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What | will not talk about (directly)

e Theta bodies and SDP relaxations
(w/Gouveia, Laurent, Thomas,...)

e Convexity and SOS-convexity
(Ahmadi, Helton/Nie, Blekherman,...)

Please see their talks/ask them!
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Rank minimization

PROBLEM: Find the lowest rank matrix in a given
convex set.

e E.g., given an affine subspace of matrices, find
one of lowest possible rank

e In general, NP-hard (e.g., reduction from max-
cut, sparsest vector, etc.).

Many applications...



Application 1: Quadratic optimization

 Boolean quadratic minimization (e.g., max-cut)

min 2! Qu
r;€{—1,1}"

e Relax using the substitution X := xx':

min Ir QX
X0, X;;=1

e |f solution X has rank 1, then we solved the
original problem!
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Application 2: Sum of squares
r 2
P(X) =D _a/ (x)
1=1

e Number of squares equal to the rank of the Gram matrix

e How to compute a SOS representation with the minimum
number of squares?

e Rank minimization with SDP constraints
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Application 3: Video inpainting

(Ding-Sznaier-Camps, ICCV 07) .
e Given video frames with missing portions

e Reconstruct / interpolate the missing data
a’ ? ?

C L — h"‘pﬁ
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e “Simple” dynamics <-> Low rank (multi) Hankel



Application 3: Video inpainting (cont)

(Ding-Sznaier-Camps, ICCV 07)



Application 3: Video inpainting (cont)

e (Ding-Sznaier-Camps, ICCV 07)
I





Overview

Rank optimization is ubiquitous in
optimization, communications, and
control. Difficult, even under linear
constraints.

e Applications, formulation

e What is the underlying geometry?
e Convex hulls of varieties
e Geometry and nuclear norm (1)

e Sparsity + Rank ﬁ

.- Rank r
||||| matrices




Rank minimization

PROBLEM: Find the matrix of smallest rank that
satisfies the underdetermined linear system:

AX)=b  A:R™™ R

e Given an affine subspace of matrices, find one
of lowest rank
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What does a rank constraint look like?

Rank can be complicated...
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How to solve this?

Many methods have been proposed (after all, it’s an NLP!)

e Newton-like local methods
e Manifold optimization

e Alternating projections

e Augmented Lagrangian

e Etc...

Sometimes (often?) work very well.
But, very hard to prove results on global performance.
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Geometry of rank varieties

What is the structure of the set of matrices of fixed rank?
P(k) = {M € R™*"™ | rank(M) < k}.

An algebraic variety defined by the vanishing of all (k+1)?
(k+1) minors of M.

Its dimension is k x (2n-k), and is nonsingular, except on
those matrices of rank less than or equal to k-1.

At smooth points M = UXV' well-defined tangent space:

T(M)
m T = {UXT +¥YVT | X, ¥ e PEF]

Illil— Rank K matrices
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Nuclear norm

e Sum of the singular values of a matrix

X1 := ) 0i(X),  6(X) ==/ M(XTX)
i=1
e Unitarily invariant  [[UXV||. = ||X]].

e Also known as Schatten 1-norm, Ky-Fan r-norm,
trace norm, etc...
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Why is the nuclear norm relevant?

e Bad nonconvex problem -> Convexify!

e Nuclear norm is “best” convex approximation of
rank

rank nuclear norm
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Comparison with sparsity

Consider sparsity minimization
e Geometric interpretation

e Take “sparsity 1” variety
e |ntersect with unit ball
e Take convex hull

L1 ball! (crosspolytope)
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Nuclear norm

e Same ideal

e Take “rank 1” variety
e |Intersect with unit ball
e Take convex hull

conv{uv’ 1 u € R", v e R™ |ju|| =1,|]v|| = 1}

Nuclear ball!
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Convex hulls of algebraic varieties

e Systematic methods to produce (exact
or approximate) SDP representations
of convex hulls

e Based on sums of squares (Shor, Nesterov, Lasserre, P.,
Nie, Helton)

e Parallels/generalizations from combinatorial
optimization (theta bodies, e.g., Gouveia-Laurent-P.-
Thomas 09, orbitopes Sanyal-Sottile-Sturmfels) /7




Nuclear norm and SDP

e The nuclear norm is SDP-representable!

