Rank/sparsity minimization and its convex algebraic geometry

Pablo A. Parrilo

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

BIRS Workshop on Convex Algebraic Geometry February 2010 – Banff

What I will not talk about (directly)

- Theta bodies and SDP relaxations (w/Gouveia, Laurent, Thomas,...)
- Convexity and SOS-convexity (Ahmadi, Helton/Nie, Blekherman,...)

Please see their talks/ask them!

First, my coauthors...

Ben Recht (UW-Madison)

Maryam Fazel (U. Washington)

Venkat Chandrasekaran (MIT)

Sujay Sanghavi (UT Austin)

Alan Willsky (MIT)

Rank minimization

PROBLEM: Find the *lowest rank* matrix in a given convex set.

 E.g., given an affine subspace of matrices, find one of lowest possible rank

 In general, NP-hard (e.g., reduction from maxcut, sparsest vector, etc.).

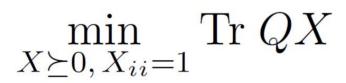
Many applications...

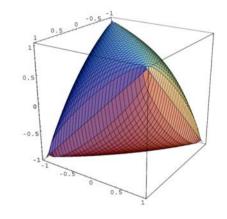
Application 1: Quadratic optimization

Boolean quadratic minimization (e.g., max-cut)

$$\min_{x_i \in \{-1,1\}^n} x^T Q x$$

• Relax using the substitution $X := xx^T$:





 If solution X has rank 1, then we solved the original problem!

Application 2: Sum of squares

$$P(x) = \sum_{i=1}^{r} q_i^2(x)$$

- Number of squares equal to the rank of the Gram matrix
- How to compute a SOS representation with the minimum number of squares?
- Rank minimization with SDP constraints

Application 3: Video inpainting

(Ding-Sznaier-Camps, ICCV 07)



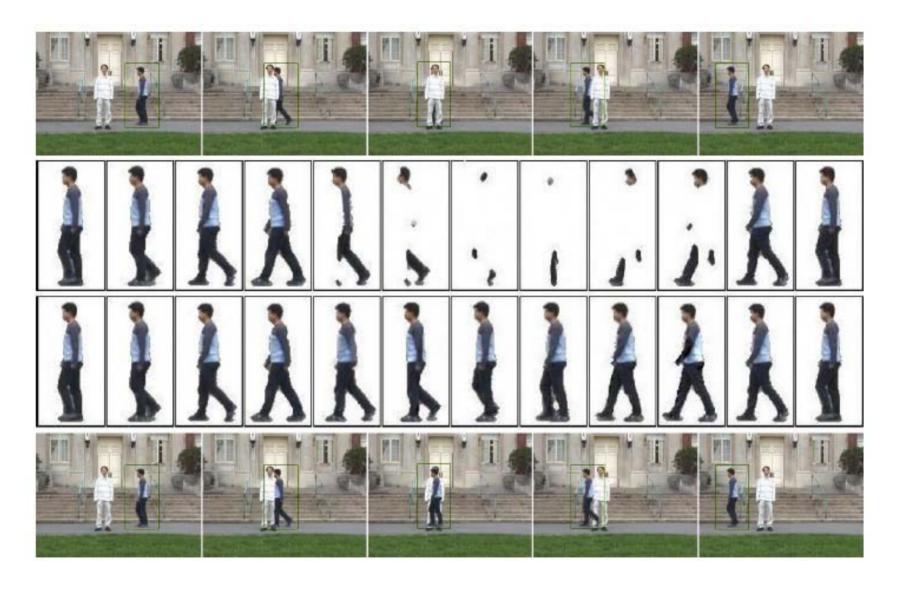
Ç

Given video frames with missing portions

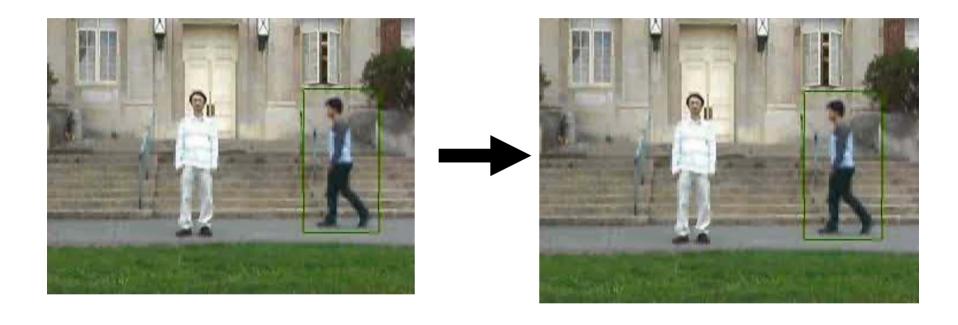
Reconstruct / interpolate the missing data

