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Spectrahedra

A spectrahedron is the set of solutions to a linear matrix inequality:
Let A, . . . ,An ∈ Symk(R) be symmetric k × k-matrices, and let

A(t) = A + tA +⋯ + tnAn =
⎛
⎜
⎝

ℓ(t) ⋯ ℓk(t)
⋮ ⋱ ⋮

ℓk(t) ⋯ ℓkk(t)

⎞
⎟
⎠

with t = (t, . . . , tn) and ℓij ∈ R[t] of degree .

Put

S = {x ∈ Rn ∣ A(x) is psd}
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Spectrahedra

A, . . . ,An ∈ Symk(R), A(t) = A + tA +⋯ + tnAn

S = {x ∈ Rn ∣ A(x) is psd}

S is convex

S is basic closed semi-algebraic, i.e. described by simultaneous
(non-strict) polynomial inequalities:
Take the characteristic polynomial

det(A(t) − sIk) = (−)k+sk + ck−(t)sk− +⋯ + co(t)

with ci ∈ R[t], then

S = {x ∈ Rn ∣ c(x) ⩾ ,−c(x) ⩾ , . . . , (−)k−ck−(x) ⩾ }
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Projections of spectrahedra

A, . . . ,Am ∈ Symk(R), A(t) = A + tA +⋯ + tmAm

S = {x ∈ Rm ∣ A(x) is psd}

Let π∶Rm → Rn be a linear map. The image π(S) is a projection of a
spectrahedron.

If m = n + l and π∶Rn+l → Rn the projection onto the
first n coordinates, then

π(S) = {x ∈ Rn ∣∃y ∈ Rl∶A+xA+⋯+xnAn+yAn++⋯+ylAm is psd}.

Projections of spectrahedra are also called semidefinitely
representable sets or SDP (representable) sets.
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The Lasserre relaxation

Let C = {x ∈ Rn ∣ p(x) ⩾ , . . . , pr(x) ⩾ } be a basic closed
semi-algebraic set. Always assume C convex with non-empty
interior.

Goal: Approximate C by the projection of a spectrahedron.

Put p =  and let

M = {
r
∑
i=

(si +⋯ + siN)pi ∣ sij ∈ R[t]}

be the quadratic module generated by p, . . . , pr . Write R[t]d for the
space of polynomials of degree at most d. For d ⩾ , let

Md = {
r
∑
i=

(si +⋯ + siN)pi ∣ (si +⋯ + siN)pi ∈ R[t]d for all i}.

Note: Md ⊊M ∩R[t]d in general.
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The Lasserre relaxation

C = {x ∈ Rn
∣ p(x) ⩾ , . . . , pr(x) ⩾ } convex with non-empty interior

M = {∑
r
i=(s


i +⋯ + siN)pi ∣ sij ∈ R[t]}

Md = {∑
r
i=(s


i +⋯ + siN)pi ∣ (si +⋯ + siN)pi ∈ R[t]d for all i}

For d ⩾ , write R[t]∨d for the dual space of R[t]d, i.e. the space of
linear functionals L∶R[t]d → R, and put

Ld = {L ∈ R[t]∨d ∣ L(f ) ⩾  for all f ∈Md and L() = }.

Fact: The set Ld is a spectrahedron in R[t]d.

Let π∶R[t]∨d → Rn be given by L↦ (L(t), . . . , L(tn)) and write
Cd = π(Ld). Then

C ⊂ ⋯ ⊂ Cd ⊂ Cd− ⊂ ⋯ ⊂ C

Call Cd the Lasserre relaxation of degree d of C (w.r.t. p, . . . , pr).
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The Lasserre relaxation

C = {x ∈ Rn
∣ p(x) ⩾ , . . . , pr(x) ⩾ } convex with non-empty interior.
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Say that the Lasserre relaxation of degree d is exact if C = Cd.

