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Introduction: Convex Optimization

A convex optimization problem is the following:

Given a convex set

S ⊆ Rn

and an (affine) linear function

` : Rn → R

find the infimum/supremum that ` takes on S , and possibly a set of
points where an optimum is attained.
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Question:
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Introduction: Spectrahedra

Let A0, . . . ,An ∈ Symk(R) be real symmetric matrices. For x ∈ Rn

write
A(x) = A0 + x1A1 + · · ·+ xnAn︸ ︷︷ ︸

a linear matrix polynomial

Then

S := {x ∈ Rn | A0 + x1A1 + · · · xnAn � 0︸ ︷︷ ︸
a linear matrix inequality

}

is called a spectrahedron.
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Introduction: Spectrahedra

Which sets are spectrahedra?

Properties of spectrahedra/necessary conditions:
I Spectrahedra are convex:

A(λx + (1− λ)y) = λA(x) + (1− λ)A(y).

I Spectrahedra are basic closed semi-algebraic, i.e. defined by
finitely many simultaneous polynomial inequalities:

S = {x ∈ Rn | p1(x) ≥ 0, . . . , pm(x) ≥ 0},

where the pi (x) are for example the principal minors of A(x).
I Spectrahedra have only exposed faces.
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I Spectrahedra are rigidly convex:

Assume without loss of generality

A(x) = I + x1A1 + · · · xnAn.

Then
p(x) := det(A(x)) ∈ R[x ]

has the following properties:

p(0) > 0

if p(λ · x) = 0 for some x ∈ Rn, then λ ∈ R.

This follows from the fact that real symmetric matrices have only
real Eigenvalues.
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The ellipsoid around zero defined by such a zero set is called a rigidly
convex set:

x1

x2

Theorem (Helton & Vinnikov, 2006)
Every spectrahedron is rigidly convex. Every rigidly convex set in R2 is
a spectrahedron.
This solves the Lax-Conjecture, as observed by Lewis, Parrilo &
Ramana.



Introduction: Spectrahedra

The ellipsoid around zero defined by such a zero set is called a rigidly
convex set:

x1

x2

Theorem (Helton & Vinnikov, 2006)
Every spectrahedron is rigidly convex. Every rigidly convex set in R2 is
a spectrahedron.
This solves the Lax-Conjecture, as observed by Lewis, Parrilo &
Ramana.



Introduction: Spectrahedra

The ellipsoid around zero defined by such a zero set is called a rigidly
convex set:

x1

x2

Theorem (Helton & Vinnikov, 2006)
Every spectrahedron is rigidly convex. Every rigidly convex set in R2 is
a spectrahedron.

This solves the Lax-Conjecture, as observed by Lewis, Parrilo &
Ramana.



Introduction: Spectrahedra

The ellipsoid around zero defined by such a zero set is called a rigidly
convex set:

x1

x2

Theorem (Helton & Vinnikov, 2006)
Every spectrahedron is rigidly convex. Every rigidly convex set in R2 is
a spectrahedron.
This solves the Lax-Conjecture, as observed by Lewis, Parrilo &
Ramana.



Introduction: Spectrahedra
1. Example:

p = x3
1 − x2

1 − x1 − x2
2 + 1 is an RZ polynomial.

So this is a spectrahedron:

2. Example: p = 1− x4
1 − x4

2 is not an RZ polynomial.
So this is not a spectrahedron:
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S̃ ⊆ Rm a spectrahedron
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After some turning, shifting and scaling we can assume that L is a
projection:

L : Rn × Rm → Rn (x , y) 7→ x .

Then S takes the following form:

S = {x ∈ Rn | ∃y ∈ Rm A(x , y) � 0} ,

where

A(x , y) = A0 + x1A1 + · · ·+ xnAn + y1B1 + · · ·+ ymBm

is a linear matrix polynomial.
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Which sets are sdr?

Properties of sdr sets/necessary conditions:
I Sdr sets are convex.
I Sdr sets are semi-algebraic, i.e. finite boolean combinations of sets

of the form

{x ∈ Rn | p(x) ≥ 0}, where p ∈ R[x ].

