Exposed faces and projections of spectrahedra

Daniel Plaumann

joint work with Tim Netzer and Markus Schweighofer

Fachbereich Mathematik
Universität Konstanz

Convex Algebraic Geometry, Banff, 16 February 2010

Spectrahedra

A spectrahedron is the set of solutions to a linear matrix inequality: Let $A_{0}, \ldots, A_{n} \in \operatorname{Sym}_{\mathrm{k}}(\mathbb{R})$ be symmetric $k \times k$-matrices, and let

$$
A(\underline{t})=A_{0}+t_{1} A_{1}+\cdots+t_{n} A_{n}=\left(\begin{array}{ccc}
\ell_{11}(\underline{t}) & \cdots & \ell_{1 k}(\underline{t}) \\
\vdots & \ddots & \vdots \\
\ell_{k 1}(\underline{t}) & \cdots & \ell_{k k}(\underline{t})
\end{array}\right)
$$

with $\underline{t}=\left(t_{1}, \ldots, t_{n}\right)$ and $\ell_{i j} \in \mathbb{R}[\underline{t}]$ of degree 1 .

Spectrahedra

A spectrahedron is the set of solutions to a linear matrix inequality: Let $A_{0}, \ldots, A_{n} \in \operatorname{Sym}_{\mathrm{k}}(\mathbb{R})$ be symmetric $k \times k$-matrices, and let

$$
A(\underline{t})=A_{0}+t_{1} A_{1}+\cdots+t_{n} A_{n}=\left(\begin{array}{ccc}
\ell_{11}(\underline{t}) & \cdots & \ell_{1 k}(\underline{t}) \\
\vdots & \ddots & \vdots \\
\ell_{k 1}(\underline{t}) & \cdots & \ell_{k k}(\underline{t})
\end{array}\right)
$$

with $\underline{t}=\left(t_{1}, \ldots, t_{n}\right)$ and $\ell_{i j} \in \mathbb{R}[\underline{t}]$ of degree 1. Put

$$
S=\left\{x \in \mathbb{R}^{n} \mid A(x) \text { is psd }\right\}
$$

Spectrahedra

A spectrahedron is the set of solutions to a linear matrix inequality: Let $A_{0}, \ldots, A_{n} \in \operatorname{Sym}_{\mathrm{k}}(\mathbb{R})$ be symmetric $k \times k$-matrices, and let

$$
A(\underline{t})=A_{0}+t_{1} A_{1}+\cdots+t_{n} A_{n}=\left(\begin{array}{ccc}
\ell_{11}(\underline{t}) & \cdots & \ell_{1 k}(\underline{t}) \\
\vdots & \ddots & \vdots \\
\ell_{k 1}(\underline{t}) & \cdots & \ell_{k k}(\underline{t})
\end{array}\right)
$$

with $\underline{t}=\left(t_{1}, \ldots, t_{n}\right)$ and $\ell_{i j} \in \mathbb{R}[\underline{t}]$ of degree 1. Put

$$
S=\left\{x \in \mathbb{R}^{n} \mid A(x) \text { is psd }\right\}
$$

Spectrahedra

$$
\begin{gathered}
A_{0}, \ldots, A_{n} \in \operatorname{Sym}_{\mathrm{k}}(\mathbb{R}), A(\underline{t})=A_{0}+t_{1} A_{1}+\cdots+t_{n} A_{n} \\
S=\left\{x \in \mathbb{R}^{n} \mid A(x) \text { is psd }\right\}
\end{gathered}
$$

■ S is convex

Spectrahedra

$$
\begin{gathered}
A_{0}, \ldots, A_{n} \in \operatorname{Sym}_{\mathrm{k}}(\mathbb{R}), A(\underline{t})=A_{0}+t_{1} A_{1}+\cdots+t_{n} A_{n} \\
S=\left\{x \in \mathbb{R}^{n} \mid A(x) \text { is psd }\right\}
\end{gathered}
$$

■ S is convex
■ S is basic closed semi-algebraic, i.e. described by simultaneous (non-strict) polynomial inequalities:

Spectrahedra

$$
\begin{gathered}
A_{0}, \ldots, A_{n} \in \operatorname{Sym}_{\mathrm{k}}(\mathbb{R}), A(\underline{t})=A_{0}+t_{1} A_{1}+\cdots+t_{n} A_{n} \\
S=\left\{x \in \mathbb{R}^{n} \mid A(x) \text { is psd }\right\}
\end{gathered}
$$

- S is convex

■ S is basic closed semi-algebraic, i.e. described by simultaneous (non-strict) polynomial inequalities:
Take the characteristic polynomial

$$
\operatorname{det}\left(A(\underline{t})-s I_{k}\right)=(-1)^{k+1} s^{k}+c_{k-1}(\underline{t}) s^{k-1}+\cdots+c_{o}(\underline{t})
$$

with $c_{i} \in \mathbb{R}[t]$, then

$$
S=\left\{x \in \mathbb{R}^{n} \mid c_{0}(x) \geqslant 0,-c_{1}(x) \geqslant 0, \ldots,(-1)^{k-1} c_{k-1}(x) \geqslant 0\right\}
$$

Projections of spectrahedra

$A_{0}, \ldots, A_{m} \in \operatorname{Sym}_{\mathrm{k}}(\mathbb{R}), A(\underline{t})=A_{0}+t_{1} A_{1}+\cdots+t_{m} A_{m}$

$$
S=\left\{x \in \mathbb{R}^{m} \mid A(x) \text { is psd }\right\}
$$

Let $\pi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a linear map. The image $\pi(S)$ is a projection of a spectrahedron.

