In each game, the cost of C is $1 / k$ in PD, $1 /(k+1)$ in $P G$, and the benefit to his neighbor is r / k in PD, $r /(k+1)$ to each neighbourhood in PG.

PD game
PG game

4. Fixed Contribution

In each game, the cost of C is $1 / k$ in PD, $1 /(k+1)$ in $P G$, and the benefit to his neighbor is r / k in PD, $r /(k+1)$ to each neighbourhood in PG.

PD game

PG game

4. Fixed Contribution

In each game, the cost of C is $1 / k$ in PD, $1 /(k+1)$ in $P G$, and the benefit to his neighbor is r / k in PD, $r /(k+1)$ to each neighbourhood in PG.

result

In each game, the cost of C is $1 / k$ in PD, $1 /(k+1)$ in $P G$, and the benefit to his neighbor is r / k in PD, $r /(k+1)$ to each neighbourhood in PG.

FP increases in PD

PG game $k=6, \quad r=6, \quad w=0.01$

FP decreases in PG

PD Game

PG game

$k=6, w=0.01$, Control

$k=6, w=0.01$, Fixed Contribution

$k=6, w=0.06$, Fixed Contribution

Rewiring Probability P

Conclusion of Small-World

- 1.Under weak selection network structure will not make any difference to promote cooperation in PD game, but regular does best in PG game.
- 2 . Under strong selection the promotion of cooperation is sensitive to network structure.
- 3.Fixed contribution works in Small-world and random in PD, but doesn't work in PG under weak selection.

5. Games in Scale-Free Network

- 1. Scale-invariant distribution
- 2. Preferential attachment

Scale-Free $k=6$

5. Games in Scale-Free Network

■ 1. Scale-invariant distribution

- 2. Preferential attachment

Scale-Free $k=6$

5. Games in Scale-Free Network

- 1. Scale-invariant distribution
- 2. Preferential attachment

Scale-Free $k=6$

5. Games in Scale-Free Network

- 1. Scale-invariant distribution
- 2. Preferential attachment

Scale-Free $k=6$

5. Games in Scale-Free Network

- 1. Scale-invariant distribution
- 2. Preferential attachment

Scale-Free $N=20 k=6$

- SF is different from SW in the probability distribution of degree

Small-World, $k=6, N=500, p=0.3$

Scale-Free, $k=6, N=500$

1. More vertices with degree=k/2 in Scale-Free not k in Small-World
2. Vertices with great numbers of degree (VIP)

Classical model (Ohtsuki et al., 2006)

PD game, Scale-Free, $w=0.01$

Benefit-to-Cost Ratio r=b/c

PG game, Scale-Free, $w=0.01$

Enhancement Factor r in PGG

In public goods game, when $k=4$, the fixation probability does not obey the $r>k$ rule, and the scale-free network promote cooperation more efficiently than regular, small-world and random networks.

Fixed contribution

PD game, Scale-Free, $w=0.01$

PG game, Scale-Free, w=0.01

In PD game, for $k=4$ and $k=6$, the $r>k$ rule also does not work.

Classical model vs. Fixed Contribution

PD game, Scale-Free

PG game, Scale-Free

I. Classical model with $w=0.01, \mathrm{FC}$ with $w=0.01 \times k$.
II. For both PD and PG games, fixed contribution can promote cooperation efficiently.

Works in the future

- 1. Some theoretical result in detail.
- 2. More realistic network.
- 3. The effect of group size N, an antiintuitional result on fixation contribution.

Thank you!

