Spectrahedra and their Projections

Tim Netzer

Universität Leipzig, Germany
Convex Algebraic Geometry Banff International Research Station

February 14-19, 2010

Introduction

Introduction: Convex Optimization

Introduction: Convex Optimization

A convex optimization problem is the following:

Introduction: Convex Optimization

A convex optimization problem is the following:
Given a convex set

$$
S \subseteq \mathbb{R}^{n}
$$

and an (affine) linear function

$$
\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Introduction: Convex Optimization

A convex optimization problem is the following:
Given a convex set

$$
S \subseteq \mathbb{R}^{n}
$$

and an (affine) linear function

$$
\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

find the infimum/supremum that ℓ takes on S, and possibly a set of points where an optimum is attained.

Introduction: Convex Optimization

Question:
How can one compute the solutions to such a problem?

Introduction: Convex Optimization

Question:
How can one compute the solutions to such a problem?
Answer:
For certain kinds of sets, there exist numerical algorithms!

Introduction: Convex Optimization

Question:
How can one compute the solutions to such a problem?
Answer:
For certain kinds of sets, there exist (efficient) numerical algorithms!

Introduction: Convex Optimization

Question:

How can one compute the solutions to such a problem?

Answer:
For certain kinds of sets, there exist (efficient) numerical algorithms!

Such sets are:

Introduction: Convex Optimization

Question:

How can one compute the solutions to such a problem?
Answer:
For certain kinds of sets, there exist (efficient) numerical algorithms!

Such sets are:

- Polyhedra (sets defined by finitely many linear inequalities)

Introduction: Convex Optimization

Question:
How can one compute the solutions to such a problem?
Answer:
For certain kinds of sets, there exist (efficient) numerical algorithms!

Such sets are:

- Polyhedra (sets defined by finitely many linear inequalities)
- Spectrahedra (sets defined by linear matrix inequalities)

Introduction: Convex Optimization

Question:

How can one compute the solutions to such a problem?
Answer:
For certain kinds of sets, there exist (efficient) numerical algorithms!

Such sets are:

- Polyhedra (sets defined by finitely many linear inequalities)
- Spectrahedra (sets defined by linear matrix inequalities)
- Projections of spectrahedra

Introduction: Convex Optimization

Question:
How can one compute the solutions to such a problem?
Answer:
For certain kinds of sets, there exist (efficient) numerical algorithms!

Such sets are:

- Polyhedra (sets defined by finitely many linear inequalities)
- Spectrahedra (sets defined by linear matrix inequalities)
- Projections of spectrahedra

My talk will be about these kinds of sets.

Introduction: Spectrahedra

Introduction: Spectrahedra

Let $A_{0}, \ldots, A_{n} \in \operatorname{Sym}_{k}(\mathbb{R})$ be real symmetric matrices. For $x \in \mathbb{R}^{n}$ write

$$
A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

Introduction: Spectrahedra

Let $A_{0}, \ldots, A_{n} \in \operatorname{Sym}_{k}(\mathbb{R})$ be real symmetric matrices. For $x \in \mathbb{R}^{n}$ write

$$
A(x)=\underbrace{A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}}_{\text {a linear matrix polynomial }}
$$

Introduction: Spectrahedra

Let $A_{0}, \ldots, A_{n} \in \operatorname{Sym}_{k}(\mathbb{R})$ be real symmetric matrices. For $x \in \mathbb{R}^{n}$ write

$$
A(x)=\underbrace{A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}}_{\text {a linear matrix polynomial }}
$$

Then

$$
S:=\left\{x \in \mathbb{R}^{n} \mid A(x) \text { is positive semidefinite }\right\}
$$

is called a spectrahedron.

Introduction: Spectrahedra

Let $A_{0}, \ldots, A_{n} \in \operatorname{Sym}_{k}(\mathbb{R})$ be real symmetric matrices. For $x \in \mathbb{R}^{n}$ write

$$
A(x)=\underbrace{A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}}_{\text {a linear matrix polynomial }}
$$

Then

$$
S:=\{x \in \mathbb{R}^{n} \mid \underbrace{A_{0}+x_{1} A_{1}+\cdots x_{n} A_{n} \succeq 0}_{\text {a linear matrix inequality }}\}
$$

is called a spectrahedron.

Introduction: Spectrahedra

Examples:

Introduction: Spectrahedra

Examples:

- If all matrices A_{i} are diagonal, then for all $x \in \mathbb{R}^{n}$

$$
A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

is a diagonal matrix.

Introduction: Spectrahedra

Examples:

- If all matrices A_{i} are diagonal, then for all $x \in \mathbb{R}^{n}$

$$
A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

is a diagonal matrix.
$\Rightarrow S$ is just a polyhedron.

Introduction: Spectrahedra

Examples:

- If all matrices A_{i} are diagonal, then for all $x \in \mathbb{R}^{n}$

$$
A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

is a diagonal matrix.
$\Rightarrow S$ is just a polyhedron.

- Take

$$
A_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), A_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), A_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Introduction: Spectrahedra

Examples:

- If all matrices A_{i} are diagonal, then for all $x \in \mathbb{R}^{n}$

$$
A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

is a diagonal matrix.
$\Rightarrow S$ is just a polyhedron.

- Take

$$
A_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), A_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), A_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Then

$$
A(x)=A_{0}+x_{1} A_{1}+x_{2} A_{2}=\left(\begin{array}{cc}
1+x_{1} & x_{2} \\
x_{2} & 1-x_{1}
\end{array}\right) \succeq 0
$$

if and only if $x_{1}^{2}+x_{2}^{2} \leq 1$.

Introduction: Spectrahedra

Examples:

- If all matrices A_{i} are diagonal, then for all $x \in \mathbb{R}^{n}$

$$
A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

is a diagonal matrix.
$\Rightarrow S$ is just a polyhedron.

- A spectrahedron:

Introduction: Spectrahedra

Which sets are spectrahedra?

Introduction: Spectrahedra

Which sets are spectrahedra?
Properties of spectrahedra/necessary conditions:

Introduction: Spectrahedra

Which sets are spectrahedra?
Properties of spectrahedra/necessary conditions:

- Spectrahedra are convex:

Introduction: Spectrahedra

Which sets are spectrahedra?
Properties of spectrahedra/necessary conditions:

- Spectrahedra are convex:

$$
A(\lambda x+(1-\lambda) y)=\lambda A(x)+(1-\lambda) A(y) .
$$

Introduction: Spectrahedra

Which sets are spectrahedra?
Properties of spectrahedra/necessary conditions:

- Spectrahedra are convex:

$$
A(\lambda x+(1-\lambda) y)=\lambda A(x)+(1-\lambda) A(y)
$$

- Spectrahedra are basic closed semi-algebraic, i.e. defined by finitely many simultaneous polynomial inequalities:

Introduction: Spectrahedra

Which sets are spectrahedra?