Projections of spectrahedra

$A_{0}, \ldots, A_{m} \in \operatorname{Sym}_{\mathrm{k}}(\mathbb{R}), A(\underline{t})=A_{0}+t_{1} A_{1}+\cdots+t_{m} A_{m}$

$$
S=\left\{x \in \mathbb{R}^{m} \mid A(x) \text { is psd }\right\}
$$

Let $\pi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a linear map. The image $\pi(S)$ is a projection of a spectrahedron. If $m=n+l$ and $\pi: \mathbb{R}^{n+l} \rightarrow \mathbb{R}^{n}$ the projection onto the first n coordinates, then
$\pi(S)=\left\{x \in \mathbb{R}^{n} \mid \exists y \in \mathbb{R}^{l}: A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}+y_{1} A_{n+1}+\cdots+y_{l} A_{m}\right.$ is psd $\}$.

Projections of spectrahedra

$A_{0}, \ldots, A_{m} \in \operatorname{Sym}_{\mathrm{k}}(\mathbb{R}), A(\underline{t})=A_{0}+t_{1} A_{1}+\cdots+t_{m} A_{m}$

$$
S=\left\{x \in \mathbb{R}^{m} \mid A(x) \text { is psd }\right\}
$$

Let $\pi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a linear map. The image $\pi(S)$ is a projection of a spectrahedron. If $m=n+l$ and $\pi: \mathbb{R}^{n+l} \rightarrow \mathbb{R}^{n}$ the projection onto the first n coordinates, then
$\pi(S)=\left\{x \in \mathbb{R}^{n} \mid \exists y \in \mathbb{R}^{l}: A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}+y_{1} A_{n+1}+\cdots+y_{l} A_{m}\right.$ is psd $\}$.
Projections of spectrahedra are also called semidefinitely representable sets or SDP (representable) sets.

The Lasserre relaxation

Let $C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\}$ be a basic closed semi-algebraic set. Always assume C convex with non-empty interior.

The Lasserre relaxation

Let $C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\}$ be a basic closed semi-algebraic set. Always assume C convex with non-empty interior.

Goal: Approximate C by the projection of a spectrahedron.

The Lasserre relaxation

Let $C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\}$ be a basic closed semi-algebraic set. Always assume C convex with non-empty interior.

Goal: Approximate C by the projection of a spectrahedron.
Put $p_{0}=1$ and let

$$
M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\}
$$

be the quadratic module generated by p_{1}, \ldots, p_{r}. Write $\left.\mathbb{R}[t]\right]_{d}$ for the space of polynomials of degree at most d.

The Lasserre relaxation

Let $C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\}$ be a basic closed semi-algebraic set. Always assume C convex with non-empty interior.

Goal: Approximate C by the projection of a spectrahedron.
Put $p_{0}=1$ and let

$$
M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\}
$$

be the quadratic module generated by p_{1}, \ldots, p_{r}. Write $\left.\mathbb{R}[t]\right]_{d}$ for the space of polynomials of degree at most d. For $d \geqslant 1$, let

$$
M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d} \text { for all } i\right\} .
$$

The Lasserre relaxation

Let $C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\}$ be a basic closed semi-algebraic set. Always assume C convex with non-empty interior.

Goal: Approximate C by the projection of a spectrahedron.
Put $p_{0}=1$ and let

$$
M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\}
$$

be the quadratic module generated by p_{1}, \ldots, p_{r}. Write $\left.\mathbb{R}[t]\right]_{d}$ for the space of polynomials of degree at most d. For $d \geqslant 1$, let

$$
M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d} \text { for all } i\right\} .
$$

Note: $M_{d} \mp M \cap \mathbb{R}[t]_{d}$ in general.

The Lasserre relaxation

$C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\}$ convex with non-empty interior
$M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\}$
$M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d}\right.$ for all $\left.i\right\}$
For $d \geqslant 1$, write $\mathbb{R}[t]_{d}^{\vee}$ for the dual space of $\mathbb{R}[t]_{d}$, i.e. the space of linear functionals $L: \mathbb{R}[t]_{d} \rightarrow \mathbb{R}$, and put

$$
\mathcal{L}_{d}=\left\{L \in \mathbb{R}[\underline{t}]_{d}^{\vee} \mid L(f) \geqslant 0 \text { for all } f \in M_{d} \text { and } L(1)=1\right\} .
$$

The Lasserre relaxation

$$
\begin{aligned}
& C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\} \text { convex with non-empty interior } \\
& M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\} \\
& M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d} \text { for all } i\right\}
\end{aligned}
$$

For $d \geqslant 1$, write $\mathbb{R}[\underline{t}]_{d}^{\vee}$ for the dual space of $\left.\mathbb{R}[t]\right]_{d}$, i.e. the space of linear functionals $L: \mathbb{R}[t]_{d} \rightarrow \mathbb{R}$, and put

$$
\mathcal{L}_{d}=\left\{L \in \mathbb{R}[\underline{t}]_{d}^{\vee} \mid L(f) \geqslant 0 \text { for all } f \in M_{d} \text { and } L(1)=1\right\} .
$$

Fact: The set \mathcal{L}_{d} is a spectrahedron in $\mathbb{R}[t]_{d}$.