This follows from quantifier elimination in the theory of real
closed fields.

I No other necessary conditions are known! In particular, sdr sets
are not closed or even basic closed semi-algebraic in general. They
can also have non-exposed faces.
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are not closed or even basic closed semi-algebraic in general. They
can also have non-exposed faces.
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Introduction: Semidefinitely Representable Sets

Question/Conjecture (Nemirovski, Helton & Nie):

Is every convex semi-algebraic set semidefinitely representable?



Constructions



Constructions I: A First List

I Intersections, Minkowski sums and direct products of sdr sets are
sdr.

I Faces of sdr sets are sdr.
I Duals and polars of sdr sets are sdr.
I The closure of an sdr set is sdr.
I The conic hull of an sdr set is sdr.
I The convex hull of a finite union of sdr sets is sdr.
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Constructions II: The Lasserre-Parrilo Method

Let
R[x ]1 = {p ∈ R[x ] | deg(p) ≤ 1}

denote the space of affine linear polynomials in n variables.

This is a finite dimensional space. So assume that

M ⊆ R[x ]1

is an sdr set. Now consider

S = {x ∈ Rn | `(x) ≥ 0 for all ` ∈ M}.

S is the intersection of the dual cone of M with a hyperplane, and thus
an sdr set.
This observation gives us a method to construct sdr sets!
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Constructions II: The Lasserre-Parrilo Method

Sdr sets in R[x ]1:

For p1, . . . , pm ∈ R[x ] and d ∈ N define

QM(p)d =
{
σ0 + σ1p1 + · · ·+ σmpm | σi ∈

∑
R[x ]2, deg(σi ) ≤ 2d

}
.

I Each QM(p)d lives in a finite dimensional subspace of R[x ]

I Each QM(p)d is semidefinitely representable:

QM(p)d is the image of some RN under a quadratic map,
parametrizing the coefficients of the σi .
Ramana and Goldman (1995) have proven that such sets are sdr.

I So L(p)d := QM(p)d ∩ R[x ]1 is a semidefinitely representable
subset of R[x ]1.
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Constructions II: The Lasserre-Parrilo Method
Recall:

L(p)d = {` ∈ R[x ]1 | ` =σ0 + σ1p1 + · · ·+ σmpm

with σi ∈
∑

R[x ]2, deg(σi ) ≤ 2d}.

Thus
S(p)d = {x ∈ Rn | `(x) ≥ 0 for all ` ∈ L(p)d}

is semidefinitely representable.

Theorem (Lasserre, 2009)
Let S = {x ∈ Rn | p1(x) ≥ 0, . . . , pm(x) ≥ 0}. Then

conv(S) ⊆ S(p)d+1 ⊆ S(p)d for all d ∈ N.

If there is some d ∈ N such that every ` ∈ R[x ]1 that is nonnegative on
S belongs to QM(p)d then conv(S) is semidefinitely representable.



Constructions II: The Lasserre-Parrilo Method
Recall:

L(p)d = {` ∈ R[x ]1 | ` =σ0 + σ1p1 + · · ·+ σmpm

with σi ∈
∑

R[x ]2, deg(σi ) ≤ 2d}.

Thus
S(p)d = {x ∈ Rn | `(x) ≥ 0 for all ` ∈ L(p)d}

is semidefinitely representable.

Theorem (Lasserre, 2009)
Let S = {x ∈ Rn | p1(x) ≥ 0, . . . , pm(x) ≥ 0}. Then

conv(S) ⊆ S(p)d+1 ⊆ S(p)d for all d ∈ N.

If there is some d ∈ N such that every ` ∈ R[x ]1 that is nonnegative on
S belongs to QM(p)d then conv(S) is semidefinitely representable.



Constructions II: The Lasserre-Parrilo Method
Recall:

L(p)d = {` ∈ R[x ]1 | ` =σ0 + σ1p1 + · · ·+ σmpm

with σi ∈
∑

R[x ]2, deg(σi ) ≤ 2d}.

Thus
S(p)d = {x ∈ Rn | `(x) ≥ 0 for all ` ∈ L(p)d}

is semidefinitely representable.

