Exposed faces and projections of spectrahedra

Daniel Plaumann

joint work with Tim Netzer and Markus Schweighofer

Fachbereich Mathematik Universität Konstanz

Convex Algebraic Geometry, Banff, 16 February 2010

A spectrahedron is the set of solutions to a linear matrix inequality: Let $A_0, \ldots, A_n \in \text{Sym}_k(\mathbb{R})$ be symmetric $k \times k$ -matrices, and let

$$A(\underline{t}) = A_0 + t_1 A_1 + \dots + t_n A_n = \begin{pmatrix} \ell_{11}(\underline{t}) & \cdots & \ell_{1k}(\underline{t}) \\ \vdots & \ddots & \vdots \\ \ell_{k1}(\underline{t}) & \cdots & \ell_{kk}(\underline{t}) \end{pmatrix}$$

ション ふゆ マイ ビン・ ビー うくつ

with $\underline{t} = (t_1, \ldots, t_n)$ and $\ell_{ij} \in \mathbb{R}[\underline{t}]$ of degree 1.

A spectrahedron is the set of solutions to a linear matrix inequality: Let $A_0, \ldots, A_n \in \text{Sym}_k(\mathbb{R})$ be symmetric $k \times k$ -matrices, and let

$$A(\underline{t}) = A_0 + t_1 A_1 + \dots + t_n A_n = \begin{pmatrix} \ell_{11}(\underline{t}) & \cdots & \ell_{1k}(\underline{t}) \\ \vdots & \ddots & \vdots \\ \ell_{k1}(\underline{t}) & \cdots & \ell_{kk}(\underline{t}) \end{pmatrix}$$

ション ふゆ マイ ビン・ ビー うくつ

with $\underline{t} = (t_1, \dots, t_n)$ and $\ell_{ij} \in \mathbb{R}[\underline{t}]$ of degree 1. Put $S = \{x \in \mathbb{R}^n \mid A(x) \text{ is psd}\}$

A spectrahedron is the set of solutions to a linear matrix inequality: Let $A_0, \ldots, A_n \in \text{Sym}_k(\mathbb{R})$ be symmetric $k \times k$ -matrices, and let

$$A(\underline{t}) = A_0 + t_1 A_1 + \dots + t_n A_n = \begin{pmatrix} \ell_{11}(\underline{t}) & \cdots & \ell_{1k}(\underline{t}) \\ \vdots & \ddots & \vdots \\ \ell_{k1}(\underline{t}) & \cdots & \ell_{kk}(\underline{t}) \end{pmatrix}$$

with $\underline{t} = (t_1, \ldots, t_n)$ and $\ell_{ij} \in \mathbb{R}[\underline{t}]$ of degree 1. Put

$$S = \left\{ x \in \mathbb{R}^n \mid A(x) \text{ is psd} \right\}$$

$$A_0, \dots, A_n \in \operatorname{Sym}_k(\mathbb{R}), A(\underline{t}) = A_0 + t_1 A_1 + \dots + t_n A_n$$
$$S = \left\{ x \in \mathbb{R}^n \mid A(x) \text{ is psd} \right\}$$

$$A_0, \ldots, A_n \in \operatorname{Sym}_k(\mathbb{R}), A(\underline{t}) = A_0 + t_1 A_1 + \cdots + t_n A_n$$

$$S = \left\{ x \in \mathbb{R}^n \mid A(x) \text{ is psd} \right\}$$

■ *S* is convex

S is basic closed semi-algebraic, i.e. described by simultaneous (non-strict) polynomial inequalities:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$A_0,\ldots,A_n \in \operatorname{Sym}_k(\mathbb{R}), A(\underline{t}) = A_0 + t_1A_1 + \cdots + t_nA_n$$

$$S = \left\{ x \in \mathbb{R}^n \mid A(x) \text{ is psd} \right\}$$

■ *S* is convex

 S is basic closed semi-algebraic, i.e. described by simultaneous (non-strict) polynomial inequalities: Take the characteristic polynomial

$$\det(A(\underline{t}) - sI_k) = (-1)^{k+1}s^k + c_{k-1}(\underline{t})s^{k-1} + \dots + c_o(\underline{t})$$

with $c_i \in \mathbb{R}[\underline{t}]$, then

$$S = \left\{ x \in \mathbb{R}^n \mid c_0(x) \ge 0, -c_1(x) \ge 0, \dots, (-1)^{k-1} c_{k-1}(x) \ge 0 \right\}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

$$A_0, \dots, A_m \in \operatorname{Sym}_k(\mathbb{R}), A(\underline{t}) = A_0 + t_1 A_1 + \dots + t_m A_m$$
$$S = \left\{ x \in \mathbb{R}^m \mid A(x) \text{ is psd} \right\}$$