Theorem
The Lasserre relaxtion of degree d ofC is exact if and only ifMd
contains all ℓ ∈ R[t] of degree  such that ℓ∣C ⩾ .
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Exposed faces

Let C be a convex subset of Rn. A face of C is a convex subset F of C
which is extremal, i.e. whenever x, y ∈ C are such that 

(x + y) ∈ F,
then x, y ∈ F.

A face is called exposed if F = ∅ or if there exists a supporting
hyperplane H of C such that F = H ∩ C. (Equivalently: If there exists
ℓ ∈ R[t] of degree  such that ℓ∣C ⩾  and F = C ∩ {x ∈ Rn ∣ ℓ(x) = }.
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Spectrahedra vs. Convex semi-algebraic sets

All faces exposed?

YES NO

⊆

{ Lasserre-
exact sets

} ⊆ { Projections of
spectrahedra

}

{Spectrahedra}

⊆
=?

{ Convex
s.a. sets

}

YES
Ramana & Goldman



⊆
=?

{ Rigidly
convex sets

}

⊆

NO

YES
Renegar 

Rigid convexity: A set C ⊂ Rn with  ∈ int(C) is
called rigidly convex if there exists a polynomial p ∈ R[t]
with p() such that C is the closure of the connected
component of {x ∈ Rn ∣ p(x) > } that contains  and
such that the univariate polynomial s ↦ p(sv) has only
real zeros, for every v ∈ Rn ∖ {}.
Every spectrahedron is rigidly convex. The converse is
true for n =  (Helton & Vinnikov )

C
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with p() such that C is the closure of the connected
component of {x ∈ Rn ∣ p(x) > } that contains  and
such that the univariate polynomial s ↦ p(sv) has only
real zeros, for every v ∈ Rn ∖ {}.
Every spectrahedron is rigidly convex. The converse is
true for n =  (Helton & Vinnikov )

C



Main result

C = {x ∈ Rn
∣ p(x) ⩾ , . . . , pr(x) ⩾ } convex with non-empty interior.

M = {∑
r
i=(s


i +⋯ + siN)pi ∣ sij ∈ R[t]}

Md = {∑
r
i=(s


i +⋯ + siN)pi ∣ (si +⋯ + siN)pi ∈ R[t]d for all i}

Ld = {L ∈ R[t]∨d ∣ L(f ) ⩾  for all f ∈Md and L() = }
π∶Ld → Rn , L↦ (L(t , . . . , L(tn))
Cd = π(Ld)

Theorem
IfC possesses an exact Lasserre relaxation, then all faces ofC are
exposed.

Note: The condition on C is independent of p, . . . , pr .
But if C has a non-exposed face, there may still exist q, . . . , qs such
that

C = conv({x ∈ Rn ∣ q(x) ⩾ , . . . , qs(x) ⩾ }).

and such that C has a an exact Lasserre relaxation w.r.t. q, . . . , qs.
(Example of such C by Gouveia ()).
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Example: p = t, p =  − t, p = t + , p = t − t .

t

t

For ε ∈ (, ], let

ℓε = t − εt + ε

be the tangent to C in the point (ε, ε).
Assume that there is d ⩾  such that ℓε ∈ Md

for all ε ∈ (, ], say ℓε = ∑ s(ε)
i pi.

We must have s(ε)
i (ε, ε) =  for i = , . . . , . We show that, since

limε→ ℓε = t, it would follow that t = ∑ s()i pi such that

s()i (, ) =  for i = , . . . , , which is impossible. The proof requires
working with infinitesimal ε in a non-archimedean extension field
of R. Alternative proof by Gouveia.
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t But it follows from a result of Helton and Nie
that C is the projection of a spectrahedron:

Let C = [−, ] × [, ] and C = {p ⩾ , p ⩾
, p ⩾ , t ⩾ }. S is the convex hull of C
and C, C is a spectrahedron, and the third
Lasserre relaxation of C is exact:

For any ε ∈ [, ], we can write ℓε = t − εt + ε + (t − t ). The
polynomial t − εt + ε ∈ R[t] is non-negative on [,∞) and is
therefore contained in QM(t) ⊆ R[t] by a result of Kuhlmann,
Marshall, and Schwartz.
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