The Lasserre relaxation

$$
\begin{aligned}
& C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\} \text { convex with non-empty interior } \\
& M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\} \\
& M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d} \text { for all } i\right\}
\end{aligned}
$$

For $d \geqslant 1$, write $\mathbb{R}[t]_{d}^{\vee}$ for the dual space of $\mathbb{R}[t]_{d}$, i.e. the space of linear functionals $L: \mathbb{R}[t]_{d} \rightarrow \mathbb{R}$, and put

$$
\mathcal{L}_{d}=\left\{L \in \mathbb{R}[\underline{t}]_{d}^{\vee} \mid L(f) \geqslant 0 \text { for all } f \in M_{d} \text { and } L(1)=1\right\} .
$$

Fact: The set \mathcal{L}_{d} is a spectrahedron in $\mathbb{R}[t]_{d}$.
Let $\pi: \mathbb{R}[\underline{t}]_{d}^{\vee} \rightarrow \mathbb{R}^{n}$ be given by $L \mapsto\left(L\left(t_{1}\right), \ldots, L\left(t_{n}\right)\right)$ and write $C_{d}=\pi\left(\mathcal{L}_{d}\right)$.

The Lasserre relaxation

$$
\begin{aligned}
& C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\} \text { convex with non-empty interior } \\
& M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\} \\
& M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d} \text { for all } i\right\}
\end{aligned}
$$

For $d \geqslant 1$, write $\mathbb{R}[t]_{d}^{\vee}$ for the dual space of $\mathbb{R}[t]_{d}$, i.e. the space of linear functionals $L: \mathbb{R}[t]_{d} \rightarrow \mathbb{R}$, and put

$$
\left.\mathcal{L}_{d}=\{L \in \mathbb{R}[t]]_{d}^{\vee} \mid L(f) \geqslant 0 \text { for all } f \in M_{d} \text { and } L(1)=1\right\} .
$$

Fact: The set \mathcal{L}_{d} is a spectrahedron in $\mathbb{R}[t]_{d}$.
Let $\pi: \mathbb{R}[t]_{d}^{\vee} \rightarrow \mathbb{R}^{n}$ be given by $L \mapsto\left(L\left(t_{1}\right), \ldots, L\left(t_{n}\right)\right)$ and write $C_{d}=\pi\left(\mathcal{L}_{d}\right)$. Then

$$
C \subset \cdots \subset C_{d} \subset C_{d-1} \subset \cdots \subset C_{1}
$$

Call C_{d} the Lasserre relaxation of degree d of C (w.r.t. $\left.p_{1}, \ldots, p_{r}\right)$.

The Lasserre relaxation

$$
\begin{aligned}
& C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\} \text { convex with non-empty interior. } \\
& M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[t]\right\} \\
& M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[t]_{d} \text { for all } i\right\} \\
& \mathcal{L}_{d}=\left\{L \in \mathbb{R}[t]_{d}^{v} \mid L(f) \geqslant 0 \text { for all } f \in M_{d} \text { and } L(1)=1\right\} \\
& \pi: \mathcal{L}_{d} \rightarrow \mathbb{R}^{n}, L \mapsto\left(L\left(t_{1}, \ldots, L\left(t_{n}\right)\right)\right. \\
& C_{d}=\pi\left(\mathcal{L}_{d}\right)
\end{aligned}
$$

Say that the Lasserre relaxation of degree d is exact if $C=C_{d}$.

The Lasserre relaxation

$C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\}$ convex with non-empty interior.
$M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\}$
$M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d}\right.$ for all $\left.i\right\}$
$\mathcal{L}_{d}=\left\{L \in \mathbb{R}[\underline{t}]_{d}^{\vee} \mid L(f) \geqslant 0\right.$ for all $f \in M_{d}$ and $\left.L(1)=1\right\}$
$\pi: \mathcal{L}_{d} \rightarrow \mathbb{R}^{n}, L \mapsto\left(L\left(t_{1}, \ldots, L\left(t_{n}\right)\right)\right.$
$C_{d}=\pi\left(\mathcal{L}_{d}\right)$
Say that the Lasserre relaxation of degree d is exact if $C=C_{d}$.

Theorem

The Lasserre relaxtion of degree d of C is exact if and only if M_{d} contains all $\ell \in \mathbb{R}[t]$ of degree 1 such that $\left.\ell\right|_{C} \geqslant 0$.