Let $\pi: \mathbb{R}^m \to \mathbb{R}^n$ be a linear map. The image $\pi(S)$ is a projection of a spectrahedron.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$A_0, \dots, A_m \in \operatorname{Sym}_k(\mathbb{R}), A(\underline{t}) = A_0 + t_1 A_1 + \dots + t_m A_m$$

$$S = \{x \in \mathbb{R}^m \mid A(x) \text{ is psd}\}$$

Let $\pi: \mathbb{R}^m \to \mathbb{R}^n$ be a linear map. The image $\pi(S)$ is a projection of a spectrahedron. If m = n + l and $\pi: \mathbb{R}^{n+l} \to \mathbb{R}^n$ the projection onto the first *n* coordinates, then

$$\pi(S) = \left\{ x \in \mathbb{R}^n | \exists y \in \mathbb{R}^l : A_0 + x_1 A_1 + \dots + x_n A_n + y_1 A_{n+1} + \dots + y_l A_m \text{ is psd} \right\}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

$$A_0, \dots, A_m \in \operatorname{Sym}_k(\mathbb{R}), A(\underline{t}) = A_0 + t_1 A_1 + \dots + t_m A_m$$

$$S = \{x \in \mathbb{R}^m \mid A(x) \text{ is psd}\}$$

Let $\pi: \mathbb{R}^m \to \mathbb{R}^n$ be a linear map. The image $\pi(S)$ is a projection of a spectrahedron. If m = n + l and $\pi: \mathbb{R}^{n+l} \to \mathbb{R}^n$ the projection onto the first *n* coordinates, then

$$\pi(S) = \left\{ x \in \mathbb{R}^n | \exists y \in \mathbb{R}^l : A_0 + x_1 A_1 + \dots + x_n A_n + y_1 A_{n+1} + \dots + y_l A_m \text{ is psd} \right\}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

Projections of spectrahedra are also called semidefinitely representable sets or SDP (representable) sets.

Let $C = \{x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0\}$ be a basic closed semi-algebraic set. Always assume *C* convex with non-empty interior.

(ロト・日本)・モン・モン・モン・ションのへの

Let $C = \{x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0\}$ be a basic closed semi-algebraic set. Always assume *C* convex with non-empty interior.

Goal: Approximate *C* by the projection of a spectrahedron.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

Let $C = \{x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0\}$ be a basic closed semi-algebraic set. Always assume *C* convex with non-empty interior.

Goal: Approximate *C* by the projection of a spectrahedron.

Put $p_0 = 1$ and let

$$M = \left\{ \sum_{i=0}^{r} (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$$

be the quadratic module generated by p_1, \ldots, p_r . Write $\mathbb{R}[\underline{t}]_d$ for the space of polynomials of degree at most d.

ション ふゆ マイ ビン・ ビー うくつ

Let $C = \{x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0\}$ be a basic closed semi-algebraic set. Always assume *C* convex with non-empty interior.

Goal: Approximate *C* by the projection of a spectrahedron.

Put $p_0 = 1$ and let

$$M = \left\{ \sum_{i=0}^{r} (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$$

be the quadratic module generated by p_1, \ldots, p_r . Write $\mathbb{R}[\underline{t}]_d$ for the space of polynomials of degree at most d. For $d \ge 1$, let

$$M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \, \big| \, (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}.$$

うして 山田 マイボマ エット しょうくしゃ

Let $C = \{x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0\}$ be a basic closed semi-algebraic set. Always assume *C* convex with non-empty interior.

Goal: Approximate *C* by the projection of a spectrahedron.

Put $p_0 = 1$ and let

$$M = \left\{ \sum_{i=0}^{r} (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$$

be the quadratic module generated by p_1, \ldots, p_r . Write $\mathbb{R}[\underline{t}]_d$ for the space of polynomials of degree at most d. For $d \ge 1$, let

$$M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}.$$

Note: $M_d \not\subseteq M \cap \mathbb{R}[\underline{t}]_d$ in general.