Properties of spectrahedra/necessary conditions:

- Spectrahedra are convex:

$$
A(\lambda x+(1-\lambda) y)=\lambda A(x)+(1-\lambda) A(y)
$$

- Spectrahedra are basic closed semi-algebraic, i.e. defined by finitely many simultaneous polynomial inequalities:

$$
S=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}
$$

where the $p_{i}(x)$ are for example the principal minors of $A(x)$.

Introduction: Spectrahedra

Which sets are spectrahedra?

Properties of spectrahedra/necessary conditions:

- Spectrahedra are convex:

$$
A(\lambda x+(1-\lambda) y)=\lambda A(x)+(1-\lambda) A(y)
$$

- Spectrahedra are basic closed semi-algebraic, i.e. defined by finitely many simultaneous polynomial inequalities:

$$
S=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}
$$

where the $p_{i}(x)$ are for example the principal minors of $A(x)$.

- Spectrahedra have only exposed faces.

Introduction: Spectrahedra

- Spectrahedra are rigidly convex:

Introduction: Spectrahedra

- Spectrahedra are rigidly convex: Assume without loss of generality

$$
A(x)=I+x_{1} A_{1}+\cdots x_{n} A_{n} .
$$

Introduction: Spectrahedra

- Spectrahedra are rigidly convex: Assume without loss of generality

$$
A(x)=I+x_{1} A_{1}+\cdots x_{n} A_{n} .
$$

Then

$$
p(x):=\operatorname{det}(A(x)) \in \mathbb{R}[x]
$$

has the following properties:

Introduction: Spectrahedra

- Spectrahedra are rigidly convex: Assume without loss of generality

$$
A(x)=I+x_{1} A_{1}+\cdots x_{n} A_{n} .
$$

Then

$$
p(x):=\operatorname{det}(A(x)) \in \mathbb{R}[x]
$$

has the following properties:

$$
p(0)>0
$$

Introduction: Spectrahedra

- Spectrahedra are rigidly convex: Assume without loss of generality

$$
A(x)=I+x_{1} A_{1}+\cdots x_{n} A_{n} .
$$

Then

$$
p(x):=\operatorname{det}(A(x)) \in \mathbb{R}[x]
$$

has the following properties:

$$
p(0)>0
$$

$$
\text { if } p(\lambda \cdot x)=0 \text { for some } x \in \mathbb{R}^{n},
$$

Introduction: Spectrahedra

- Spectrahedra are rigidly convex: Assume without loss of generality

$$
A(x)=I+x_{1} A_{1}+\cdots x_{n} A_{n} .
$$

Then

$$
p(x):=\operatorname{det}(A(x)) \in \mathbb{R}[x]
$$

has the following properties:

$$
p(0)>0
$$

$$
\text { if } p(\lambda \cdot x)=0 \text { for some } x \in \mathbb{R}^{n} \text {, then } \lambda \in \mathbb{R} \text {. }
$$

Introduction: Spectrahedra

- Spectrahedra are rigidly convex: Assume without loss of generality

$$
A(x)=I+x_{1} A_{1}+\cdots x_{n} A_{n} .
$$

Then

$$
p(x):=\operatorname{det}(A(x)) \in \mathbb{R}[x]
$$

has the following properties:

$$
p(0)>0
$$

$$
\text { if } p(\lambda \cdot x)=0 \text { for some } x \in \mathbb{R}^{n} \text {, then } \lambda \in \mathbb{R} \text {. }
$$

This follows from the fact that real symmetric matrices have only real Eigenvalues.

Introduction: Spectrahedra

Such polynomials are called real zero (RZ) polynomials, and their real zero sets look something like this:

Introduction: Spectrahedra

Such polynomials are called real zero (RZ) polynomials, and their real zero sets look something like this:

Degree 3:

Introduction: Spectrahedra

Such polynomials are called real zero (RZ) polynomials, and their real zero sets look something like this:

Degree 3:

Introduction: Spectrahedra

Such polynomials are called real zero (RZ) polynomials, and their real zero sets look something like this:

Degree 3:

Introduction: Spectrahedra

Such polynomials are called real zero (RZ) polynomials, and their real zero sets look something like this:

Degree 3:

Introduction: Spectrahedra

Such polynomials are called real zero (RZ) polynomials, and their real zero sets look something like this:

Degree 3:

Introduction: Spectrahedra

The ellipsoid around zero defined by such a zero set is called a rigidly convex set:

Introduction: Spectrahedra

The ellipsoid around zero defined by such a zero set is called a rigidly convex set:

Introduction: Spectrahedra

The ellipsoid around zero defined by such a zero set is called a rigidly convex set:

Theorem (Helton \& Vinnikov, 2006)
Every spectrahedron is rigidly convex. Every rigidly convex set in \mathbb{R}^{2} is a spectrahedron.

Introduction: Spectrahedra

The ellipsoid around zero defined by such a zero set is called a rigidly convex set:

Theorem (Helton \& Vinnikov, 2006)
Every spectrahedron is rigidly convex. Every rigidly convex set in \mathbb{R}^{2} is a spectrahedron.
This solves the Lax-Conjecture, as observed by Lewis, Parrilo \& Ramana.