Exposed faces

Let C be a convex subset of \mathbb{R}^{n}. A face of C is a convex subset F of C which is extremal, i.e. whenever $x, y \in C$ are such that $\frac{1}{2}(x+y) \in F$, then $x, y \in F$.

Exposed faces

Let C be a convex subset of \mathbb{R}^{n}. A face of C is a convex subset F of C which is extremal, i.e. whenever $x, y \in C$ are such that $\frac{1}{2}(x+y) \in F$, then $x, y \in F$.

Exposed faces

Let C be a convex subset of \mathbb{R}^{n}. A face of C is a convex subset F of C which is extremal, i.e. whenever $x, y \in C$ are such that $\frac{1}{2}(x+y) \in F$, then $x, y \in F$.

Exposed faces

Let C be a convex subset of \mathbb{R}^{n}. A face of C is a convex subset F of C which is extremal, i.e. whenever $x, y \in C$ are such that $\frac{1}{2}(x+y) \in F$, then $x, y \in F$.

A face is called exposed if $F=\varnothing$ or if there exists a supporting hyperplane H of C such that $F=H \cap C$. (Equivalently: If there exists $\ell \in \mathbb{R}[t]$ of degree 1 such that $\left.\ell\right|_{C} \geqslant 0$ and $F=C \cap\left\{x \in \mathbb{R}^{n} \mid \ell(x)=0\right\}$.

Spectrahedra vs. Convex semi-algebraic sets

All faces exposed?

Spectrahedra vs. Convex semi-algebraic sets

All faces exposed?
$\{$ Spectrahedra $\}$
YES
Ramana \& Goldman
2001

Spectrahedra vs. Convex semi-algebraic sets

All faces exposed?
$\{$ Spectrahedra $\}$
$\underset{\substack{\text { Ramana \&Goldman } \\ 2001}}{\text { YES }} \leqslant\left\{\begin{array}{l}\text { Rigidly } \\ \text { convex sets }\end{array}\right\}$

Spectrahedra vs. Convex semi-algebraic sets

All faces exposed?

Rigid convexity: A set $C \subset \mathbb{R}^{n}$ with $0 \in \operatorname{int}(C)$ is called rigidly convex if there exists a polynomial $p \in \mathbb{R}[t]$ with $p(0)$ such that C is the closure of the connected component of $\left\{x \in \mathbb{R}^{n} \mid p(x)>0\right\}$ that contains 0 and such that the univariate polynomial $s \mapsto p(s v)$ has only real zeros, for every $v \in \mathbb{R}^{n} \backslash\{0\}$.
Every spectrahedron is rigidly convex. The converse is true for $n=2$ (Helton \& Vinnikov 2004)

Spectrahedra vs. Convex semi-algebraic sets

All faces exposed?

$\{$ Spectrahedra $\}$

Ramana \& Goldman 2001

$$
\approx\left\{\begin{array}{l}
\text { Rigidly } \\
\text { convex sets }
\end{array}\right\}
$$

YES
Renegar 2006

Rigid convexity: A set $C \subset \mathbb{R}^{n}$ with $0 \in \operatorname{int}(C)$ is called rigidly convex if there exists a polynomial $p \in \mathbb{R}[t]$ with $p(0)$ such that C is the closure of the connected component of $\left\{x \in \mathbb{R}^{n} \mid p(x)>0\right\}$ that contains 0 and such that the univariate polynomial $s \mapsto p(s v)$ has only real zeros, for every $v \in \mathbb{R}^{n} \backslash\{0\}$.
Every spectrahedron is rigidly convex. The converse is true for $n=2$ (Helton \& Vinnikov 2004)

Spectrahedra vs. Convex semi-algebraic sets

All faces exposed?

$\{$ Spectrahedra $\}$
YES

Ramana \& Goldman
2001

Yenegar 2006

Rigid convexity: A set $C \subset \mathbb{R}^{n}$ with $0 \in \operatorname{int}(C)$ is called rigidly convex if there exists a polynomial $p \in \mathbb{R}[t]$ with $p(0)$ such that C is the closure of the connected component of $\left\{x \in \mathbb{R}^{n} \mid p(x)>0\right\}$ that contains 0 and such that the univariate polynomial $s \mapsto p(s v)$ has only real zeros, for every $v \in \mathbb{R}^{n} \backslash\{0\}$.
Every spectrahedron is rigidly convex. The converse is true for $n=2$ (Helton \& Vinnikov 2004)

Spectrahedra vs. Convex semi-algebraic sets

All faces exposed?

$$
\begin{gathered}
\text { YES } \\
\varrho\left\{\begin{array}{c}
\text { Lasserre- } \\
\text { exact sets }
\end{array}\right\}
\end{gathered}
$$

$\{$ Spectrahedra $\}$

Ramana \& Goldman 2001
YES

\section*{$\left.\stackrel$\[

\]${_} \stackrel{\left\{\begin{array}{l}\text { Rigidly } \\ \text { convex sets }\end{array}\right\}}{ }\right\}$}