 $C = \left\{ x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0 \right\} \text{ convex with non-empty interior}$ $M = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$ $M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}$

For $d \ge 1$, write $\mathbb{R}[\underline{t}]_d^{\vee}$ for the dual space of $\mathbb{R}[\underline{t}]_d$, i.e. the space of linear functionals $L: \mathbb{R}[\underline{t}]_d \to \mathbb{R}$, and put

$$\mathcal{L}_d = \left\{ L \in \mathbb{R}[\underline{t}]_d^{\vee} \mid L(f) \ge 0 \text{ for all } f \in M_d \text{ and } L(1) = 1 \right\}.$$

うして 山田 マイボマ エット しょうくしゃ

 $C = \left\{ x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0 \right\} \text{ convex with non-empty interior}$ $M = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$ $M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}$

For $d \ge 1$, write $\mathbb{R}[\underline{t}]_d^{\vee}$ for the dual space of $\mathbb{R}[\underline{t}]_d$, i.e. the space of linear functionals $L: \mathbb{R}[\underline{t}]_d \to \mathbb{R}$, and put

$$\mathcal{L}_{d} = \left\{ L \in \mathbb{R}[\underline{t}]_{d}^{\vee} \mid L(f) \ge 0 \text{ for all } f \in M_{d} \text{ and } L(1) = 1 \right\}.$$

うして 山田 マイボマ エット しょうくしゃ

Fact: The set \mathcal{L}_d is a spectrahedron in $\mathbb{R}[\underline{t}]_d$.

 $C = \left\{ x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0 \right\} \text{ convex with non-empty interior}$ $M = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$ $M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}$

For $d \ge 1$, write $\mathbb{R}[\underline{t}]_d^{\vee}$ for the dual space of $\mathbb{R}[\underline{t}]_d$, i.e. the space of linear functionals $L: \mathbb{R}[\underline{t}]_d \to \mathbb{R}$, and put

$$\mathcal{L}_{d} = \left\{ L \in \mathbb{R}[\underline{t}]_{d}^{\vee} \mid L(f) \ge 0 \text{ for all } f \in M_{d} \text{ and } L(1) = 1 \right\}.$$

Fact: The set \mathcal{L}_d is a spectrahedron in $\mathbb{R}[\underline{t}]_d$.

Let $\pi: \mathbb{R}[\underline{t}]_d^{\vee} \to \mathbb{R}^n$ be given by $L \mapsto (L(t_1), \dots, L(t_n))$ and write $C_d = \pi(\mathcal{L}_d)$.

うして 山田 マイボマ エット しょうくしゃ

 $C = \left\{ x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0 \right\} \text{ convex with non-empty interior}$ $M = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$ $M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}$

For $d \ge 1$, write $\mathbb{R}[\underline{t}]_d^{\vee}$ for the dual space of $\mathbb{R}[\underline{t}]_d$, i.e. the space of linear functionals $L: \mathbb{R}[\underline{t}]_d \to \mathbb{R}$, and put

$$\mathcal{L}_{d} = \left\{ L \in \mathbb{R}[\underline{t}]_{d}^{\vee} \mid L(f) \ge 0 \text{ for all } f \in M_{d} \text{ and } L(1) = 1 \right\}.$$

Fact: The set \mathcal{L}_d is a spectrahedron in $\mathbb{R}[\underline{t}]_d$.

Let $\pi: \mathbb{R}[\underline{t}]_d^{\vee} \to \mathbb{R}^n$ be given by $L \mapsto (L(t_1), \dots, L(t_n))$ and write $C_d = \pi(\mathcal{L}_d)$. Then

$$C \subset \cdots \subset C_d \subset C_{d-1} \subset \cdots \subset C_1$$

Call C_d the Lasserre relaxation of degree d of $C_{(w,r,t,p_1,\dots,p_r)}$, p_{r,p_1,\dots,p_r}

$$C = \{x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0\} \text{ convex with non-empty interior.}$$
$$M = \{\sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}]\}$$
$$M_d = \{\sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i\}$$
$$\mathcal{L}_d = \{L \in \mathbb{R}[\underline{t}]_d^{\vee} \mid L(f) \ge 0 \text{ for all } f \in M_d \text{ and } L(1) = 1\}$$
$$\pi: \mathcal{L}_d \to \mathbb{R}^n, \ L \mapsto (L(t_1, \dots, L(t_n)))$$
$$C_d = \pi(\mathcal{L}_d)$$