Introduction: Spectrahedra

1. Example:

Introduction: Spectrahedra

1. Example: $p=x_{1}^{3}-x_{1}^{2}-x_{1}-x_{2}^{2}+1$ is an RZ polynomial.

Introduction: Spectrahedra

1. Example: $p=x_{1}^{3}-x_{1}^{2}-x_{1}-x_{2}^{2}+1$ is an RZ polynomial. So this is a spectrahedron:

Introduction: Spectrahedra

1. Example: $p=x_{1}^{3}-x_{1}^{2}-x_{1}-x_{2}^{2}+1$ is an RZ polynomial. So this is a spectrahedron:

2. Example: $p=1-x_{1}^{4}-x_{2}^{4}$ is not an RZ polynomial.

Introduction: Spectrahedra

1. Example: $p=x_{1}^{3}-x_{1}^{2}-x_{1}-x_{2}^{2}+1$ is an RZ polynomial. So this is a spectrahedron:

2. Example: $p=1-x_{1}^{4}-x_{2}^{4}$ is not an RZ polynomial.

So this is not a spectrahedron:

Introduction: Semidefinitely Representable Sets

Introduction: Semidefinitely Representable Sets

A set $S \subseteq \mathbb{R}^{n}$ is called semidefinitely representable (sdr)

Introduction: Semidefinitely Representable Sets

A set $S \subseteq \mathbb{R}^{n}$ is called semidefinitely representable (sdr) if it is the linear image of a spectrahedron:

Introduction: Semidefinitely Representable Sets

A set $S \subseteq \mathbb{R}^{n}$ is called semidefinitely representable (sdr) if it is the linear image of a spectrahedron:

$$
L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \text { a linear map }
$$

Introduction: Semidefinitely Representable Sets

A set $S \subseteq \mathbb{R}^{n}$ is called semidefinitely representable (sdr) if it is the linear image of a spectrahedron:
$L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ a linear map
$\widetilde{S} \subseteq \mathbb{R}^{m}$ a spectrahedron

Introduction: Semidefinitely Representable Sets

A set $S \subseteq \mathbb{R}^{n}$ is called semidefinitely representable (sdr) if it is the linear image of a spectrahedron:

$$
\begin{aligned}
& L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \text { a linear map } \\
& \begin{array}{c}
\widetilde{S} \subseteq \mathbb{R}^{m} \text { a spectrahedron } \\
\\
\quad S=L(\widetilde{S}) \text { an sdr set }
\end{array} .
\end{aligned}
$$

Introduction: Semidefinitely Representable Sets

After some turning, shifting and scaling we can assume that L is a projection:

$$
L: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad(x, y) \mapsto x
$$

Introduction: Semidefinitely Representable Sets

After some turning, shifting and scaling we can assume that L is a projection:

$$
L: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad(x, y) \mapsto x
$$

Then S takes the following form:

Introduction: Semidefinitely Representable Sets

After some turning, shifting and scaling we can assume that L is a projection:

$$
L: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad(x, y) \mapsto x
$$

Then S takes the following form:

$$
S=\left\{x \in \mathbb{R}^{n} \mid \exists y \in \mathbb{R}^{m} A(x, y) \succeq 0\right\},
$$

Introduction: Semidefinitely Representable Sets

After some turning, shifting and scaling we can assume that L is a projection:

$$
L: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad(x, y) \mapsto x
$$

Then S takes the following form:

$$
S=\left\{x \in \mathbb{R}^{n} \mid \exists y \in \mathbb{R}^{m} A(x, y) \succeq 0\right\},
$$

where

$$
A(x, y)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A n+y_{1} B 1+\cdots+y_{m} B_{m}
$$

is a linear matrix polynomial.

Introduction: Semidefinitely Representable Sets

Examples:

Introduction: Semidefinitely Representable Sets

Examples:

- $S=\left\{x \in \mathbb{R} \left\lvert\, \exists y \in \mathbb{R}\left(\begin{array}{cc}x & 1 \\ 1 & y\end{array}\right) \succeq 0\right.\right\}$

Introduction: Semidefinitely Representable Sets

Examples:

- $S=\left\{x \in \mathbb{R} \left\lvert\, \exists y \in \mathbb{R}\left(\begin{array}{cc}x & 1 \\ 1 & y\end{array}\right) \succeq 0\right.\right\}$

Introduction: Semidefinitely Representable Sets

Examples:

- $S=\left\{x \in \mathbb{R} \left\lvert\, \exists y \in \mathbb{R}\left(\begin{array}{cc}x & 1 \\ 1 & y\end{array}\right) \succeq 0\right.\right\}$

\Downarrow

Introduction: Semidefinitely Representable Sets

Examples:

- $S=\left\{x \in \mathbb{R} \left\lvert\, \exists y \in \mathbb{R}\left(\begin{array}{cc}x & 1 \\ 1 & y\end{array}\right) \succeq 0\right.\right\}$

\Downarrow

Introduction: Semidefinitely Representable Sets

Examples:

- $S=\left\{x \in \mathbb{R} \left\lvert\, \exists y \in \mathbb{R}\left(\begin{array}{cc}x & 1 \\ 1 & y\end{array}\right) \succeq 0\right.\right\}$

\Downarrow

Introduction: Semidefinitely Representable Sets

Examples:

$$
S=\left\{x \in \mathbb{R} \left\lvert\, \exists y \in \mathbb{R}\left(\begin{array}{cc}
x & 1 \\
1 & y
\end{array}\right) \succeq 0\right.\right\}=(0, \infty)
$$

\Downarrow

Introduction: Semidefinitely Representable Sets

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}:$

Introduction: Semidefinitely Representable Sets

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}:$

Introduction: Semidefinitely Representable Sets

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}:$

$S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid \exists y_{1}, y_{2}: x_{1}^{2} \leq y_{1}, x_{2}^{2} \leq y_{2}, y_{1}^{2}+y_{2}^{2} \leq 1\right\}$

Introduction: Semidefinitely Representable Sets

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}:$

$$
S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid \exists y_{1}, y_{2}:\left(\begin{array}{cc}
y_{1} & x_{1} \\
x_{1} & 1
\end{array}\right) \succeq 0, x_{2}^{2} \leq y_{2}, y_{1}^{2}+y_{2}^{2} \leq 1\right\}
$$

Introduction: Semidefinitely Representable Sets

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}:$

$$
\begin{array}{r}
S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid \exists y_{1}, y_{2}:\left(\begin{array}{cc}
y_{1} & x_{1} \\
x_{1} & 1
\end{array}\right) \succeq 0,\left(\begin{array}{cc}
y_{2} & x_{2} \\
x_{2} & 1
\end{array}\right) \succeq 0,\right. \\
\left.y_{1}^{2}+y_{2}^{2} \leq 1\right\}
\end{array}
$$

Introduction: Semidefinitely Representable Sets

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}:$

$$
\begin{aligned}
S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid \exists y_{1}, y_{2}:\right. & \left(\begin{array}{cc}
y_{1} & x_{1} \\
x_{1} & 1
\end{array}\right) \succeq 0,\left(\begin{array}{cc}
y_{2} & x_{2} \\
x_{2} & 1
\end{array}\right) \succeq 0, \\
& \left.\left(\begin{array}{cc}
1+y_{1} & y_{2} \\
y_{2} & 1-y_{1}
\end{array}\right) \succeq 0\right\}
\end{aligned}
$$

Introduction: Semidefinitely Representable Sets

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}:$

$S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid \exists y_{1}, y_{2}:\left(\begin{array}{cccccc}y_{1} & x_{1} & 0 & 0 & 0 & 0 \\ x_{1} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & y_{2} & x_{2} & 0 & 0 \\ 0 & 0 & x_{2} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1+y_{1} & y_{2} \\ 0 & 0 & 0 & 0 & y_{2} & 1-y_{1}\end{array}\right) \succeq 0\right\}$.