YES
Renegar 2006

Rigid convexity: A set $C \subset \mathbb{R}^{n}$ with $0 \in \operatorname{int}(C)$ is called rigidly convex if there exists a polynomial $p \in \mathbb{R}[t]$ with $p(0)$ such that C is the closure of the connected component of $\left\{x \in \mathbb{R}^{n} \mid p(x)>0\right\}$ that contains 0 and such that the univariate polynomial $s \mapsto p(s v)$ has only real zeros, for every $v \in \mathbb{R}^{n} \backslash\{0\}$.
Every spectrahedron is rigidly convex. The converse is true for $n=2$ (Helton \& Vinnikov 2004)

Spectrahedra vs. Convex semi-algebraic sets

All faces exposed?

$$
\subseteq\left\{\begin{array}{c}
\text { YES } \\
\text { Lasserre- } \\
\text { exact sets }
\end{array}\right\} \subseteq\left\{\begin{array}{c}
\text { NO } \\
\text { Projections of } \\
\text { spectrahedra }
\end{array}\right\}
$$

$\{$ Spectrahedra $\}$
$\left.\begin{array}{cl}\text { YES } & \leqslant\left\{\begin{array}{l}\text { Rigidly } \\ 2001\end{array}\right. \\ \text { Ramana \& Goldman } \\ \text { convex sets }\end{array}\right\}$

YES
Renegar 2006
Rigid convexity: A set $C \subset \mathbb{R}^{n}$ with $0 \in \operatorname{int}(C)$ is called rigidly convex if there exists a polynomial $p \in \mathbb{R}[t]$ with $p(0)$ such that C is the closure of the connected component of $\left\{x \in \mathbb{R}^{n} \mid p(x)>0\right\}$ that contains 0 and such that the univariate polynomial $s \mapsto p(s v)$ has only real zeros, for every $v \in \mathbb{R}^{n} \backslash\{0\}$.
Every spectrahedron is rigidly convex. The converse is true for $n=2$ (Helton \& Vinnikov 2004)

Spectrahedra vs. Convex semi-algebraic sets

All faces exposed?
$\{$ Spectrahedra $\}$

YES	\leqslant	
Ramana \& Goldman	\therefore ?	convex sets

YES
Renegar 2006
Rigid convexity: A set $C \subset \mathbb{R}^{n}$ with $0 \in \operatorname{int}(C)$ is called rigidly convex if there exists a polynomial $p \in \mathbb{R}[t]$ with $p(0)$ such that C is the closure of the connected component of $\left\{x \in \mathbb{R}^{n} \mid p(x)>0\right\}$ that contains 0 and such that the univariate polynomial $s \mapsto p(s v)$ has only real zeros, for every $v \in \mathbb{R}^{n} \backslash\{0\}$.
Every spectrahedron is rigidly convex. The converse is true for $n=2$ (Helton \& Vinnikov 2004)

NO

$\subseteq\left\{\begin{array}{l}\text { Projections of } \\ \text { spectrahedra }\end{array}\right\}$

Spectrahedra vs. Convex semi-algebraic sets

All faces exposed?
$\{$ Spectrahedra $\}$

YES	$\leqslant\left\{\begin{array}{l}\text { Rigidly } \\ \text { Ramana \& Goldman } \\ 2001\end{array}\right.$
${ }^{2}$ convex sets	

YES
Renegar 2006
Rigid convexity: A set $C \subset \mathbb{R}^{n}$ with $0 \in \operatorname{int}(C)$ is called rigidly convex if there exists a polynomial $p \in \mathbb{R}[t]$ with $p(0)$ such that C is the closure of the connected component of $\left\{x \in \mathbb{R}^{n} \mid p(x)>0\right\}$ that contains 0 and such that the univariate polynomial $s \mapsto p(s v)$ has only real zeros, for every $v \in \mathbb{R}^{n} \backslash\{0\}$.
Every spectrahedron is rigidly convex. The converse is true for $n=2$ (Helton \& Vinnikov 2004)

NO

$$
\subseteq\left\{\begin{array}{l}
\text { Lasserre- } \\
\text { exact sets }
\end{array}\right\} \subseteq\left\{\begin{array}{l}
\text { Projections of } \\
\text { spectrahedra }
\end{array}\right\}
$$

\leq

Main result

$$
\begin{aligned}
& C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\} \text { convex with non-empty interior. } \\
& M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\} \\
& M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d} \text { for all } i\right\} \\
& \mathcal{L}_{d}=\left\{L \in \mathbb{R}[t]_{d}^{v} \mid L(f) \geqslant 0 \text { for all } f \in M_{d} \text { and } L(1)=1\right\} \\
& \pi: \mathcal{L}_{d} \rightarrow \mathbb{R}^{n}, L \mapsto\left(L\left(t_{1}, \ldots, L\left(t_{n}\right)\right)\right. \\
& C_{d}=\pi\left(\mathcal{L}_{d}\right)
\end{aligned}
$$