X[ =) oi(X).
=1

e Semidefinite programming characterization:

max Tr(X'Y) min
Y W1,Wa

1
2
Ly Y Wy X
y ~ 0.
S.t [ v I, ] 0 s.t. [ X W ] g 1
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A convex heuristic

e PROBLEM: Find the matrix of lowest rank that
satisfies the underdetermined linear system

AX)=b  A:R™™ RP

e Convex optimization heuristic
— Minimize nuclear norm (sum of singular values) of X
— This is a convex function of the matrix X
— Equivalent to a SDP problem

minimize || X|. = >, 0:(X)
subject to A(X) =10
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Nuclear norm heuristic

Affine Rank Minimization: Relaxation:
minimize  rank(X) minimize || X[, = >0, 0;
subject to A(X) =0 subject to  A(X) =10

Proposed in Maryam Fazel’s PhD thesis (2002).
Nuclear norm is the convex envelope of rank
Convex, can be solved efficiently

Seems to work well in practice

(X)
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Nice, but will it work?

Affine Rank Minimization:

minimize  rank(X)

subject to A(X) =10

Let’s see...

Relaxation:
minimize || X||. =)
subject to A(X) =10

m .
i=1 91

(X)
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Numerical experiments

e Test matrix arbitrarily chosen ;)
I I I !

e Rank 5 matrix, 46x81 pixels

e Generate random equations, Gaussian coeffs.
e Nuclear norm minimization via SDP (SeDuMi)



Phase transition
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How to explain this?

Apparently, under certain conditions, nuclear
norm minimization “works”.

How to formalize this?
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How to prove that relaxation will work?

Affine Rank Minimization: Relaxation:
minimize  rank(X) minimize || X||s =Y, 0i(X)
subject to A(X) =1b subject to A(X) =1b

General recipe:

Find a deterministic condition that ensures success
Sometimes, condition may be hard to check

If so, invoke randomness of problem data, to show
condition holds with high probability (concentration of
measure)

Generalizes L1 “compressed sensing” results (Donoho,
Candes-Tao, etc...)
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Compressed sensing - Overview

{Compressed|compressive{sensing|sampling}
New paradigm for data acquisition/estimation

Influential recent work of Donoho/Tanner,
Candés/Romberg/Tao, Baraniuk,...

Relies on sparsity (on some domain, e.g., Fourier, wavelet,
etc)

“Few” random measurements + smart decoding
Many applications, particularly MRI, geophysics, radar, etc.
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Nice, but will it work?

Affine Rank Minimization: Relaxation:
minimize  rank(X) minimize || X||s =Y, 0i(X)
subject to A(X) =1b subject to A(X) =1b

e Use a “restricted isometry property” (RIP)
e Then, this heuristic provably works.

e For “random” operators, RIP holds with overwhelming
probability
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Restricted Isometry Property (RIP)

Let RMX" X RP be alinear map. For every positive
integer r < m, define the r-restricted isometry constant
to be the smallest number o,( ) such that

(1= 6, (ANIX|F < A< (1 +8.(A)|I X r
holds for all matrices X of rank at most r.

Similar to RIP condition for sparsity studied by Candes
and Tao (2004).

Implies “transverse intersection” betwen Ker (and

the low rank variety

Y
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Nuclear norm works!

Theorem (Recht-Fazel-P.): If  is “random” and
P> ¢, r(2n-r) log(n?), the nu\z’fear norm heuristic
succeeds with high probability.

e Number of measurements c, r(2n-r) log(n?)

PN N

constant intrinsic ambient
dimension dimension

e Typical scaling for this type of result.

e Extensions (e.g., matrix completion: Candes-Recht,
Candes-Tao, Keshavan-Montanari-Oh, etc.)
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Experiment 2

e For a triple (n,r,p), generate random n x n
matrix Y of rank r and create p Gaussian random
measurements

e For each instance, we solved the SDP

min x | X ||
s.t. A(X) =A(Y)

e Amatrix Y is “recovered” if the output of
SeDuMi, X, satisfied | |X-Y||,/| Y] |, < le-5.
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“Normalized”
dimension of
the rank r variety

ri2n-ri'p

Phase transition

Perfect
recovery B

Fraction of measurements
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The “neighborly” intuition

(Donoho, Tanner) /:

Behavior of neighborly polytopes under R
“random” projections I

. RP
Fact: All (or “most”) faces remain extremal

For nuclear norm, similar situation, but more
complicated (faces are not polyhedral)
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Secant varieties

What is common to the two cases? Can this be further extended?
A natural notion: secant varieties

Generalize notions of rank to other objects (e.g., tensors,
nonnegative matrices, etc.)

However, technical difficulties
— In general, these varieties may not be closed
— In general, associated norms are not polytime computable
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What if sparsity pattern is not known?

