Optimization Over Hyperbolicity Cones

Jim Renegar

- $p: \mathbb{R}^{d} \rightarrow \mathbb{R} \quad$ homogeneous polynomial of degree n
- $p(e)>0$

Defn: The polynomial p is
"hyperbolic in direction e "
if for all $x \in \mathbb{R}^{d}$, the univariate polynomial
$\lambda \mapsto p(\lambda e-x)$ has only real roots.

Roots: $\lambda_{1, e}(\boldsymbol{x}) \leq \lambda_{2, e}(\boldsymbol{x}) \leq \cdots \leq \lambda_{n, e}(\boldsymbol{x})$
"eigenvalues of x (in direction e)"

LP：
－$p(\boldsymbol{x})=x_{1}, \ldots, x_{n}$
－$e>0$

$$
\lambda \mapsto p(\lambda e-x)=\left(\lambda e_{1}-x_{1}\right) \cdots\left(\lambda e_{n}-x_{n}\right)
$$

Eigenvalues of x in direction $e: \frac{x_{1}}{e_{1}}, \ldots, \frac{x_{n}}{e_{n}}$

SDP：
－$p(\boldsymbol{x})=\operatorname{det}(x)$
－$e \succ 0$

$$
\lambda \mapsto \operatorname{det}(\lambda e-x)=\operatorname{det}(e) \operatorname{det}\left(\lambda I-e^{-1 / 2} x e^{-1 / 2}\right)
$$

Eigenvalues of x in direction e
$=$ traditional eigenvalues of $e^{-1 / 2} x e^{-1 / 2}$
$\lambda_{1, e}(\boldsymbol{x}) \leq \lambda_{2, e}(\boldsymbol{x}) \leq \cdots \leq \lambda_{n, e}(\boldsymbol{x}) \quad$ roots of $\lambda \mapsto p(\boldsymbol{x}-\lambda e)$
Hyperbolicity Cone:

$$
\begin{aligned}
\Lambda_{++}: & :=\left\{x: 0<\lambda_{1, e}(x)\right\} \\
= & \text { connected component of } \\
& \quad\{x: p(x)>0\} \text { containing } e
\end{aligned}
$$

Gårding (1959): p is hyperbolic in direction e for all $e \in \Lambda_{++}$
Corollary: Λ_{++}is a convex cone
Corollary: $\quad x \mapsto \lambda_{n, e}(x)$ is a convex function

Bauschke, Güler, Lewis \& Sendov:
If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex and permutation-invariant then $x \mapsto f\left(\vec{\lambda}_{e}(x)\right)$ is convex

Lax, Vinnikov and Helton Theorem:

Every 3-dimensional hyperbolicity cone is a slice of a PSD cone.

Cor: Faces of hyperbolicity cones are exposed.

Chua: Every homogeneous cone is a slice of a PSD cone.
ϕ a univariate polynomial
If ϕ has only real roots then:

- ϕ^{\prime} has only real roots.
- Roots are interlaced: $\lambda_{1} \leq \lambda_{1}^{\prime} \leq \lambda_{2} \leq \cdots \leq \lambda_{n-1}^{\prime} \leq \lambda_{n}$
p a multivariate polynomial
$p_{e}^{\prime}(\boldsymbol{x}):=\langle\nabla p(\boldsymbol{x}), e\rangle \quad$ (directional derivative)
If p is hyperbolic in direction e then:
- p_{e}^{\prime} is hyperbolic in direction e.
- $\Lambda_{+} \subseteq \Lambda_{e,+}^{\prime}$

Inductively:

$$
\begin{gathered}
p_{e}^{(i+1)}(\boldsymbol{x})=\left\langle\nabla p_{e}^{(i)}(\boldsymbol{x}), e\right\rangle \\
\Lambda_{+}=\Lambda_{e,+}^{(0)} \subseteq \Lambda_{e,+}^{(1)} \subseteq \cdots \subseteq \Lambda_{e,+}^{(n-1)}=\text { a halfspace }
\end{gathered}
$$

$p_{e}^{(i)}(x)=i!p(e) E_{n-i}\left(\vec{\lambda}_{e}(x)\right)$
where $E_{k}=$ elementary symmetric polynomial of degree k

$$
\Lambda_{e,+}^{(i)}=\left\{x: E_{k}\left(\vec{\lambda}_{e}(x)\right) \geq 0, k=1, \ldots, n-i\right\}
$$