Introduction: Semidefinitely Representable Sets

Which sets are sdr?

Introduction: Semidefinitely Representable Sets

Which sets are sdr?
Properties of sdr sets/necessary conditions:

Introduction: Semidefinitely Representable Sets

Which sets are sdr?
Properties of sdr sets/necessary conditions:

- Sdr sets are convex.

Introduction: Semidefinitely Representable Sets

Which sets are sdr?
Properties of sdr sets/necessary conditions:

- Sdr sets are convex.
- Sdr sets are semi-algebraic,

Introduction: Semidefinitely Representable Sets

Which sets are sdr?

Properties of sdr sets/necessary conditions:

- Sdr sets are convex.
- Sdr sets are semi-algebraic, i.e. finite boolean combinations of sets of the form

$$
\left\{x \in \mathbb{R}^{n} \mid p(x) \geq 0\right\}
$$

Introduction: Semidefinitely Representable Sets

Which sets are sdr?

Properties of sdr sets/necessary conditions:

- Sdr sets are convex.
- Sdr sets are semi-algebraic, i.e. finite boolean combinations of sets of the form

$$
\left\{x \in \mathbb{R}^{n} \mid p(x) \geq 0\right\} \text {, where } p \in \mathbb{R}[x] \text {. }
$$

Introduction: Semidefinitely Representable Sets

Which sets are sdr?

Properties of sdr sets/necessary conditions:

- Sdr sets are convex.
- Sdr sets are semi-algebraic, i.e. finite boolean combinations of sets of the form

$$
\left\{x \in \mathbb{R}^{n} \mid p(x) \geq 0\right\}, \text { where } p \in \mathbb{R}[x] .
$$

This follows from quantifier elimination in the theory of real closed fields.

Introduction: Semidefinitely Representable Sets

Which sets are sdr?

Properties of sdr sets/necessary conditions:

- Sdr sets are convex.
- Sdr sets are semi-algebraic, i.e. finite boolean combinations of sets of the form

$$
\left\{x \in \mathbb{R}^{n} \mid p(x) \geq 0\right\}, \text { where } p \in \mathbb{R}[x] .
$$

This follows from quantifier elimination in the theory of real closed fields.

- No other necessary conditions are known!

Introduction: Semidefinitely Representable Sets

Which sets are sdr?
Properties of sdr sets/necessary conditions:

- Sdr sets are convex.
- Sdr sets are semi-algebraic, i.e. finite boolean combinations of sets of the form

$$
\left\{x \in \mathbb{R}^{n} \mid p(x) \geq 0\right\}, \text { where } p \in \mathbb{R}[x] .
$$

This follows from quantifier elimination in the theory of real closed fields.

- No other necessary conditions are known! In particular, sdr sets are not closed or even basic closed semi-algebraic in general.

Introduction: Semidefinitely Representable Sets

Which sets are sdr?
Properties of sdr sets/necessary conditions:

- Sdr sets are convex.
- Sdr sets are semi-algebraic, i.e. finite boolean combinations of sets of the form

$$
\left\{x \in \mathbb{R}^{n} \mid p(x) \geq 0\right\}, \text { where } p \in \mathbb{R}[x] .
$$

This follows from quantifier elimination in the theory of real closed fields.

- No other necessary conditions are known! In particular, sdr sets are not closed or even basic closed semi-algebraic in general. They can also have non-exposed faces.

Introduction: Semidefinitely Representable Sets

Question/Conjecture (Nemirovski, Helton \& Nie):
Is every convex semi-algebraic set semidefinitely representable?

Constructions

Constructions I: A First List

Constructions I: A First List

- Intersections, Minkowski sums and direct products of sdr sets are sdr.

Constructions I: A First List

- Intersections, Minkowski sums and direct products of sdr sets are sdr.
- Faces of sdr sets are sdr.

Constructions I: A First List

- Intersections, Minkowski sums and direct products of sdr sets are sdr.
- Faces of sdr sets are sdr.
- Duals and polars of sdr sets are sdr.

Constructions I: A First List

- Intersections, Minkowski sums and direct products of sdr sets are sdr.
- Faces of sdr sets are sdr.
- Duals and polars of sdr sets are sdr.
- The closure of an sdr set is sdr.

Constructions I: A First List

- Intersections, Minkowski sums and direct products of sdr sets are sdr.
- Faces of sdr sets are sdr.
- Duals and polars of sdr sets are sdr.
- The closure of an sdr set is sdr.
- The conic hull of an sdr set is sdr.

Constructions I: A First List

- Intersections, Minkowski sums and direct products of sdr sets are sdr.
- Faces of sdr sets are sdr.
- Duals and polars of sdr sets are sdr.
- The closure of an sdr set is sdr.
- The conic hull of an sdr set is sdr.
- The convex hull of a finite union of sdr sets is sdr.

Constructions II: The Lasserre-Parrilo Method

Constructions II: The Lasserre-Parrilo Method

Let

$$
\mathbb{R}[x]_{1}=\{p \in \mathbb{R}[x] \mid \operatorname{deg}(p) \leq 1\}
$$

denote the space of affine linear polynomials in n variables.

Constructions II: The Lasserre-Parrilo Method

Let

$$
\mathbb{R}[x]_{1}=\{p \in \mathbb{R}[x] \mid \operatorname{deg}(p) \leq 1\}
$$

denote the space of affine linear polynomials in n variables.
This is a finite dimensional space. So assume that

$$
M \subseteq \mathbb{R}[x]_{1}
$$

is an sdr set.