+ K

N B

|
—
[
m
| |
=

B
H EN EEEm

Given Unknown Sparse Matrix Unknown Low-rank Matrix
Composite
matrix Unknown support, values Unknown rank, eigenvectors

Task: given C, recover A* and B*

36



Application: Graphical models

1

L3
L2

A probabilistic model given by a graph.
LN

e Then, the inverse covariance 21 is sparse.

No longer true if graphical model has hidden variables.

But, it is the sum of a sparse 3
and a low-rank matrix (Schur complement)

TN

it

K, = Egl = K, — Ko,hKleKh,o-
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Application: Matrix rigidity

Smallest number of changes to reduce rank [Valiant 77]
Rigidity of a matrix NP-hard to compute

Rigidity bounds have a number of applications
— Complexity of linear transforms [Valiant 77]
— Communication complexity [Lokam 95]
— Cryptography

Mir 3



Identifiability issues

Problem can be ill-posed. Need to ensure that terms cannot be
simultaneously sparse and low-rank.

Bad oo Benign e e = .

Define two geometric quantities, related to tangent spaces to
sparse and low-rank varieties:

||.S]] 1|S]]oo
‘M) = max —— po(M) = max ——
Nl( ) SEQ(M)HSHOO SeT (M) ||;S;|A|4)
: m
Q(M)
= - Rank r
|||II 1S]lo0 < 1

maitrices
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“Benign” Sparse Matrices

For matrix decomposition, not all sparse matrices are equally benign.

LM WU e N e “ F_- |

r - @ @ o =

Bad Benign

Sparsity pattern matters, not just the number of non-zeros...
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Measure of Sparsity Pattern

Given matrix M, define

S|| «<——— Spectral norm
p1(M)= max ..|L..|| P
Se2(M) ||9]]co

M Small uq1 < sparse and benign
®
Concrete example -- “Bounded degree”
/ 0/ matrices have small [l 1
(M)
1S5[0 <1
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“Benign” Low-rank Matrices

Similarly, not all low-rank matrices equally benign...

I
| =R Haf L om
= N
x |
.
o
N
N | \H‘
Benign Bad
Row and column spaces “concentrated” row and column
=diffuse” w.r.t standard basis spaces
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Measure of Row/Column Spaces

Given matrix M, define

7

PN (., RowSpace(S) C RowSpace(M) or |
T'(M) = span<S: " o N G >
L Colopace(S5) C Colopace( M ) J
S
pa(M) = max 121l
T(M) seT(M) |[S]]
m Small us < low-rank and benign
Concrete example -- Low-rank matrices
Rank r with “incoherent” row/column spaces (w.r.t.
matrices standard basis) have small /{2
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Tangent space identifiability

Necessary and sufficient condition for exact decomposition
Tangent spaces must intersect transversally

Q(A*) N T(B*) = {0}

Sufficient condition for transverse intersection

p1(A%)p(B) <1 = QA")NT(B") = {0}
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Natural convex relaxation

14llo > [JAllL = ) layl
¥,]
rank(B) = [le(B)llo > ||Bllx = ) oy(B)
i
Propose:

(A, B) = argmin || A|1 + || B
A,B Convex program (in fact, an SDP)

st. A+ B=C
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Matrix decomposition

Theorem (CSPWO09): For any A* and B*

*

( A*Y 1~ ( B*
p1lAa \ D

p2 < % = (A, B) = (A*, B*) is unique
optimum of convex program for

arange of 7y

h )
J J

Essentially a refinement of tangent space transversality conditions

Transverse intersection: p1(A*)p2(B*) < 1

Convex recovery: w1 (AN us(B*) < %

Under “natural” random assumptions, conditions holds w.h.p.

Illi(ls.ee also Candes-Li-Ma-Wright, Dec. 2009). 2



Summary

e Sparsity, rank, and beyond
— Many applications
— Common geometric formulation: secant varieties
— Convex hulls of these varieties give “good” proxies for
optimization
— Algebraic and geometric aspects

e Theoretical challenges
— Efficient descriptions
— Approximate recovery (correct rank and sparsity)
— Other formulations (e.g., Ames-Vavasis on planted cliques)
— Finite fields?

e Algorithmic issues
— Reliable, large scale methods
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Thank you!

Want to know more? Details below, and in references therein:

e B. Recht, M. Fazel, P.A. Parrilo, Guaranteed Minimum-Rank
Solutions of Linear Matrix Equations via Nuclear Norm
Minimization, arXiv:0706.4138. SIAM Review, to appear.

e V. Chandrasekaran, S. Sanghavi, P.A. Parrilo, A. Willsky, Rank-
Sparsity Incoherence for Matrix Decomposition,
arXiv:0906.2220, 2009.

Um Thanks for your attention!
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