Thm: If p is hyperbolic in direction e
then p / p_{e}^{\prime} is a concave function on $\Lambda_{e,++}^{\prime}$
Pf:

- $q(x, t):=t p(x)$ is hyperbolic in direction $(e, 1)$
- Hence, $q_{(e, 1)}^{\prime}$ is hyperbolic in direction $(e, 1)$
- Hyperbolicity cone of $q_{(e, 1)}^{\prime}$ is epigraph of $x \mapsto-p(x) / p_{e}^{\prime}(x)$
Λ_{+}-Feasibility Problem: Find $x \in \Lambda_{+}$satisfying $A x=b$

Assume $\bar{x} \in \Lambda_{e,++}^{\prime}$ satisfies $A \bar{x}=b$
Then Λ_{+}-feasibility attained by "solving"

$$
\begin{aligned}
\max & p(\boldsymbol{x}) / p_{e}^{\prime}(\boldsymbol{x}) \\
\text { s.t. } & A \boldsymbol{x}=b
\end{aligned}
$$

More generally, assume \bar{x} is $\Lambda_{e,++}^{(i)}$-feasible.
First find $\Lambda_{e,++}^{(i-1)}$-feasible point,
then find $\Lambda_{e,++}^{(i-2)}$-feasible point,
\ldots and, finally, find Λ_{+}-feasible point.

Hyperbolic Program (HP):

$$
\begin{aligned}
\min & \langle c, x\rangle \\
\text { s.t. } & A x=b \\
& x \in \Lambda_{+}
\end{aligned}
$$

Introduced by Güler (mid-90's) in context of ipm's:

$$
\begin{gathered}
\text { "Central Path" }=\{x(\eta): \eta>0\} \\
\text { where } x(\eta) \text { solves }
\end{gathered}
$$

$$
\begin{aligned}
\min & \eta\langle c, x\rangle-\ln p(x) \\
\text { s.t. } & A x=b
\end{aligned}
$$

$O(\sqrt{n}) \log (1 / \epsilon)$ iterations suffice to reduce $\alpha:=\langle c, x\rangle-\langle b, y\rangle$ to $\epsilon \alpha$

Hyperbolic Program relaxation:

Defn: The " i th central swath" is the set of directions e satisfying (strict feasibility)
 - HP ${ }_{e}^{(i)}$ has an optimal solution

central path $=(n-1)^{\text {th }}$ central swath
$\min \langle c, x\rangle$
s.t. $\quad A x=b$ $x \in \Lambda_{+}$
$\min \langle c, x\rangle$
s.t. $A x=b$
$x \in \Lambda_{+, e}^{(i)}$

Hyperbolic Program relaxation:

Defn: The " i th central swath" is the set of directions e satisfying

- $A e=b, \quad e \in \Lambda_{e,++}^{(i)} \quad$ (strict feasibility)
- $\mathrm{HP}_{e}^{(i)}$ has an optimal solution

$$
\text { central path }=(n-1)^{\text {th }} \text { central swath }
$$

see enclosed avi video by Y.Zinchenko
$e(t) \quad$ time dependent
$z(t) \quad$ optimal solution of $\mathrm{HP}_{e(t)}^{(i)}$
Dynamics: $\quad \frac{d}{d t} e(t)=z(t)-e(t)$
If $i=n-2$ and $e(0)$ is on the central path then $e(t)$ traces the central path.

Thm: Assume dual of HP is strictly feasible and $i \leq n-2$.
If $e(0)$ is in the $i^{\text {th }}$ central swath, then:

- The dynamics are well-defined
(in particular, $e(t)$ is in the swath for all $t \geq 0$)
- $e(t) \rightarrow$ optimality for HP (what about $z(t)$?)

If $z \notin \Lambda_{+}$then z is optimal also for

$$
\begin{aligned}
\min _{x} & -\ln \langle c, e-x\rangle-\frac{p_{e}^{(i)}(x)}{p_{e}^{(i+1)}(x)} \\
\text { s.t. } & A x=b
\end{aligned}
$$

linearly-constrained optimization problem
with strictly convex objective function

$$
\begin{aligned}
\min & \langle c, x\rangle \\
\mathrm{s.t.} & A x=b \\
& x \in \Lambda_{+}
\end{aligned}
$$

$$
z=\text { optimal solution }
$$

If $z \notin \partial \Lambda_{e,+}^{\prime}$ then z solves

$$
\begin{aligned}
\min _{x} & -\ln \langle c, e-x\rangle-\frac{p(x)}{p_{e}^{\prime}(x)} \\
\text { s.t. } & A x=b
\end{aligned}
$$

How good is Newton's method at solving the latter problem?