Constructions II: The Lasserre-Parrilo Method

Let

$$
\mathbb{R}[x]_{1}=\{p \in \mathbb{R}[x] \mid \operatorname{deg}(p) \leq 1\}
$$

denote the space of affine linear polynomials in n variables.
This is a finite dimensional space. So assume that

$$
M \subseteq \mathbb{R}[x]_{1}
$$

is an sdr set. Now consider

$$
S=\left\{x \in \mathbb{R}^{n} \mid \ell(x) \geq 0 \text { for all } \ell \in M\right\} .
$$

Constructions II: The Lasserre-Parrilo Method

Let

$$
\mathbb{R}[x]_{1}=\{p \in \mathbb{R}[x] \mid \operatorname{deg}(p) \leq 1\}
$$

denote the space of affine linear polynomials in n variables.
This is a finite dimensional space. So assume that

$$
M \subseteq \mathbb{R}[x]_{1}
$$

is an sdr set. Now consider

$$
S=\left\{x \in \mathbb{R}^{n} \mid \ell(x) \geq 0 \text { for all } \ell \in M\right\} .
$$

S is the intersection of the dual cone of M with a hyperplane, and thus an sdr set.

Constructions II: The Lasserre-Parrilo Method

Let

$$
\mathbb{R}[x]_{1}=\{p \in \mathbb{R}[x] \mid \operatorname{deg}(p) \leq 1\}
$$

denote the space of affine linear polynomials in n variables.
This is a finite dimensional space. So assume that

$$
M \subseteq \mathbb{R}[x]_{1}
$$

is an sdr set. Now consider

$$
S=\left\{x \in \mathbb{R}^{n} \mid \ell(x) \geq 0 \text { for all } \ell \in M\right\} .
$$

S is the intersection of the dual cone of M with a hyperplane, and thus an sdr set.
This observation gives us a method to construct sdr sets!

Constructions II: The Lasserre-Parrilo Method

Sdr sets in $\mathbb{R}[x]_{1}$:

Constructions II: The Lasserre-Parrilo Method

Sdr sets in $\mathbb{R}[x]_{1}$:
For $p_{1}, \ldots, p_{m} \in \mathbb{R}[x]$ and $d \in \mathbb{N}$

Constructions II: The Lasserre-Parrilo Method

Sdr sets in $\mathbb{R}[x]_{1}$:
For $p_{1}, \ldots, p_{m} \in \mathbb{R}[x]$ and $d \in \mathbb{N}$ define
$\operatorname{QM}(p)_{d}=\left\{\sigma_{0}+\sigma_{1} p_{1}+\cdots+\sigma_{m} p_{m} \mid \sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 d\right\}$.

Constructions II: The Lasserre-Parrilo Method

Sdr sets in $\mathbb{R}[x]_{1}$:
For $p_{1}, \ldots, p_{m} \in \mathbb{R}[x]$ and $d \in \mathbb{N}$ define
$\operatorname{QM}(p)_{d}=\left\{\sigma_{0}+\sigma_{1} p_{1}+\cdots+\sigma_{m} p_{m} \mid \sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 d\right\}$.

- Each $\operatorname{QM}(p)_{d}$ lives in a finite dimensional subspace of $\mathbb{R}[x]$

Constructions II: The Lasserre-Parrilo Method

Sdr sets in $\mathbb{R}[x]_{1}$:
For $p_{1}, \ldots, p_{m} \in \mathbb{R}[x]$ and $d \in \mathbb{N}$ define
$\operatorname{QM}(p)_{d}=\left\{\sigma_{0}+\sigma_{1} p_{1}+\cdots+\sigma_{m} p_{m} \mid \sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 d\right\}$.

- Each $\operatorname{QM}(p)_{d}$ lives in a finite dimensional subspace of $\mathbb{R}[x]$
- Each $\mathrm{QM}(p)_{d}$ is semidefinitely representable:

Constructions II: The Lasserre-Parrilo Method

Sdr sets in $\mathbb{R}[x]_{1}$:
For $p_{1}, \ldots, p_{m} \in \mathbb{R}[x]$ and $d \in \mathbb{N}$ define
$\operatorname{QM}(p)_{d}=\left\{\sigma_{0}+\sigma_{1} p_{1}+\cdots+\sigma_{m} p_{m} \mid \sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 d\right\}$.

- Each $\operatorname{QM}(p)_{d}$ lives in a finite dimensional subspace of $\mathbb{R}[x]$
- Each $\mathrm{QM}(p)_{d}$ is semidefinitely representable:
$\mathrm{QM}(p)_{d}$ is the image of some \mathbb{R}^{N} under a quadratic map, parametrizing the coefficients of the σ_{i}.

Constructions II: The Lasserre-Parrilo Method

Sdr sets in $\mathbb{R}[x]_{1}$:
For $p_{1}, \ldots, p_{m} \in \mathbb{R}[x]$ and $d \in \mathbb{N}$ define
$\operatorname{QM}(p)_{d}=\left\{\sigma_{0}+\sigma_{1} p_{1}+\cdots+\sigma_{m} p_{m} \mid \sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 d\right\}$.

- Each $\operatorname{QM}(p)_{d}$ lives in a finite dimensional subspace of $\mathbb{R}[x]$
- Each $\mathrm{QM}(p)_{d}$ is semidefinitely representable:
$\mathrm{QM}(p)_{d}$ is the image of some \mathbb{R}^{N} under a quadratic map, parametrizing the coefficients of the σ_{i}.
Ramana and Goldman (1995) have proven that such sets are sdr.

Constructions II: The Lasserre-Parrilo Method

Sdr sets in $\mathbb{R}[x]_{1}$:
For $p_{1}, \ldots, p_{m} \in \mathbb{R}[x]$ and $d \in \mathbb{N}$ define
$\operatorname{QM}(p)_{d}=\left\{\sigma_{0}+\sigma_{1} p_{1}+\cdots+\sigma_{m} p_{m} \mid \sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 d\right\}$.

- Each $\operatorname{QM}(p)_{d}$ lives in a finite dimensional subspace of $\mathbb{R}[x]$
- Each $\mathrm{QM}(p)_{d}$ is semidefinitely representable:
$\mathrm{QM}(p)_{d}$ is the image of some \mathbb{R}^{N} under a quadratic map, parametrizing the coefficients of the σ_{i}. Ramana and Goldman (1995) have proven that such sets are sdr.
- So $L(p)_{d}:=\mathrm{QM}(p)_{d} \cap \mathbb{R}[x]_{1}$ is a semidefinitely representable subset of $\mathbb{R}[x]_{1}$.