Say that the Lasserre relaxation of degree *d* is exact if $C = C_d$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

$$C = \{x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0\} \text{ convex with non-empty interior.}$$
$$M = \{\sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}]\}$$
$$M_d = \{\sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i\}$$
$$\mathcal{L}_d = \{L \in \mathbb{R}[\underline{t}]_d^{\vee} \mid L(f) \ge 0 \text{ for all } f \in M_d \text{ and } L(1) = 1\}$$
$$\pi: \mathcal{L}_d \to \mathbb{R}^n, \ L \mapsto (L(t_1, \dots, L(t_n)))$$
$$C_d = \pi(\mathcal{L}_d)$$

Say that the Lasserre relaxation of degree *d* is exact if $C = C_d$.

Theorem

The Lasserre relaxion of degree d of C is exact if and only if M_d contains all $\ell \in \mathbb{R}[\underline{t}]$ of degree 1 such that $\ell|_C \ge 0$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

Let *C* be a convex subset of \mathbb{R}^n . A face of *C* is a convex subset *F* of *C* which is extremal, i.e. whenever $x, y \in C$ are such that $\frac{1}{2}(x + y) \in F$, then $x, y \in F$.

Let *C* be a convex subset of \mathbb{R}^n . A face of *C* is a convex subset *F* of *C* which is extremal, i.e. whenever $x, y \in C$ are such that $\frac{1}{2}(x + y) \in F$, then $x, y \in F$.

Let *C* be a convex subset of \mathbb{R}^n . A face of *C* is a convex subset *F* of *C* which is extremal, i.e. whenever $x, y \in C$ are such that $\frac{1}{2}(x + y) \in F$, then $x, y \in F$.

Let *C* be a convex subset of \mathbb{R}^n . A face of *C* is a convex subset *F* of *C* which is extremal, i.e. whenever $x, y \in C$ are such that $\frac{1}{2}(x + y) \in F$, then $x, y \in F$.

A face is called exposed if $F = \emptyset$ or if there exists a supporting hyperplane H of C such that $F = H \cap C$. (Equivalently: If there exists

 $\ell \in \mathbb{R}[\underline{t}]$ of degree 1 such that $\ell|_C \ge 0$ and $F = C \cap \{x \in \mathbb{R}^n \mid \ell(x) = 0\}$.

All faces exposed?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

All faces exposed?

{Spectrahedra} YES

Ramana & Goldman 2001

▲□▶▲□▶▲□▶▲□▶ □ のQの

All faces exposed?

All faces exposed?

All faces exposed?

Renegar 2006

All faces exposed?

Renegar 2006

Renegar 2006

Renegar 2006

component of $\{x \in \mathbb{R}^n \mid p(x) > 0\}$ that contains 0 and such that the univariate polynomial $s \mapsto p(sv)$ has only real zeros, for every $v \in \mathbb{R}^n \setminus \{0\}$.

Every spectrahedron is rigidly convex. The converse is true for n = 2 (Helton & Vinnikov 2004)

$$C = \{x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0\} \text{ convex with non-empty interior.}$$

$$M = \{\sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}]\}$$

$$M_d = \{\sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i\}$$

$$\mathcal{L}_d = \{L \in \mathbb{R}[\underline{t}]_d^{\vee} \mid L(f) \ge 0 \text{ for all } f \in M_d \text{ and } L(1) = 1\}$$

$$\pi: \mathcal{L}_d \to \mathbb{R}^n, \ L \mapsto (L(t_1, \dots, L(t_n)))$$

$$C_d = \pi(\mathcal{L}_d)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

$$C = \left\{ x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0 \right\} \text{ convex with non-empty interior.}$$

$$M = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$$

$$M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}$$

$$\mathcal{L}_d = \left\{ L \in \mathbb{R}[\underline{t}]_d^{\vee} \mid L(f) \ge 0 \text{ for all } f \in M_d \text{ and } L(1) = 1 \right\}$$

$$\pi: \mathcal{L}_d \to \mathbb{R}^n, \ L \mapsto (L(t_1, \dots, L(t_n)))$$

$$C_d = \pi(\mathcal{L}_d)$$

Theorem

If C possesses an exact Lasserre relaxation, then all faces of C are exposed.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