A general theorem on Newton's method (Smale, Guler, ...)

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & A \boldsymbol{x}=b \quad \text { Let } z \text { denote optimal solution }
\end{aligned}
$$

For u satisfying $A u=0$, let $\phi_{u}(t):=f(z+t u)$, and define

$$
\gamma:=\sup _{u, k>2}\left|\frac{\phi_{u}^{(k)}(0)}{(k-2)!\phi_{u}^{(2)}(0)^{\frac{k}{2}}}\right|^{\frac{1}{k-2}}
$$

Thm: If x satisfies $A x=b$ and

$$
\left\langle x-z, \nabla^{2} f(z)(x-z)\right\rangle<\frac{1}{36 \gamma^{2}}
$$

then Newton's method initiated at x converges quadratically.

For interior-point methods:

$$
\begin{gathered}
f(\boldsymbol{x})=\eta\langle c, \boldsymbol{x}\rangle-\ln p(\boldsymbol{x}) \\
\gamma \leq 1
\end{gathered}
$$

So $\|x-x(\eta)\|_{\nabla^{2} f(x(\eta))}<\frac{1}{6} \Rightarrow$ quadratic convergence

For present context:

$$
f(x)=-\ln \langle c, e-x\rangle-\frac{p(x)}{p_{e}^{\prime}(\boldsymbol{x})}
$$

γ can be arbitrarily large
("Inversely proportional to curvature of $\partial \wedge_{+}$at z ")

$$
f(\boldsymbol{x})=-\ln \langle c, e-x\rangle-\frac{p(\boldsymbol{x})}{p_{e}^{\prime}(\boldsymbol{x})}
$$

Nonetheless, something meaningful can be said ...

Thm:

$$
\gamma \leq \frac{4}{\min \left\{\|x-z\|_{\nabla^{2} f(z)}: A x=b \text { and } x \in \partial \Lambda_{e,+}^{\prime}\right\}}
$$

In other words, quadratic convergence occurs on nearly the largest "ball" within reason.

Limitation of theorem：
$\left\|\|_{\nabla^{2} f(z)}\right.$ reflects curvature of $\partial \wedge_{+}$at z, not shape of $\Lambda_{e,+}^{\prime}$ around z

That shape is reflected by Hessian of $h(\boldsymbol{x}):=-\ln p_{e}^{\prime}(\boldsymbol{x})$

If $\left\|\|_{\nabla^{2 f(z)}}\right.$ is（nearly）a scalar multiple of $\| \|_{\nabla^{2} h(z)}$ then Newton＇s domain of convergence is truly the largest within reason

z optimal solution of $\mathrm{HP}_{e}^{(i)}$

$$
0=\lambda_{1, e}^{(i)}(z) \leq \ldots \leq \lambda_{n-i, e}^{(i)}(z)
$$

Cor (to Lax, Vinnikov and Helton Thm):
If $0<i<n-2$ then there exists a scalar κ such that

$$
\kappa \lambda_{2, e}^{(i)}(z) \leq\left(\frac{\|v\|_{\nabla^{2} f(z)}}{\|v\|_{\nabla^{2} h(z)}}\right)^{2} \leq \kappa(n-i) \lambda_{n-i, e}^{(i)}(z)
$$

for all $v \neq 0$

$$
\underbrace{\text { satisfying }\left.\frac{d}{d t} \lambda_{2, e}^{(i)}(z+t v)\right|_{t=0}=0}_{\text {technicality }}
$$

$e(t) \quad$ time dependent
$z(t) \quad$ optimal solution of $\mathrm{HP}_{e(t)}^{(i)}$
Dynamics: $\quad \frac{d}{d t} e(t)=z(t)-e(t)$
To implement, dynamics should be discretized:

$$
e_{1}, e_{2}, \ldots \quad \text { where } e_{j+1}=e_{j}+\delta\left(z_{j}-e_{j}\right)
$$

Open question: How large can we safely set the value δ ?

Zinchenko:
Assume optimal solution z^{*} of HP is unique and 0 is a root of multiplicity $i+1$ for $\lambda \mapsto p\left(\lambda e-z^{*}\right)$.
"Then" ${ }^{1}$ in the limit, safe values for δ rapidly approach 1 .

[^0] here would take the present talk too far afield.

[^0]: ${ }^{1}$ Additional technical qualifications are used in the proof, but stating them