Constructions II: The Lasserre-Parrilo Method

Recall:

$$
\begin{aligned}
L(p)_{d}=\left\{\ell \in \mathbb{R}[x]_{1} \mid \ell=\right. & \sigma_{0}+\sigma_{1} p_{1}+\cdots+\sigma_{m} p_{m} \\
& \text { with } \left.\sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 d\right\} .
\end{aligned}
$$

Constructions II: The Lasserre-Parrilo Method

Recall:

$$
\begin{aligned}
L(p)_{d}=\left\{\ell \in \mathbb{R}[x]_{1} \mid \ell=\right. & \sigma_{0}+\sigma_{1} p_{1}+\cdots+\sigma_{m} p_{m} \\
& \text { with } \left.\sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 d\right\} .
\end{aligned}
$$

Thus

$$
S(p)_{d}=\left\{x \in \mathbb{R}^{n} \mid \ell(x) \geq 0 \text { for all } \ell \in L(p)_{d}\right\}
$$

is semidefinitely representable.

Constructions II: The Lasserre-Parrilo Method

Recall:

$$
\begin{aligned}
L(p)_{d}=\left\{\ell \in \mathbb{R}[x]_{1} \mid \ell=\right. & \sigma_{0}+\sigma_{1} p_{1}+\cdots+\sigma_{m} p_{m} \\
& \text { with } \left.\sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 d\right\} .
\end{aligned}
$$

Thus

$$
S(p)_{d}=\left\{x \in \mathbb{R}^{n} \mid \ell(x) \geq 0 \text { for all } \ell \in L(p)_{d}\right\}
$$

is semidefinitely representable.

Theorem (Lasserre, 2009)
Let $S=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}$.

Constructions II: The Lasserre-Parrilo Method

Recall:

$$
\begin{aligned}
L(p)_{d}=\left\{\ell \in \mathbb{R}[x]_{1} \mid \ell=\right. & \sigma_{0}+\sigma_{1} p_{1}+\cdots+\sigma_{m} p_{m} \\
& \text { with } \left.\sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 d\right\} .
\end{aligned}
$$

Thus

$$
S(p)_{d}=\left\{x \in \mathbb{R}^{n} \mid \ell(x) \geq 0 \text { for all } \ell \in L(p)_{d}\right\}
$$

is semidefinitely representable.

Theorem (Lasserre, 2009)
Let $S=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}$. Then

$$
\overline{\operatorname{conv}(S)} \subseteq S(p)_{d+1} \subseteq S(p)_{d} \text { for all } d \in \mathbb{N}
$$

Constructions II: The Lasserre-Parrilo Method

Recall:

$$
\begin{aligned}
L(p)_{d}=\left\{\ell \in \mathbb{R}[x]_{1} \mid \ell=\right. & \sigma_{0}+\sigma_{1} p_{1}+\cdots+\sigma_{m} p_{m} \\
& \text { with } \left.\sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 d\right\} .
\end{aligned}
$$

Thus

$$
S(p)_{d}=\left\{x \in \mathbb{R}^{n} \mid \ell(x) \geq 0 \text { for all } \ell \in L(p)_{d}\right\}
$$

is semidefinitely representable.

Theorem (Lasserre, 2009)
Let $S=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}$. Then

$$
\overline{\operatorname{conv}(S)} \subseteq S(p)_{d+1} \subseteq S(p)_{d} \text { for all } d \in \mathbb{N}
$$

If there is some $d \in \mathbb{N}$ such that every $\ell \in \mathbb{R}[x]_{1}$ that is nonnegative on S belongs to $\mathrm{QM}(p)_{d}$ then $\overline{\operatorname{conv}(S)}$ is semidefinitely representable.

Constructions II: The Lasserre-Parrilo Method

Example:

Constructions II: The Lasserre-Parrilo Method

Example: $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}$:

Constructions II: The Lasserre-Parrilo Method

Example: $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}$:

Let $a \in[-1,1]$ and $\left(a, \sqrt[4]{1-a^{4}}\right)$ be the corresponding point on the boundary of S.

Constructions II: The Lasserre-Parrilo Method

Example: $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}$:

Let $a \in[-1,1]$ and $\left(a, \sqrt[4]{1-a^{4}}\right)$ be the corresponding point on the boundary of S. A linear polynomial nonnegative on S and zero at this point is a positive multiple of

$$
\ell_{a}=1-a^{3} x_{1}-\left(\sqrt[4]{1-a^{4}}\right)^{3} x_{2}
$$

Constructions II: The Lasserre-Parrilo Method

Example: $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}$:

Let $a \in[-1,1]$ and $\left(a, \sqrt[4]{1-a^{4}}\right)$ be the corresponding point on the boundary of S. A linear polynomial nonnegative on S and zero at this point is a positive multiple of

$$
\ell_{a}=1-a^{3} x_{1}-\left(\sqrt[4]{1-a^{4}}\right)^{3} x_{2}
$$

One checks that $\ell_{a}-\left(1-x_{1}^{4}-x_{2}^{4}\right)$ is globally nonnegative,

Constructions II: The Lasserre-Parrilo Method

Example: $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}$:

Let $a \in[-1,1]$ and $\left(a, \sqrt[4]{1-a^{4}}\right)$ be the corresponding point on the boundary of S. A linear polynomial nonnegative on S and zero at this point is a positive multiple of

$$
\ell_{a}=1-a^{3} x_{1}-\left(\sqrt[4]{1-a^{4}}\right)^{3} x_{2}
$$

One checks that $\ell_{a}-\left(1-x_{1}^{4}-x_{2}^{4}\right)$ is globally nonnegative, and thus a sums of squares, since it has degree four and only two variables.

Constructions II: The Lasserre-Parrilo Method

Example: $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}$:

Let $a \in[-1,1]$ and $\left(a, \sqrt[4]{1-a^{4}}\right)$ be the corresponding point on the boundary of S. A linear polynomial nonnegative on S and zero at this point is a positive multiple of

$$
\ell_{a}=1-a^{3} x_{1}-\left(\sqrt[4]{1-a^{4}}\right)^{3} x_{2}
$$

One checks that $\ell_{a}-\left(1-x_{1}^{4}-x_{2}^{4}\right)$ is globally nonnegative, and thus a sums of squares, since it has degree four and only two variables.
So $\ell_{a} \in \mathrm{QM}\left(1-x_{1}^{4}-x_{2}^{4}\right)_{2}$,

Constructions II: The Lasserre-Parrilo Method

Example: $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}$:

Let $a \in[-1,1]$ and $\left(a, \sqrt[4]{1-a^{4}}\right)$ be the corresponding point on the boundary of S. A linear polynomial nonnegative on S and zero at this point is a positive multiple of

$$
\ell_{a}=1-a^{3} x_{1}-\left(\sqrt[4]{1-a^{4}}\right)^{3} x_{2}
$$

One checks that $\ell_{a}-\left(1-x_{1}^{4}-x_{2}^{4}\right)$ is globally nonnegative, and thus a sums of squares, since it has degree four and only two variables. So $\ell_{a} \in \operatorname{QM}\left(1-x_{1}^{4}-x_{2}^{4}\right)_{2}$, and S is thus sdr.