"Simple" dynamics <-> Low rank (multi) Hankel

Application 3: Video inpainting (cont)

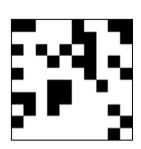


Application 3: Video inpainting (cont)

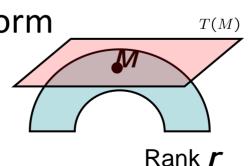


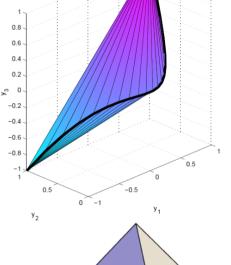
Overview

Rank optimization is ubiquitous in optimization, communications, and control. Difficult, even under linear constraints.



- Applications, formulation
- What is the underlying geometry?
- Convex hulls of varieties
- Geometry and nuclear norm





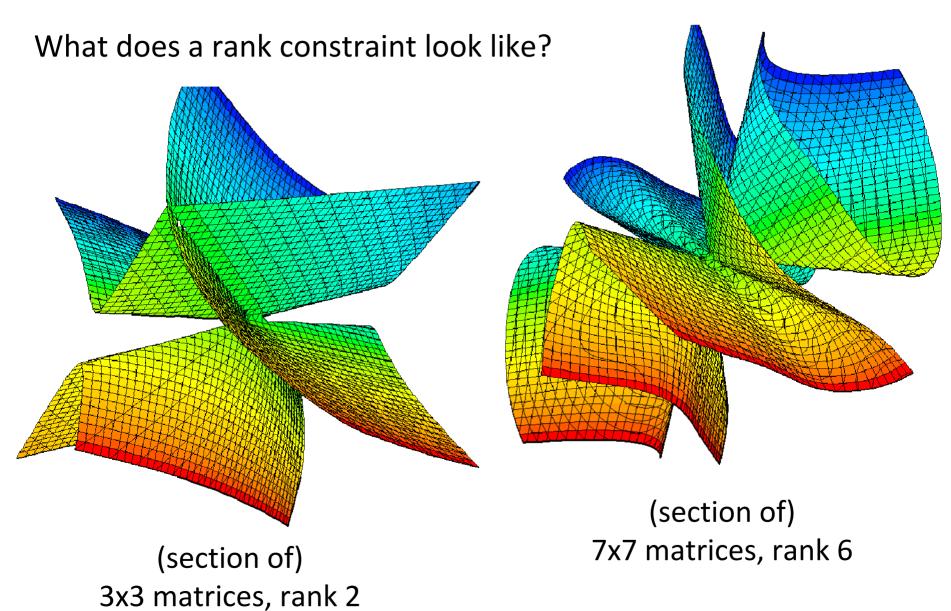
Rank minimization

PROBLEM: Find the matrix of smallest rank that satisfies the underdetermined linear system:

$$\mathcal{A}(X) = b$$
 $\mathcal{A}: \mathbb{R}^{n \times m} \to \mathbb{R}^p$

Given an affine subspace of matrices, find one of lowest rank

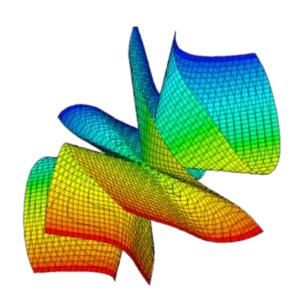
Rank can be complicated...



How to solve this?

Many methods have been proposed (after all, it's an NLP!)

- Newton-like local methods
- Manifold optimization
- Alternating projections
- Augmented Lagrangian
- Etc...



Sometimes (often?) work very well.

But, very hard to prove results on *global* performance.