Main result

$$
\begin{aligned}
& C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\} \text { convex with non-empty interior. } \\
& M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\} \\
& M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d} \text { for all } i\right\} \\
& \mathcal{L}_{d}=\left\{L \in \mathbb{R}[t]_{d}^{v} \mid L(f) \geqslant 0 \text { for all } f \in M_{d} \text { and } L(1)=1\right\} \\
& \pi: \mathcal{L}_{d} \rightarrow \mathbb{R}^{n}, L \mapsto\left(L\left(t_{1}, \ldots, L\left(t_{n}\right)\right)\right. \\
& C_{d}=\pi\left(\mathcal{L}_{d}\right)
\end{aligned}
$$

Theorem

If C possesses an exact Lasserre relaxation, then all faces of C are

 exposed.
Main result

```
\(C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\}\) convex with non-empty interior.
\(M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\}\)
\(M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d}\right.\) for all \(\left.i\right\}\)
\(\mathcal{L}_{d}=\{L \in \mathbb{R}[t]]_{d}^{\vee} \mid L(f) \geqslant 0\) for all \(f \in M_{d}\) and \(\left.L(1)=1\right\}\)
\(\pi: \mathcal{L}_{d} \rightarrow \mathbb{R}^{n}, L \mapsto\left(L\left(t_{1}, \ldots, L\left(t_{n}\right)\right)\right.\)
\(C_{d}=\pi\left(\mathcal{L}_{d}\right)\)
```


Theorem

If C possesses an exact Lasserre relaxation, then all faces of C are exposed.
Note: The condition on C is independent of p_{1}, \ldots, p_{r}.

Main result

$C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\}$ convex with non-empty interior.
$M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\}$
$M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d}\right.$ for all $\left.i\right\}$
$\mathcal{L}_{d}=\left\{L \in \mathbb{R}[\underline{t}]_{d}^{\vee} \mid L(f) \geqslant 0\right.$ for all $f \in M_{d}$ and $\left.L(1)=1\right\}$
$\pi: \mathcal{L}_{d} \rightarrow \mathbb{R}^{n}, L \mapsto\left(L\left(t_{1}, \ldots, L\left(t_{n}\right)\right)\right.$
$C_{d}=\pi\left(\mathcal{L}_{d}\right)$

Theorem

If C possesses an exact Lasserre relaxation, then all faces of C are exposed.
Note: The condition on C is independent of p_{1}, \ldots, p_{r}.
But if C has a non-exposed face, there may still exist q_{1}, \ldots, q_{s} such that

$$
C=\overline{\operatorname{conv}\left(\left\{x \in \mathbb{R}^{n} \mid q_{1}(x) \geqslant 0, \ldots, q_{s}(x) \geqslant 0\right\}\right)} .
$$

and such that C has a an exact Lasserre relaxation w.r.t. q_{1}, \ldots, q_{s}.

Main result

$C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\}$ convex with non-empty interior.
$M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\}$
$M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d}\right.$ for all $\left.i\right\}$
$\mathcal{L}_{d}=\left\{L \in \mathbb{R}[\underline{t}]_{d}^{\vee} \mid L(f) \geqslant 0\right.$ for all $f \in M_{d}$ and $\left.L(1)=1\right\}$
$\pi: \mathcal{L}_{d} \rightarrow \mathbb{R}^{n}, L \mapsto\left(L\left(t_{1}, \ldots, L\left(t_{n}\right)\right)\right.$
$C_{d}=\pi\left(\mathcal{L}_{d}\right)$

Theorem

If C possesses an exact Lasserre relaxation, then all faces of C are exposed.
Note: The condition on C is independent of p_{1}, \ldots, p_{r}.
But if C has a non-exposed face, there may still exist q_{1}, \ldots, q_{s} such that

$$
C=\overline{\operatorname{conv}\left(\left\{x \in \mathbb{R}^{n} \mid q_{1}(x) \geqslant 0, \ldots, q_{s}(x) \geqslant 0\right\}\right)} .
$$

and such that C has a an exact Lasserre relaxation w.r.t. q_{1}, \ldots, q_{s}. (Example of such C by Gouveia (2009)).

Examples

$C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\}$ convex with non-empty interior.
$M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\}$
$M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d}\right.$ for all $\left.i\right\}$
Example: $p_{1}=t_{2}, \quad p_{2}=1-t_{2}, \quad p_{3}=t_{1}+1, \quad p_{4}=t_{2}-t_{1}^{3}$.

Examples

$C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\}$ convex with non-empty interior.
$M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\}$
$M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d}\right.$ for all $\left.i\right\}$
Example: $p_{1}=t_{2}, \quad p_{2}=1-t_{2}, \quad p_{3}=t_{1}+1, \quad p_{4}=t_{2}-t_{1}^{3}$.

For $\varepsilon \in(0,1]$, let

$$
\ell_{\varepsilon}=t_{2}-3 \varepsilon^{2} t_{1}+2 \varepsilon^{3}
$$

be the tangent to C in the point $\left(\varepsilon, \varepsilon^{3}\right)$.