Theorem (Lasserre, 2009)
Let S = {x ∈ Rn | p1(x) ≥ 0, . . . , pm(x) ≥ 0}.

Then

conv(S) ⊆ S(p)d+1 ⊆ S(p)d for all d ∈ N.

If there is some d ∈ N such that every ` ∈ R[x ]1 that is nonnegative on
S belongs to QM(p)d then conv(S) is semidefinitely representable.



Constructions II: The Lasserre-Parrilo Method
Recall:

L(p)d = {` ∈ R[x ]1 | ` =σ0 + σ1p1 + · · ·+ σmpm

with σi ∈
∑

R[x ]2, deg(σi ) ≤ 2d}.

Thus
S(p)d = {x ∈ Rn | `(x) ≥ 0 for all ` ∈ L(p)d}

is semidefinitely representable.

Theorem (Lasserre, 2009)
Let S = {x ∈ Rn | p1(x) ≥ 0, . . . , pm(x) ≥ 0}. Then

conv(S) ⊆ S(p)d+1 ⊆ S(p)d for all d ∈ N.

If there is some d ∈ N such that every ` ∈ R[x ]1 that is nonnegative on
S belongs to QM(p)d then conv(S) is semidefinitely representable.



Constructions II: The Lasserre-Parrilo Method
Recall:

L(p)d = {` ∈ R[x ]1 | ` =σ0 + σ1p1 + · · ·+ σmpm

with σi ∈
∑

R[x ]2, deg(σi ) ≤ 2d}.

Thus
S(p)d = {x ∈ Rn | `(x) ≥ 0 for all ` ∈ L(p)d}

is semidefinitely representable.

Theorem (Lasserre, 2009)
Let S = {x ∈ Rn | p1(x) ≥ 0, . . . , pm(x) ≥ 0}. Then

conv(S) ⊆ S(p)d+1 ⊆ S(p)d for all d ∈ N.

If there is some d ∈ N such that every ` ∈ R[x ]1 that is nonnegative on
S belongs to QM(p)d then conv(S) is semidefinitely representable.



Constructions II: The Lasserre-Parrilo Method

Example:

S = {(x1, x2) ∈ R2 | x4
1 + x4

2 ≤ 1} :

Let a ∈ [−1, 1] and (a, 4
√
1− a4) be the corresponding point on the

boundary of S . A linear polynomial nonnegative on S and zero at this
point is a positive multiple of

`a = 1− a3x1 − ( 4
√
1− a4)3x2.

One checks that `a − (1− x4
1 − x4

2 ) is globally nonnegative, and thus a
sums of squares, since it has degree four and only two variables.
So `a ∈ QM(1− x4

1 − x4
2 )2, and S is thus sdr.
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Interlude: An Interesting Quadratic Module

Recall:

S = {x ∈ Rn | p1(x) ≥ 0, . . . , pm(x) ≥ 0},

QM(p)d =
{
σ0 + σ1p1 + · · ·+ σmpm | σi ∈

∑
R[x ]2, deg(σi ) ≤ 2d

}
.

We have seen:

If S is convex and QM(p)d contains every linear polynomial that is
nonnegative on S , then S is sdr.

What about the converse?

It is not true in general (see D. Plaumanns talk).

But the converse is true in a more general context!
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It is not true in general (see D. Plaumanns talk).
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Interlude: An Interesting Quadratic Module

Let S be semidefinitely representable,

so

S = {x ∈ Rn | ∃y : A0 + x1A1 + · · ·+ xnAn + y1B1 + · · ·+ ymBm � 0},

with k × k symmetric matrices Ai ,Bi . Write

A(x) = A0 + x1A1 + · · ·+ xnAn.

Now let q(j) = (q(j)
1 , . . . , q(j)

k ) be k-tuples of polynomials, i.e.
q(j)
i ∈ R[x ]. The polynomial∑

j q
(j)A(x)q(j)t ∈ R[x ]

is nonnegativ on S , as long as
∑

j q
(j)Biq(j)t = 0 for all i = 1, . . . ,m.