Interlude: An Interesting Quadratic Module

Interlude: An Interesting Quadratic Module

Recall:

$$
S=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}
$$

Interlude: An Interesting Quadratic Module

Recall:

$$
S=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}
$$

$\operatorname{QM}(p)_{d}=\left\{\sigma_{0}+\sigma_{1} p_{1}+\cdots+\sigma_{m} p_{m} \mid \sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 d\right\}$.

Interlude: An Interesting Quadratic Module

Recall:

$$
S=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}
$$

$\operatorname{QM}(p)_{d}=\left\{\sigma_{0}+\sigma_{1} p_{1}+\cdots+\sigma_{m} p_{m} \mid \sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 d\right\}$.
We have seen:

Interlude: An Interesting Quadratic Module

Recall:

$$
S=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}
$$

$\operatorname{QM}(p)_{d}=\left\{\sigma_{0}+\sigma_{1} p_{1}+\cdots+\sigma_{m} p_{m} \mid \sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 d\right\}$.
We have seen:
If S is convex and $\mathrm{QM}(p)_{d}$ contains every linear polynomial that is nonnegative on S, then S is sdr.

Interlude: An Interesting Quadratic Module

Recall:

$$
S=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}
$$

$\operatorname{QM}(p)_{d}=\left\{\sigma_{0}+\sigma_{1} p_{1}+\cdots+\sigma_{m} p_{m} \mid \sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 d\right\}$.
We have seen:
If S is convex and $\mathrm{QM}(p)_{d}$ contains every linear polynomial that is nonnegative on S, then S is sdr.

What about the converse?

Interlude: An Interesting Quadratic Module

Recall:

$$
S=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}
$$

$\operatorname{QM}(p)_{d}=\left\{\sigma_{0}+\sigma_{1} p_{1}+\cdots+\sigma_{m} p_{m} \mid \sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 d\right\}$.
We have seen:
If S is convex and $\mathrm{QM}(p)_{d}$ contains every linear polynomial that is nonnegative on S, then S is sdr.

What about the converse?
It is not true in general (see D. Plaumanns talk).

Interlude: An Interesting Quadratic Module

Recall:

$$
S=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}
$$

$\operatorname{QM}(p)_{d}=\left\{\sigma_{0}+\sigma_{1} p_{1}+\cdots+\sigma_{m} p_{m} \mid \sigma_{i} \in \sum \mathbb{R}[x]^{2}, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 d\right\}$.
We have seen:
If S is convex and $\mathrm{QM}(p)_{d}$ contains every linear polynomial that is nonnegative on S, then S is sdr.

What about the converse?
It is not true in general (see D. Plaumanns talk).
But the converse is true in a more general context!

Interlude: An Interesting Quadratic Module

Let S be semidefinitely representable,

Interlude: An Interesting Quadratic Module

Let S be semidefinitely representable, so

$$
S=\left\{x \in \mathbb{R}^{n} \mid \exists y: A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}+y_{1} B_{1}+\cdots+y_{m} B_{m} \succeq 0\right\}
$$

Interlude: An Interesting Quadratic Module

Let S be semidefinitely representable, so
$S=\left\{x \in \mathbb{R}^{n} \mid \exists y: A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}+y_{1} B_{1}+\cdots+y_{m} B_{m} \succeq 0\right\}$, with $k \times k$ symmetric matrices A_{i}, B_{i}.

Interlude: An Interesting Quadratic Module

Let S be semidefinitely representable, so
$S=\left\{x \in \mathbb{R}^{n} \mid \exists y: A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}+y_{1} B_{1}+\cdots+y_{m} B_{m} \succeq 0\right\}$, with $k \times k$ symmetric matrices A_{i}, B_{i}. Write

$$
A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

Interlude: An Interesting Quadratic Module

Let S be semidefinitely representable, so
$S=\left\{x \in \mathbb{R}^{n} \mid \exists y: A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}+y_{1} B_{1}+\cdots+y_{m} B_{m} \succeq 0\right\}$, with $k \times k$ symmetric matrices A_{i}, B_{i}. Write

$$
A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

Now let $q^{(j)}=\left(q_{1}^{(j)}, \ldots, q_{k}^{(j)}\right)$ be k-tuples of polynomials, i.e. $q_{i}^{(j)} \in \mathbb{R}[x]$.

Interlude: An Interesting Quadratic Module

Let S be semidefinitely representable, so
$S=\left\{x \in \mathbb{R}^{n} \mid \exists y: A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}+y_{1} B_{1}+\cdots+y_{m} B_{m} \succeq 0\right\}$, with $k \times k$ symmetric matrices A_{i}, B_{i}. Write

$$
A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

Now let $q^{(j)}=\left(q_{1}^{(j)}, \ldots, q_{k}^{(j)}\right)$ be k-tuples of polynomials, i.e. $q_{i}^{(j)} \in \mathbb{R}[x]$. The polynomial

$$
\sum_{j} q^{(j)} A(x) q^{(j)^{t}} \in \mathbb{R}[x]
$$

is nonnegativ on S, as long as $\sum_{j} q^{(j)} B_{i} q^{(j)^{t}}=0$ for all $i=1, \ldots, m$.

Interlude: An Interesting Quadratic Module

Let S be semidefinitely representable, so
$S=\left\{x \in \mathbb{R}^{n} \mid \exists y: A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}+y_{1} B_{1}+\cdots+y_{m} B_{m} \succeq 0\right\}$, with $k \times k$ symmetric matrices A_{i}, B_{i}. Write

$$
A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

Now let $q^{(j)}=\left(q_{1}^{(j)}, \ldots, q_{k}^{(j)}\right)$ be k-tuples of polynomials, i.e. $q_{i}^{(j)} \in \mathbb{R}[x]$. The polynomial

$$
\sum_{j} q^{(j)} A(x) q^{(j)^{t}} \in \mathbb{R}[x]
$$

is nonnegativ on S, as long as $\sum_{j} q^{(j)} B_{i} q^{(j)^{t}}=0$ for all $i=1, \ldots, m$.
So let $\mathrm{QM}(A)$ be the quadratic module generated by these polynomials.