Examples

$C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\}$ convex with non-empty interior.
$M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\}$
$M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d}\right.$ for all $\left.i\right\}$
Example: $p_{1}=t_{2}, \quad p_{2}=1-t_{2}, \quad p_{3}=t_{1}+1, \quad p_{4}=t_{2}-t_{1}^{3}$.

For $\varepsilon \in(0,1]$, let

$$
\ell_{\varepsilon}=t_{2}-3 \varepsilon^{2} t_{1}+2 \varepsilon^{3}
$$

be the tangent to C in the point $\left(\varepsilon, \varepsilon^{3}\right)$. Assume that there is $d \geqslant 1$ such that $\ell_{\varepsilon} \in M_{d}$ for all $\varepsilon \in(0,1]$, say $\ell_{\varepsilon}=\sum s_{i}^{(\varepsilon)} p_{i}$.

Examples

$C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\}$ convex with non-empty interior.
$M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\}$
$M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d}\right.$ for all $\left.i\right\}$
Example: $p_{1}=t_{2}, \quad p_{2}=1-t_{2}, \quad p_{3}=t_{1}+1, \quad p_{4}=t_{2}-t_{1}^{3}$.

For $\varepsilon \in(0,1]$, let

$$
\ell_{\varepsilon}=t_{2}-3 \varepsilon^{2} t_{1}+2 \varepsilon^{3}
$$

be the tangent to C in the point $\left(\varepsilon, \varepsilon^{3}\right)$.
Assume that there is $d \geqslant 1$ such that $\ell_{\varepsilon} \in M_{d}$ for all $\varepsilon \in(0,1]$, say $\ell_{\varepsilon}=\sum s_{i}^{(\varepsilon)} p_{i}$.
We must have $s_{i}^{(\varepsilon)}\left(\varepsilon, \varepsilon^{3}\right)=0$ for $i=0, \ldots, 3$.

Examples

$C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\}$ convex with non-empty interior.
$M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[t]\right\}$
$M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[t] d\right.$ for all $\left.i\right\}$
Example: $p_{1}=t_{2}, \quad p_{2}=1-t_{2}, \quad p_{3}=t_{1}+1, \quad p_{4}=t_{2}-t_{1}^{3}$.

For $\varepsilon \in(0,1]$, let

$$
\ell_{\varepsilon}=t_{2}-3 \varepsilon^{2} t_{1}+2 \varepsilon^{3}
$$

be the tangent to C in the point $\left(\varepsilon, \varepsilon^{3}\right)$.
Assume that there is $d \geqslant 1$ such that $\ell_{\varepsilon} \in M_{d}$ for all $\varepsilon \in(0,1]$, say $\ell_{\varepsilon}=\sum s_{i}^{(\varepsilon)} p_{i}$.
We must have $s_{i}^{(\varepsilon)}\left(\varepsilon, \varepsilon^{3}\right)=0$ for $i=0, \ldots, 3$. We show that, since $\lim _{\varepsilon \rightarrow 0} \ell_{\varepsilon}=t_{2}$, it would follow that $t_{2}=\sum s_{i}^{(0)} p_{i}$ such that
$s_{i}^{(0)}(0,0)=0$ for $i=0, \ldots, 3$, which is impossible.

Examples

$C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\}$ convex with non-empty interior.
$M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[t]\right\}$
$M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[t] d\right.$ for all $\left.i\right\}$
Example: $p_{1}=t_{2}, \quad p_{2}=1-t_{2}, \quad p_{3}=t_{1}+1, \quad p_{4}=t_{2}-t_{1}^{3}$.

For $\varepsilon \in(0,1]$, let

$$
\ell_{\varepsilon}=t_{2}-3 \varepsilon^{2} t_{1}+2 \varepsilon^{3}
$$

be the tangent to C in the point $\left(\varepsilon, \varepsilon^{3}\right)$.
Assume that there is $d \geqslant 1$ such that $\ell_{\varepsilon} \in M_{d}$ for all $\varepsilon \in(0,1]$, say $\ell_{\varepsilon}=\sum s_{i}^{(\varepsilon)} p_{i}$.
We must have $s_{i}^{(\varepsilon)}\left(\varepsilon, \varepsilon^{3}\right)=0$ for $i=0, \ldots, 3$. We show that, since $\lim _{\varepsilon \rightarrow 0} \ell_{\varepsilon}=t_{2}$, it would follow that $t_{2}=\sum s_{i}^{(0)} p_{i}$ such that $s_{i}^{(0)}(0,0)=0$ for $i=0, \ldots, 3$, which is impossible. The proof requires working with infinitesimal ε in a non-archimedean extension field of \mathbb{R}.

Examples

$C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\}$ convex with non-empty interior.
$M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[t]\right\}$
$M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[t]\right]_{d}$ for all $\left.i\right\}$
Example: $p_{1}=t_{2}, \quad p_{2}=1-t_{2}, \quad p_{3}=t_{1}+1, \quad p_{4}=t_{2}-t_{1}^{3}$.