$$C = \left\{ x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0 \right\} \text{ convex with non-empty interior.}$$

$$M = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$$

$$M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}$$

$$\mathcal{L}_d = \left\{ L \in \mathbb{R}[\underline{t}]_d^{\vee} \mid L(f) \ge 0 \text{ for all } f \in M_d \text{ and } L(1) = 1 \right\}$$

$$\pi: \mathcal{L}_d \to \mathbb{R}^n, \ L \mapsto (L(t_1, \dots, L(t_n)))$$

$$C_d = \pi(\mathcal{L}_d)$$

Theorem

If C possesses an exact Lasserre relaxation, then all faces of C are exposed.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Note: The condition on *C* is independent of p_1, \ldots, p_r .

$$C = \{x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0\} \text{ convex with non-empty interior.}$$
$$M = \{\sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}]\}$$
$$M_d = \{\sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i\}$$
$$\mathcal{L}_d = \{L \in \mathbb{R}[\underline{t}]_d^{-1} \mid L(f) \ge 0 \text{ for all } f \in M_d \text{ and } L(1) = 1\}$$
$$\pi: \mathcal{L}_d \to \mathbb{R}^n, \ L \mapsto (L(t_1, \dots, L(t_n)))$$
$$C_d = \pi(\mathcal{L}_d)$$

Theorem

If C possesses an exact Lasserre relaxation, then all faces of C are exposed.

Note: The condition on *C* is independent of p_1, \ldots, p_r . But if *C* has a non-exposed face, there may still exist q_1, \ldots, q_s such that

$$C = \overline{\operatorname{conv}(\{x \in \mathbb{R}^n \mid q_1(x) \ge 0, \dots, q_s(x) \ge 0\})}.$$

and such that C has a an exact Lasserre relaxation w.r.t. q_1, \ldots, q_s .

$$C = \{x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0\} \text{ convex with non-empty interior.}$$
$$M = \{\sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}]\}$$
$$M_d = \{\sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i\}$$
$$\mathcal{L}_d = \{L \in \mathbb{R}[\underline{t}]_d^{\vee} \mid L(f) \ge 0 \text{ for all } f \in M_d \text{ and } L(1) = 1\}$$
$$\pi: \mathcal{L}_d \to \mathbb{R}^n, \ L \mapsto (L(t_1, \dots, L(t_n)))$$
$$C_d = \pi(\mathcal{L}_d)$$

Theorem

If C possesses an exact Lasserre relaxation, then all faces of C are exposed.

Note: The condition on *C* is independent of p_1, \ldots, p_r . But if *C* has a non-exposed face, there may still exist q_1, \ldots, q_s such that

$$C = \overline{\operatorname{conv}(\{x \in \mathbb{R}^n \mid q_1(x) \ge 0, \dots, q_s(x) \ge 0\})}.$$

and such that C has a an exact Lasserre relaxation w.r.t. q_1, \ldots, q_s . (Example of such C by Gouveia (2009)).

$$C = \left\{ x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0 \right\} \text{ convex with non-empty interior.}$$

$$M = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$$

$$M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Example: $p_1 = t_2$, $p_2 = 1 - t_2$, $p_3 = t_1 + 1$, $p_4 = t_2 - t_1^3$.

$$C = \left\{ x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0 \right\} \text{ convex with non-empty interior.}$$

$$M = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$$

$$M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}$$

Example:
$$p_1 = t_2$$
, $p_2 = 1 - t_2$, $p_3 = t_1 + 1$, $p_4 = t_2 - t_1^3$.

For
$$\varepsilon \in (0,1]$$
, let
 $\ell_{\varepsilon} = t_2 - 3\varepsilon^2 t_1 + 2\varepsilon^3$
be the tangent to *C* in the point $(\varepsilon, \varepsilon^3)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$C = \left\{ x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0 \right\} \text{ convex with non-empty interior.}$$

$$M = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$$

$$M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}$$

Example:
$$p_1 = t_2$$
, $p_2 = 1 - t_2$, $p_3 = t_1 + 1$, $p_4 = t_2 - t_1^3$.