Geometry of rank varieties

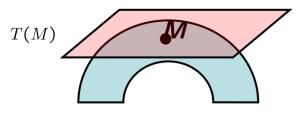
What is the structure of the set of matrices of fixed rank?

$$\mathcal{P}(k) \triangleq \{ M \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(M) \le k \}.$$

An algebraic variety defined by the vanishing of all (k+1) (k+1) minors of M.

Its dimension is $k \times (2n-k)$, and is nonsingular, except on those matrices of rank less than or equal to k-1.

At smooth points $M = U\Sigma V^T$ well-defined tangent space:



$$T(M) = \{UX^T + YV^T \mid X, Y \in \mathbb{R}^{n \times k}\}.$$

Nuclear norm

• Sum of the singular values of a matrix

$$||X||_* := \sum_{i=1}^r \sigma_i(X), \qquad \sigma_i(X) := \sqrt{\lambda_i(X^T X)}$$

$$\sigma_i(X) := \sqrt{\lambda_i(X^T X)}$$

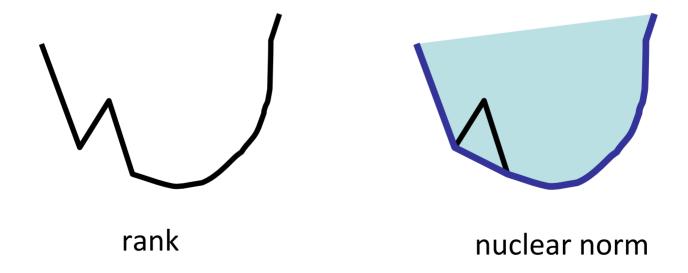
• Unitarily invariant $||UXV||_* = ||X||_*$

 Also known as Schatten 1-norm, Ky-Fan r-norm, trace norm, etc...

Why is the nuclear norm relevant?

Bad nonconvex problem -> Convexify!

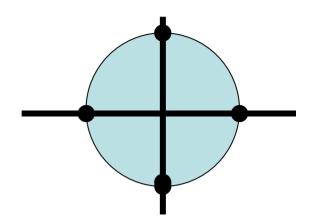
 Nuclear norm is "best" convex approximation of rank



Comparison with sparsity

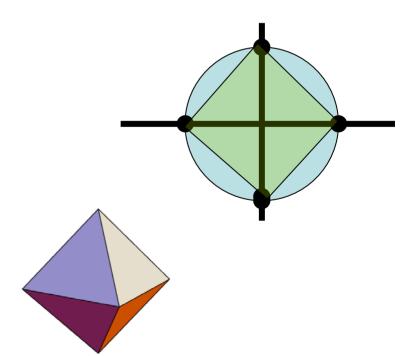
Consider sparsity minimization

Geometric interpretation



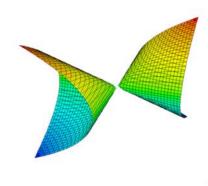
- Take "sparsity 1" variety
- Intersect with unit ball
- Take convex hull

L1 ball! (crosspolytope)

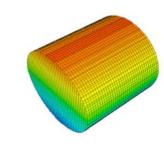


Nuclear norm

• Same idea!



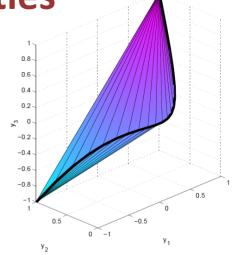
- Take "rank 1" variety
- Intersect with unit ball
- Take convex hull



Nuclear ball!

Convex hulls of algebraic varieties

 Systematic methods to produce (exact or approximate) SDP representations of convex hulls



 Based on sums of squares (Shor, Nesterov, Lasserre, P., Nie, Helton)

 Parallels/generalizations from combinatorial optimization (theta bodies, e.g., Gouveia-Laurent-P.-Thomas 09, orbitopes Sanyal-Sottile-Sturmfels)

Nuclear norm and SDP

The nuclear norm is SDP-representable!

$$||X||_* := \sum_{i=1}^r \sigma_i(X),$$

Semidefinite programming characterization:

$$\max_{Y} \operatorname{Tr}(X'Y) \qquad \qquad \min_{W_1, W_2} \frac{1}{2}(\operatorname{Tr}(W_1) + \operatorname{Tr}(W_2))$$
s.t.
$$\begin{bmatrix} I_m & Y \\ Y' & I_n \end{bmatrix} \succeq 0. \qquad \text{s.t.} \begin{bmatrix} W_1 & X \\ X' & W_2 \end{bmatrix} \succeq 0.$$