For $\varepsilon \in(0,1]$, let

$$
\ell_{\varepsilon}=t_{2}-3 \varepsilon^{2} t_{1}+2 \varepsilon^{3}
$$

be the tangent to C in the point $\left(\varepsilon, \varepsilon^{3}\right)$.
Assume that there is $d \geqslant 1$ such that $\ell_{\varepsilon} \in M_{d}$ for all $\varepsilon \in(0,1]$, say $\ell_{\varepsilon}=\sum s_{i}^{(\varepsilon)} p_{i}$.
We must have $s_{i}^{(\varepsilon)}\left(\varepsilon, \varepsilon^{3}\right)=0$ for $i=0, \ldots, 3$. We show that, since $\lim _{\varepsilon \rightarrow 0} \ell_{\varepsilon}=t_{2}$, it would follow that $t_{2}=\sum s_{i}^{(0)} p_{i}$ such that $s_{i}^{(0)}(0,0)=0$ for $i=0, \ldots, 3$, which is impossible. The proof requires working with infinitesimal ε in a non-archimedean extension field of \mathbb{R}.

Alternative proof by Gouveia.

Examples

$$
\begin{aligned}
& C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\} \text { convex with non-empty interior. } \\
& M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\} \\
& M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d} \text { for all } i\right\} \\
& \hline \text { Example: } p_{1}=t_{2}, \quad p_{2}=1-t_{2}, \quad p_{3}=t_{1}+1, \quad p_{4}=t_{2}-t_{1}^{3} .
\end{aligned}
$$

But it follows from a result of Helton and Nie that C is the projection of a spectrahedron:

Examples

$$
\begin{aligned}
& C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\} \text { convex with non-empty interior. } \\
& M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[\underline{t}]\right\} \\
& M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[\underline{t}]_{d} \text { for all } i\right\}
\end{aligned}
$$

Example: $p_{1}=t_{2}, \quad p_{2}=1-t_{2}, \quad p_{3}=t_{1}+1, \quad p_{4}=t_{2}-t_{1}^{3}$.

But it follows from a result of Helton and Nie that C is the projection of a spectrahedron: Let $C_{1}=[-1,0] \times[0,1]$ and $C_{2}=\left\{p_{1} \geqslant 0, p_{2} \geqslant\right.$ $\left.0, p_{4} \geqslant 0, t_{1} \geqslant 0\right\}$. S is the convex hull of C_{1} and C_{2},

Examples

$$
\begin{aligned}
& C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\} \text { convex with non-empty interior. } \\
& M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[t]\right\} \\
& \left.M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[t]\right]_{d} \text { for all } i\right\}
\end{aligned}
$$

Example: $p_{1}=t_{2}, \quad p_{2}=1-t_{2}, \quad p_{3}=t_{1}+1, \quad p_{4}=t_{2}-t_{1}^{3}$.

But it follows from a result of Helton and Nie that C is the projection of a spectrahedron: Let $C_{1}=[-1,0] \times[0,1]$ and $C_{2}=\left\{p_{1} \geqslant 0, p_{2} \geqslant\right.$ $\left.0, p_{4} \geqslant 0, t_{1} \geqslant 0\right\}$. S is the convex hull of C_{1} and C_{2}, C_{1} is a spectrahedron, and the third Lasserre relaxation of C_{2} is exact:

Examples

$$
\begin{aligned}
& C=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geqslant 0, \ldots, p_{r}(x) \geqslant 0\right\} \text { convex with non-empty interior. } \\
& M=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid s_{i j} \in \mathbb{R}[t]\right\} \\
& \left.M_{d}=\left\{\sum_{i=0}^{r}\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \mid\left(s_{i 1}^{2}+\cdots+s_{i N}^{2}\right) p_{i} \in \mathbb{R}[t]\right]_{d} \text { for all } i\right\}
\end{aligned}
$$

Example: $p_{1}=t_{2}, \quad p_{2}=1-t_{2}, \quad p_{3}=t_{1}+1, \quad p_{4}=t_{2}-t_{1}^{3}$.

But it follows from a result of Helton and Nie that C is the projection of a spectrahedron: Let $C_{1}=[-1,0] \times[0,1]$ and $C_{2}=\left\{p_{1} \geqslant 0, p_{2} \geqslant\right.$ $\left.0, p_{4} \geqslant 0, t_{1} \geqslant 0\right\}$. S is the convex hull of C_{1} and C_{2}, C_{1} is a spectrahedron, and the third Lasserre relaxation of C_{2} is exact:
For any $\varepsilon \in[0,1]$, we can write $\ell_{\varepsilon}=t_{1}^{3}-3 \varepsilon^{2} t_{1}+2 \varepsilon^{3}+\left(t_{2}-t_{1}^{3}\right)$. The polynomial $t_{1}^{3}-3 \varepsilon^{2} t_{1}+2 \varepsilon^{3} \in \mathbb{R}\left[t_{1}\right]$ is non-negative on $[0, \infty)$ and is therefore contained in $\mathrm{QM}\left(t_{1}\right)_{3} \subseteq \mathbb{R}\left[t_{1}\right]$ by a result of Kuhlmann, Marshall, and Schwartz.