For
$$\varepsilon \in (0,1]$$
, let
 $\ell_{\varepsilon} = t_2 - 3\varepsilon^2 t_1 + 2\varepsilon^3$
be the tangent to *C* in the point (ε .

be the tangent to *C* in the point $(\varepsilon, \varepsilon^3)$. Assume that there is $d \ge 1$ such that $\ell_{\varepsilon} \in M_d$ for all $\varepsilon \in (0, 1]$, say $\ell_{\varepsilon} = \sum s_i^{(\varepsilon)} p_i$.

.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

$$C = \left\{ x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0 \right\} \text{ convex with non-empty interior.}$$

$$M = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$$

$$M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}$$

Example:
$$p_1 = t_2$$
, $p_2 = 1 - t_2$, $p_3 = t_1 + 1$, $p_4 = t_2 - t_1^3$.

For $\varepsilon \in (0,1]$, let $\ell_{\varepsilon} = t_2 - 3\varepsilon^2 t_1 + 2\varepsilon^3$ be the tangent to *C* in the point $(\varepsilon, \varepsilon^3)$. Assume that there is $d \ge 1$ such that $\ell_{\varepsilon} \in M_d$ for all $\varepsilon \in (0,1]$, say $\ell_{\varepsilon} = \sum s_i^{(\varepsilon)} p_i$.

うして 山田 マイボマ エット しょうくしゃ

We must have $s_i^{(\varepsilon)}(\varepsilon, \varepsilon^3) = 0$ for i = 0, ..., 3.

$$C = \left\{ x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0 \right\} \text{ convex with non-empty interior.}$$

$$M = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$$

$$M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}$$

Example:
$$p_1 = t_2$$
, $p_2 = 1 - t_2$, $p_3 = t_1 + 1$, $p_4 = t_2 - t_1^3$.
 t_2
For $\varepsilon \in (0, 1]$, let

$$\ell_{\varepsilon} = t_2 - 3\varepsilon^2 t_1 + 2\varepsilon^3$$

be the tangent to *C* in the point $(\varepsilon, \varepsilon^3)$. Assume that there is $d \ge 1$ such that $\ell_{\varepsilon} \in M_d$ for all $\varepsilon \in (0, 1]$, say $\ell_{\varepsilon} = \sum s_i^{(\varepsilon)} p_i$.

We must have $s_i^{(\varepsilon)}(\varepsilon, \varepsilon^3) = 0$ for i = 0, ..., 3. We show that, since $\lim_{\varepsilon \to 0} \ell_{\varepsilon} = t_2$, it would follow that $t_2 = \sum s_i^{(0)} p_i$ such that $s_i^{(0)}(0,0) = 0$ for i = 0, ..., 3, which is impossible.

 t_2

 t_1

 $C = \left\{ x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0 \right\} \text{ convex with non-empty interior.}$ $M = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$ $M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}$

Example: $p_1 = t_2$, $p_2 = 1 - t_2$, $p_3 = t_1 + 1$, $p_4 = t_2 - t_1^3$.

For $\varepsilon \in (0,1]$, let $\ell_{\varepsilon} = t_2 - 3\varepsilon^2 t_1 + 2\varepsilon^3$

be the tangent to *C* in the point $(\varepsilon, \varepsilon^3)$. Assume that there is $d \ge 1$ such that $\ell_{\varepsilon} \in M_d$ for all $\varepsilon \in (0,1]$, say $\ell_{\varepsilon} = \sum s_i^{(\varepsilon)} p_i$.

We must have $s_i^{(\varepsilon)}(\varepsilon, \varepsilon^3) = 0$ for i = 0, ..., 3. We show that, since $\lim_{\varepsilon \to 0} \ell_{\varepsilon} = t_2$, it would follow that $t_2 = \sum s_i^{(0)} p_i$ such that $s_i^{(0)}(0,0) = 0$ for i = 0, ..., 3, which is impossible. The proof requires working with infinitesimal ε in a non-archimedean extension field of \mathbb{R} .

 $C = \left\{ x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0 \right\} \text{ convex with non-empty interior.}$ $M = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$ $M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}$

Example:
$$p_1 = t_2$$
, $p_2 = 1 - t_2$, $p_3 = t_1 + 1$, $p_4 = t_2 - t_1^3$.