A convex heuristic

 PROBLEM: Find the matrix of lowest rank that satisfies the underdetermined linear system

$$\mathcal{A}(X) = b$$
 $\mathcal{A}: \mathbb{R}^{n \times m} \to \mathbb{R}^p$

- Convex optimization heuristic
 - Minimize nuclear norm (sum of singular values) of X
 - This is a convex function of the matrix X
 - Equivalent to a SDP problem

minimize
$$||X||_* = \sum_{i=1}^m \sigma_i(X)$$

subject to $\mathcal{A}(X) = b$

Nuclear norm heuristic

Affine Rank Minimization:

Relaxation:

minimize
$$\operatorname{rank}(X)$$

subject to $\mathcal{A}(X) = b$

minimize
$$||X||_* = \sum_{i=1}^m \sigma_i(X)$$

subject to $\mathcal{A}(X) = b$

- Proposed in Maryam Fazel's PhD thesis (2002).
- Nuclear norm is the convex envelope of rank
- Convex, can be solved efficiently
- Seems to work well in practice

Nice, but will it work?

Affine Rank Minimization:

minimize
$$\operatorname{rank}(X)$$

subject to $\mathcal{A}(X) = b$

Relaxation:

minimize
$$||X||_* = \sum_{i=1}^m \sigma_i(X)$$

subject to $\mathcal{A}(X) = b$

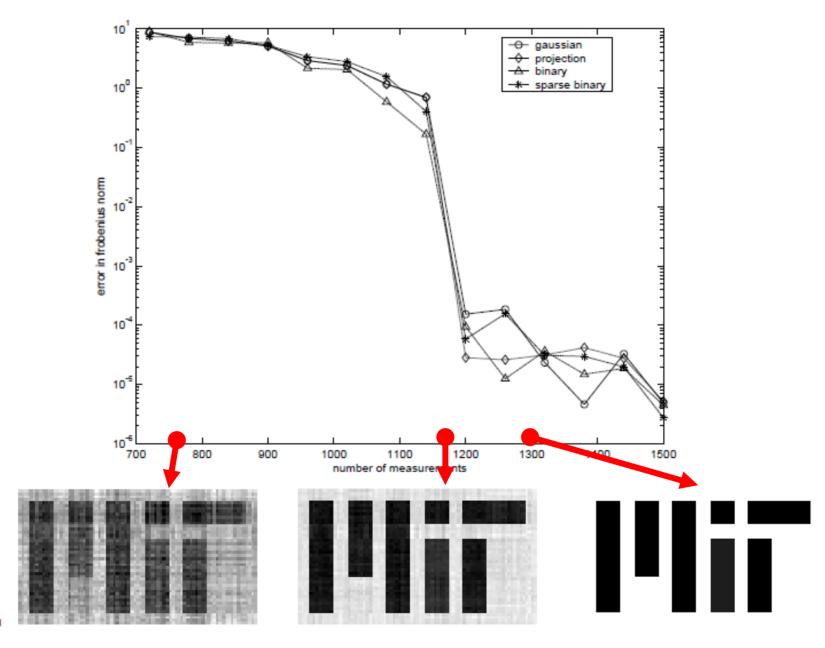
Let's see...

Numerical experiments

Test matrix arbitrarily chosen ;)

- Rank 5 matrix, 46x81 pixels
- Generate random equations, Gaussian coeffs.
- Nuclear norm minimization via SDP (SeDuMi)

Phase transition



How to explain this?

Apparently, under certain conditions, nuclear norm minimization "works".

How to formalize this?

How to prove that relaxation will work?

Affine Rank Minimization:

minimize
$$\operatorname{rank}(X)$$

subject to $\mathcal{A}(X) = b$

Relaxation:

minimize
$$||X||_* = \sum_{i=1}^m \sigma_i(X)$$

subject to $\mathcal{A}(X) = b$

General recipe:

- Find a deterministic condition that ensures success
- Sometimes, condition may be hard to check
- If so, invoke randomness of problem data, to show condition holds with high probability (concentration of measure)
- Generalizes L1 "compressed sensing" results (Donoho, Candès-Tao, etc...)