So let QM(A) be the quadratic module generated by these polynomials.



Interlude: An Interesting Quadratic Module

Let S be semidefinitely representable, so

S = {x ∈ Rn | ∃y : A0 + x1A1 + · · ·+ xnAn + y1B1 + · · ·+ ymBm � 0},

with k × k symmetric matrices Ai ,Bi . Write

A(x) = A0 + x1A1 + · · ·+ xnAn.

Now let q(j) = (q(j)
1 , . . . , q(j)

k ) be k-tuples of polynomials, i.e.
q(j)
i ∈ R[x ]. The polynomial∑

j q
(j)A(x)q(j)t ∈ R[x ]

is nonnegativ on S , as long as
∑

j q
(j)Biq(j)t = 0 for all i = 1, . . . ,m.

So let QM(A) be the quadratic module generated by these polynomials.



Interlude: An Interesting Quadratic Module

Let S be semidefinitely representable, so

S = {x ∈ Rn | ∃y : A0 + x1A1 + · · ·+ xnAn + y1B1 + · · ·+ ymBm � 0},

with k × k symmetric matrices Ai ,Bi .

Write

A(x) = A0 + x1A1 + · · ·+ xnAn.

Now let q(j) = (q(j)
1 , . . . , q(j)

k ) be k-tuples of polynomials, i.e.
q(j)
i ∈ R[x ]. The polynomial∑

j q
(j)A(x)q(j)t ∈ R[x ]

is nonnegativ on S , as long as
∑

j q
(j)Biq(j)t = 0 for all i = 1, . . . ,m.

So let QM(A) be the quadratic module generated by these polynomials.



Interlude: An Interesting Quadratic Module

Let S be semidefinitely representable, so

S = {x ∈ Rn | ∃y : A0 + x1A1 + · · ·+ xnAn + y1B1 + · · ·+ ymBm � 0},

with k × k symmetric matrices Ai ,Bi . Write

A(x) = A0 + x1A1 + · · ·+ xnAn.

Now let q(j) = (q(j)
1 , . . . , q(j)

k ) be k-tuples of polynomials, i.e.
q(j)
i ∈ R[x ]. The polynomial∑

j q
(j)A(x)q(j)t ∈ R[x ]

is nonnegativ on S , as long as
∑

j q
(j)Biq(j)t = 0 for all i = 1, . . . ,m.

So let QM(A) be the quadratic module generated by these polynomials.



Interlude: An Interesting Quadratic Module

Let S be semidefinitely representable, so

S = {x ∈ Rn | ∃y : A0 + x1A1 + · · ·+ xnAn + y1B1 + · · ·+ ymBm � 0},

with k × k symmetric matrices Ai ,Bi . Write

A(x) = A0 + x1A1 + · · ·+ xnAn.

Now let q(j) = (q(j)
1 , . . . , q(j)

k ) be k-tuples of polynomials, i.e.
q(j)
i ∈ R[x ].

The polynomial∑
j q

(j)A(x)q(j)t ∈ R[x ]

is nonnegativ on S , as long as
∑

j q
(j)Biq(j)t = 0 for all i = 1, . . . ,m.

So let QM(A) be the quadratic module generated by these polynomials.



Interlude: An Interesting Quadratic Module

Let S be semidefinitely representable, so

S = {x ∈ Rn | ∃y : A0 + x1A1 + · · ·+ xnAn + y1B1 + · · ·+ ymBm � 0},

with k × k symmetric matrices Ai ,Bi . Write

A(x) = A0 + x1A1 + · · ·+ xnAn.

Now let q(j) = (q(j)
1 , . . . , q(j)

k ) be k-tuples of polynomials, i.e.
q(j)
i ∈ R[x ]. The polynomial∑

j q
(j)A(x)q(j)t ∈ R[x ]

is nonnegativ on S , as long as
∑

j q
(j)Biq(j)t = 0 for all i = 1, . . . ,m.

So let QM(A) be the quadratic module generated by these polynomials.