For
$$t_1$$
 be to a set of the formula t_1 be to a set of the formula t_2 formula t_3 formula t_4 be to a set of the formula

$$\varepsilon \in (0,1]$$
, let
 $\ell_{\varepsilon} = t_2 - 3\varepsilon^2 t_1 + 2\varepsilon^3$

be the tangent to *C* in the point $(\varepsilon, \varepsilon^3)$. Assume that there is $d \ge 1$ such that $\ell_{\varepsilon} \in M_d$ for all $\varepsilon \in (0,1]$, say $\ell_{\varepsilon} = \sum s_i^{(\varepsilon)} p_i$.

We must have $s_i^{(\varepsilon)}(\varepsilon, \varepsilon^3) = 0$ for i = 0, ..., 3. We show that, since $\lim_{\varepsilon \to 0} \ell_{\varepsilon} = t_2$, it would follow that $t_2 = \sum s_i^{(0)} p_i$ such that $s_i^{(0)}(0,0) = 0$ for i = 0, ..., 3, which is impossible. The proof requires working with infinitesimal ε in a non-archimedean extension field of \mathbb{R} .

$$C = \left\{ x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0 \right\} \text{ convex with non-empty interior.}$$

$$M = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$$

$$M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}$$

Example:
$$p_1 = t_2$$
, $p_2 = 1 - t_2$, $p_3 = t_1 + 1$, $p_4 = t_2 - t_1^3$.

But it follows from a result of Helton and Nie that *C* is the projection of a spectrahedron:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $C = \left\{ x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0 \right\} \text{ convex with non-empty interior.}$ $M = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$ $M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}$

Example:
$$p_1 = t_2$$
, $p_2 = 1 - t_2$, $p_3 = t_1 + 1$, $p_4 = t_2 - t_1^3$.

But it follows from a result of Helton and Nie that *C* is the projection of a spectrahedron: Let $C_1 = [-1, 0] \times [0, 1]$ and $C_2 = \{p_1 \ge 0, p_2 \ge 0, p_4 \ge 0, t_1 \ge 0\}$. *S* is the convex hull of C_1 and C_2 ,

ション ふゆ マイ ビン・ ビー うくつ

 $C = \left\{ x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0 \right\} \text{ convex with non-empty interior.}$ $M = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$ $M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}$

Example:
$$p_1 = t_2$$
, $p_2 = 1 - t_2$, $p_3 = t_1 + 1$, $p_4 = t_2 - t_1^3$.

But it follows from a result of Helton and Nie that *C* is the projection of a spectrahedron: Let $C_1 = [-1, 0] \times [0, 1]$ and $C_2 = \{p_1 \ge 0, p_2 \ge 0, p_4 \ge 0, t_1 \ge 0\}$. *S* is the convex hull of C_1 and C_2 , C_1 is a spectrahedron, and the third Lasserre relaxation of C_2 is exact:

 $C = \left\{ x \in \mathbb{R}^n \mid p_1(x) \ge 0, \dots, p_r(x) \ge 0 \right\} \text{ convex with non-empty interior.}$ $M = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid s_{ij} \in \mathbb{R}[\underline{t}] \right\}$ $M_d = \left\{ \sum_{i=0}^r (s_{i1}^2 + \dots + s_{iN}^2) p_i \mid (s_{i1}^2 + \dots + s_{iN}^2) p_i \in \mathbb{R}[\underline{t}]_d \text{ for all } i \right\}$

Example:
$$p_1 = t_2$$
, $p_2 = 1 - t_2$, $p_3 = t_1 + 1$, $p_4 = t_2 - t_1^3$.

But it follows from a result of Helton and Nie that *C* is the projection of a spectrahedron: Let $C_1 = [-1, 0] \times [0, 1]$ and $C_2 = \{p_1 \ge 0, p_2 \ge 0, p_4 \ge 0, t_1 \ge 0\}$. *S* is the convex hull of C_1 and C_2 , C_1 is a spectrahedron, and the third Lasserre relaxation of C_2 is exact:

For any $\varepsilon \in [0,1]$, we can write $\ell_{\varepsilon} = t_1^3 - 3\varepsilon^2 t_1 + 2\varepsilon^3 + (t_2 - t_1^3)$. The polynomial $t_1^3 - 3\varepsilon^2 t_1 + 2\varepsilon^3 \in \mathbb{R}[t_1]$ is non-negative on $[0, \infty)$ and is therefore contained in $QM(t_1)_3 \subseteq \mathbb{R}[t_1]$ by a result of Kuhlmann, Marshall, and Schwartz.