Compressed sensing - Overview

- {Compressed | compressive}{sensing | sampling}
- New paradigm for data acquisition/estimation
- Influential recent work of Donoho/Tanner,
 Candès/Romberg/Tao, Baraniuk,...

- Relies on sparsity (on some domain, e.g., Fourier, wavelet, etc)
- "Few" random measurements + smart decoding
- Many applications, particularly MRI, geophysics, radar, etc.

Nice, but will it work?

Affine Rank Minimization:

Relaxation:

minimize
$$\operatorname{rank}(X)$$

subject to $\mathcal{A}(X) = b$

minimize
$$||X||_* = \sum_{i=1}^m \sigma_i(X)$$

subject to $\mathcal{A}(X) = b$

- Use a "restricted isometry property" (RIP)
- Then, this heuristic provably works.
- For "random" operators, RIP holds with overwhelming probability

Restricted Isometry Property (RIP)

• Let $: \mathbb{R}^{m \times n} \mathcal{X}$ \mathbb{R}^p be a linear map. For every positive integer $r \leq m$, define the r-restricted isometry constant to be the smallest number $\delta_r(\)$ such that $(1-\delta_r(\mathcal{A}))\|X\|_F \leq \|\mathcal{A}(X)\| \leq (1+\delta_r(\mathcal{A}))\|X\|_F$

holds for all matrices X of rank at most r.

- Similar to RIP condition for sparsity studied by Candès and Tao (2004).
- \bullet Implies "transverse intersection" betwen Ker $\sqrt{\rm and}$ the low rank variety

Nuclear norm works!

Theorem (Recht-Fazel-P.): If is "random" and $p \ni c_0 r(2n-r) \log(n^2)$, the nuclear norm heuristic succeeds with high probability.

Number of measurements c₀ r(2n-r) log(n²)

- Typical scaling for this type of result.
- Extensions (e.g., matrix completion: Candès-Recht, Candès-Tao, Keshavan-Montanari-Oh, etc.)

Experiment 2

- For a triple (n,r,p), generate random n x n matrix Y of rank r and create p Gaussian random measurements
- For each instance, we solved the SDP

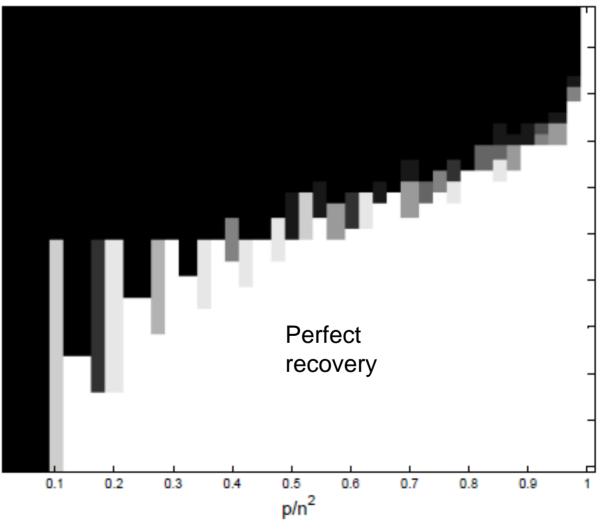
$$\min_{X} ||X||_*
s.t. A(X) = A(Y)$$

 A matrix Y is "recovered" if the output of SeDuMi, X, satisfied ||X-Y||₂/||Y||₂ < 1e-5.

Phase transition

"Normalized" dimension of the rank *r* variety

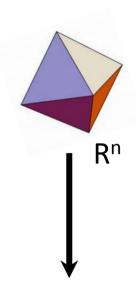
r(2n-r)/p



The "neighborly" intuition

(Donoho, Tanner)