Interlude: An Interesting Quadratic Module

Let S be semidefinitely representable, so

S = {x ∈ Rn | ∃y : A0 + x1A1 + · · ·+ xnAn + y1B1 + · · ·+ ymBm � 0},

with k × k symmetric matrices Ai ,Bi . Write

A(x) = A0 + x1A1 + · · ·+ xnAn.

Now let q(j) = (q(j)
1 , . . . , q(j)

k ) be k-tuples of polynomials, i.e.
q(j)
i ∈ R[x ]. The polynomial∑

j q
(j)A(x)q(j)t ∈ R[x ]

is nonnegativ on S , as long as
∑

j q
(j)Biq(j)t = 0 for all i = 1, . . . ,m.

So let QM(A) be the quadratic module generated by these polynomials.



Interlude: An Interesting Quadratic Module

Formally:

QM(A) = {
∑

j

q(j)A(x)q(j) + σ | q(j) ∈ R[x ]k ,
∑

j

q(j)Biq(j)t = 0 for all i ,

σ ∈
∑

R[x ]2}

Properties of QM(A):
I QM(A) contains only polynomials that are nonnegative on S .
I S = {x ∈ Rn | p(x) ≥ 0 for all p ∈ QM(A)}.
I So QM(A) is not finitely generated in general (but also not too

"wild").
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I Whenever some linear polynomial ` is nonnegative on S ,

then

` =
∑

j

q(j)A(x)q(j)t + σ,

with q(j) ∈ Rk ,
∑

j q
(j)Biq(j)t = 0 for all i , σ ∈ R≥0.

So QM(A) contains every nonnegative linear polynomial with
"degree bound" 0!

I Whenever S is bounded, then QM(A) is Archimedean, and thus
contains every polynomial p with p ≥ ε on S for some ε > 0.
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Interlude: An Interesting Quadratic Module

Example:

S = {(x1, x2) ∈ R2 | ∃y ∈ [−1, 1] : (x1 − y)2 + x2
2 ≤ 1} :

The corresponding spectrahedron in R3 is defined by the linear matrix
polynomial(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
+ x1

(
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

)
+ x2

( 1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

)
+ y

( 0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 −1

)
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Example: S = {(x1, x2) ∈ R2 | ∃y ∈ [−1, 1] : (x1 − y)2 + x2
2 ≤ 1} :

So every polynomial that is strictly positive on S is a sum of squares
plus a polynomial of the following form:

∑
j

q(j)2
1 + q(j)2

2 + q(j)2
3 + q(j)2

4 + x1(q
(j)2
3 − q(j)2

4 ) + x2(q
(j)2
1 − q(j)2

2 ),

where q(j)
i ∈ R[x1, x2] with

∑
j 2q

(j)
1 q(j)

2 − q(j)2
3 − q(j)2

4 = 0.
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Constructions II: The Results of Helton & Nie

Using the above constructions and the result about convex hulls,
Helton & Nie (2009/2010) prove several results.

Again let
S = {x ∈ Rn | p1(x) ≥ 0, . . . , pm(x) ≥ 0}

be basic closed semialgebraic. Further assume that S is compact,
convex and has nonempty interior.

Theorem (Helton & Nie)
If for each pi , the negative Hessian matrix is either a sum of squares of
polynomial matrices, or positive definite on the tangent space of pi at
each point of S, then S is semidefinitely representable.
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Let S ⊆ Rn be the rational image of a smooth elliptic curve with at
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Both results use representations of nonnegative polynomials as sums of
squares, together with degree bounds (Kuhlmann, Marshall &
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Almost all of the results so far concern closed convex sets.

What about non-closed sets?

Let S ⊆ Rn be convex. A face of S is a convex subset F ⊆ S with:

whenever x , y ∈ S , λ ∈ (0, 1) and λx + (1− λ)y ∈ F , then x , y ∈ F .

Observation: Each convex set S is the disjoint union of the relative
interiors of its faces:
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Proof of the Theorem.
The case when S is sdr but not a spectrahedron can then be reduced to
the above case.
Note: The proof gives an explicit construction of a spectrahedron
projecting to T " S . One can for example see that rational
coefficients in the representations of T and S are preserved.
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Thank you for your attention!