Behavior of neighborly polytopes under "random" projections



Rp

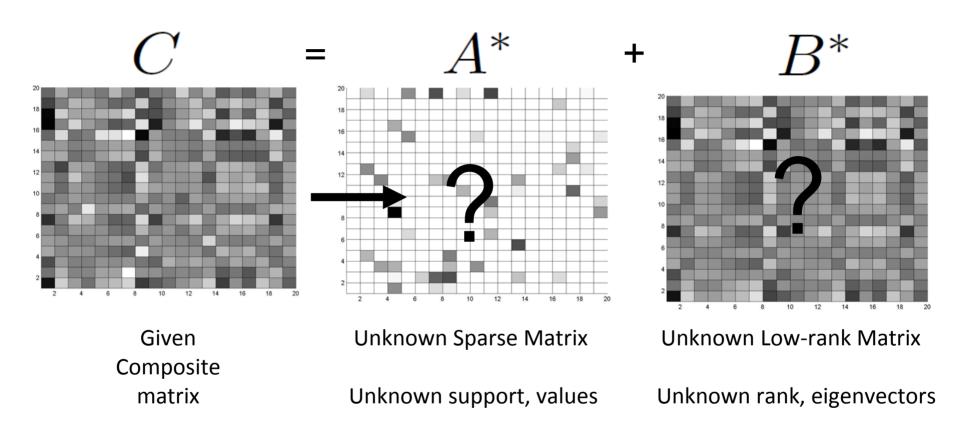
Fact: All (or "most") faces remain extremal

For nuclear norm, similar situation, but more complicated (faces are not polyhedral)

Secant varieties

- What is common to the two cases? Can this be further extended?
- A natural notion: secant varieties
- Generalize notions of rank to other objects (e.g., tensors, nonnegative matrices, etc.)
- However, technical difficulties
 - In general, these varieties may not be closed
 - In general, associated norms are not polytime computable

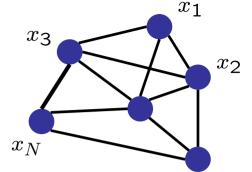
What if sparsity pattern is not known?



Task: given C, recover A* and B*

Application: Graphical models

A probabilistic model given by a graph.

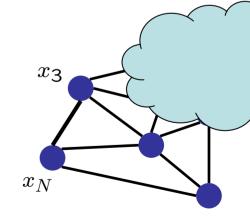


• Then, the inverse covariance Σ^{-1} is sparse.

No longer true if graphical model has hidden variables.

But, it is the sum of a sparse and a low-rank matrix (Schur complement)

$$\hat{K}_o = \Sigma_o^{-1} = K_o - K_{o,h} K_h^{-1} K_{h,o}.$$



Application: Matrix rigidity

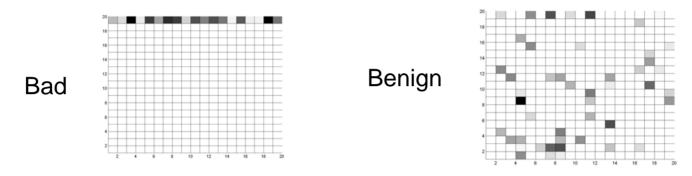
Smallest number of changes to reduce rank [Valiant 77] Rigidity of a matrix NP-hard to compute

Rigidity bounds have a number of applications

- Complexity of linear transforms [Valiant 77]
- Communication complexity [Lokam 95]
- Cryptography

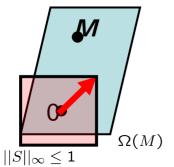
Identifiability issues

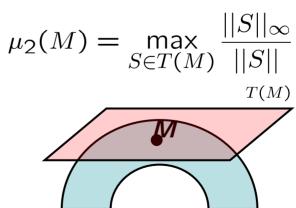
Problem can be *ill-posed*. Need to ensure that terms cannot be *simultaneously* sparse and low-rank.



Define two geometric quantities, related to tangent spaces to sparse and low-rank varieties:

$$\mu_1(M) = \max_{S \in \Omega(M)} \frac{||S||}{||S||_{\infty}}$$

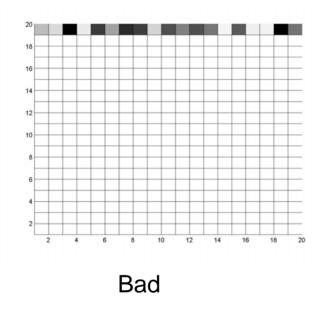


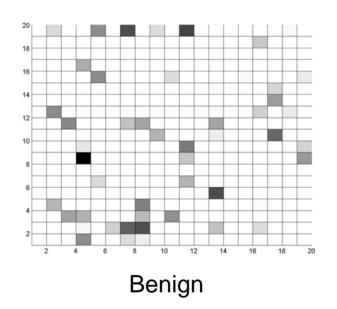


Rank *r* matrices

"Benign" Sparse Matrices

For matrix decomposition, not all sparse matrices are equally benign.





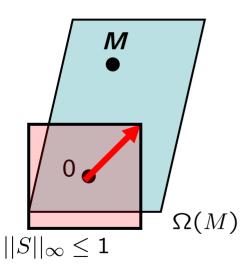
Sparsity pattern matters, not just the number of non-zeros...

Measure of Sparsity Pattern

Given matrix M, define

$$\Omega(M) = \{S \mid \mathsf{support}(S) \subset \mathsf{support}(M)\}$$

$$\mu_1(M) = \max_{S \in \Omega(M)} \frac{||S||}{||S||_{\infty}}$$
 Spectral norm



Small $\mu_1 \Leftrightarrow$ sparse and benign

Concrete example -- "Bounded degree" matrices have small μ_1

"Benign" Low-rank Matrices

Similarly, not all low-rank matrices equally benign...

Benign Bad

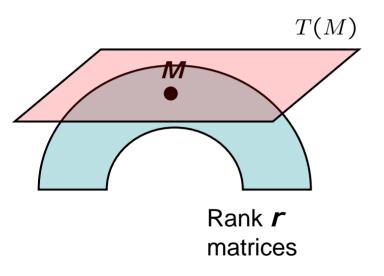
Row and column spaces "diffuse" w.r.t standard basis

"concentrated" row and column spaces

Measure of Row/Column Spaces

Given matrix M, define

$$T(M) = \operatorname{span} \left\{ S : \begin{array}{l} RowSpace(S) \subset RowSpace(M) \text{ or } \\ ColSpace(S) \subset ColSpace(M) \end{array} \right\}$$



$$\mu_2(M) = \max_{S \in T(M)} \frac{||S||_{\infty}}{||S||}$$

Small $\mu_2 \Leftrightarrow$ low-rank and benign

Concrete example -- Low-rank matrices with "incoherent" row/column spaces (w.r.t. standard basis) have small μ_2

Tangent space identifiability

Necessary and sufficient condition for exact decomposition

Tangent spaces must intersect transversally

$$\Omega(A^*) \cap T(B^*) = \{0\}$$

Sufficient condition for transverse intersection

$$\mu_1(A^*)\mu_2(B^*) < 1 \implies \Omega(A^*) \cap T(B^*) = \{0\}$$

Natural convex relaxation

$$||A||_0 \longrightarrow ||A||_1 = \sum_{i,j} |a_{ij}|$$

$$rank(B) = ||\underline{\sigma}(B)||_0 \longrightarrow ||B||_* = \sum_i \sigma_i(B)$$

Propose:

$$(\hat{A}, \hat{B}) = \arg\min_{A,B} \quad \gamma \|A\|_1 + \|B\|_*$$
 s.t. $A + B = C$

s.t.
$$A + B = C$$

Convex program (in fact, an SDP)

Matrix decomposition

Theorem (CSPW09): For any **A*** and **B***

$$\mu_1(A^*)\mu_2(B^*)<rac{1}{8}$$
 \Rightarrow $(\hat{A},\hat{B})=(A^*,B^*)$ is unique optimum of convex program for a range of γ

Essentially a refinement of tangent space transversality conditions

Transverse intersection:
$$\mu_1(A^*)\mu_2(B^*) < 1$$

Convex recovery:
$$\mu_1(A^*)\mu_2(B^*) < \frac{1}{8}$$

Under "natural" random assumptions, conditions holds w.h.p. (see also Candès-Li-Ma-Wright, Dec. 2009).

Summary

- Sparsity, rank, and beyond
 - Many applications
 - Common geometric formulation: secant varieties
 - Convex hulls of these varieties give "good" proxies for optimization
 - Algebraic and geometric aspects
- Theoretical challenges
 - Efficient descriptions
 - Approximate recovery (correct rank and sparsity)
 - Other formulations (e.g., Ames-Vavasis on planted cliques)
 - Finite fields?
- Algorithmic issues
 - Reliable, large scale methods

Thank you!

Want to know more? Details below, and in references therein:

- B. Recht, M. Fazel, P.A. Parrilo, Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization, arXiv:0706.4138. SIAM Review, to appear.
- V. Chandrasekaran, S. Sanghavi, P.A. Parrilo, A. Willsky, *Rank-Sparsity Incoherence for Matrix Decomposition*, arXiv:0906.2220, 2009.