Interlude: An Interesting Quadratic Module

Formally:
$\operatorname{QM}(A)=\left\{\sum_{j} q^{(j)} A(x) q^{(j)}+\sigma \mid q^{(j)} \in \mathbb{R}[x]^{k}, \sum_{j} q^{(j)} B_{i} q^{(j)^{t}}=0\right.$ for all i,

$$
\left.\sigma \in \sum \mathbb{R}[x]^{2}\right\}
$$

Interlude: An Interesting Quadratic Module

Formally:
$\operatorname{QM}(A)=\left\{\sum_{j} q^{(j)} A(x) q^{(j)}+\sigma \mid q^{(j)} \in \mathbb{R}[x]^{k}, \sum_{j} q^{(j)} B_{i} q^{(j)^{t}}=0\right.$ for all i,

$$
\left.\sigma \in \sum \mathbb{R}[x]^{2}\right\}
$$

Properties of $\mathrm{QM}(A)$:

Interlude: An Interesting Quadratic Module

Formally:

$$
\begin{aligned}
\operatorname{QM}(A)=\left\{\sum_{j} q^{(j)} A(x) q^{(j)}+\sigma \mid q^{(j)} \in \mathbb{R}[x]^{k}, \sum_{j} q^{(j)} B_{i} q^{(j)^{t}}\right. & =0 \text { for all } i \\
\sigma & \left.\in \sum \mathbb{R}[x]^{2}\right\}
\end{aligned}
$$

Properties of $\mathrm{QM}(A)$:

- $\mathrm{QM}(A)$ contains only polynomials that are nonnegative on S.

Interlude: An Interesting Quadratic Module

Formally:

$$
\begin{aligned}
\operatorname{QM}(A)=\left\{\sum_{j} q^{(j)} A(x) q^{(j)}+\sigma \mid q^{(j)} \in \mathbb{R}[x]^{k}, \sum_{j} q^{(j)} B_{i} q^{(j)^{t}}\right. & =0 \text { for all } i \\
\sigma & \left.\in \sum \mathbb{R}[x]^{2}\right\}
\end{aligned}
$$

Properties of $\mathrm{QM}(A)$:

- $\mathrm{QM}(A)$ contains only polynomials that are nonnegative on S.
- $\bar{S}=\left\{x \in \mathbb{R}^{n} \mid p(x) \geq 0\right.$ for all $\left.p \in \operatorname{QM}(A)\right\}$.

Interlude: An Interesting Quadratic Module

Formally:

$$
\begin{aligned}
\operatorname{QM}(A)=\left\{\sum_{j} q^{(j)} A(x) q^{(j)}+\sigma \mid q^{(j)} \in \mathbb{R}[x]^{k}, \sum_{j} q^{(j)} B_{i} q^{(j)^{t}}\right. & =0 \text { for all } i \\
\sigma & \left.\in \sum \mathbb{R}[x]^{2}\right\}
\end{aligned}
$$

Properties of $\mathrm{QM}(A)$:

- $\mathrm{QM}(A)$ contains only polynomials that are nonnegative on S.
- $\bar{S}=\left\{x \in \mathbb{R}^{n} \mid p(x) \geq 0\right.$ for all $\left.p \in \operatorname{QM}(A)\right\}$.
- So $\mathrm{QM}(A)$ is not finitely generated in general

Interlude: An Interesting Quadratic Module

Formally:

$$
\begin{aligned}
\operatorname{QM}(A)=\left\{\sum_{j} q^{(j)} A(x) q^{(j)}+\sigma \mid q^{(j)} \in \mathbb{R}[x]^{k}, \sum_{j} q^{(j)} B_{i} q^{(j)^{t}}\right. & =0 \text { for all } i \\
\sigma & \left.\in \sum \mathbb{R}[x]^{2}\right\}
\end{aligned}
$$

Properties of $\mathrm{QM}(A)$:

- $\mathrm{QM}(A)$ contains only polynomials that are nonnegative on S.
- $\bar{S}=\left\{x \in \mathbb{R}^{n} \mid p(x) \geq 0\right.$ for all $\left.p \in \operatorname{QM}(A)\right\}$.
- So $\operatorname{QM}(A)$ is not finitely generated in general (but also not too "wild").

Interlude: An Interesting Quadratic Module

- Whenever some linear polynomial ℓ is nonnegative on S,

Interlude: An Interesting Quadratic Module

- Whenever some linear polynomial ℓ is nonnegative on S, then

$$
\ell=\sum_{j} q^{(j)} A(x) q^{(j)^{t}}+\sigma
$$

Interlude: An Interesting Quadratic Module

- Whenever some linear polynomial ℓ is nonnegative on S, then

$$
\ell=\sum_{j} q^{(j)} A(x) q^{(j)^{t}}+\sigma
$$

with $q^{(j)} \in \mathbb{R}^{k}, \sum_{j} q^{(j)} B_{i} q^{(j)^{t}}=0$ for all i,$\sigma \in \mathbb{R}_{\geq 0}$.

Interlude: An Interesting Quadratic Module

- Whenever some linear polynomial ℓ is nonnegative on S, then

$$
\ell=\sum_{j} q^{(j)} A(x) q^{(j)^{t}}+\sigma
$$

with $q^{(j)} \in \mathbb{R}^{k}, \sum_{j} q^{(j)} B_{i} q^{(j)^{t}}=0$ for all $\mathrm{i}, \sigma \in \mathbb{R}_{\geq 0}$.
So $\mathrm{QM}(A)$ contains every nonnegative linear polynomial with "degree bound" 0!

Interlude: An Interesting Quadratic Module

- Whenever some linear polynomial ℓ is nonnegative on S, then

$$
\ell=\sum_{j} q^{(j)} A(x) q^{(j)^{t}}+\sigma
$$

with $q^{(j)} \in \mathbb{R}^{k}, \sum_{j} q^{(j)} B_{i} q^{(j)^{t}}=0$ for all $\mathrm{i}, \sigma \in \mathbb{R}_{\geq 0}$.
So $\mathrm{QM}(A)$ contains every nonnegative linear polynomial with "degree bound" 0!

- Whenever S is bounded, then $\mathrm{QM}(A)$ is Archimedean,

Interlude: An Interesting Quadratic Module

- Whenever some linear polynomial ℓ is nonnegative on S, then

$$
\ell=\sum_{j} q^{(j)} A(x) q^{(j)^{t}}+\sigma
$$

with $q^{(j)} \in \mathbb{R}^{k}, \sum_{j} q^{(j)} B_{i} q^{(j)^{t}}=0$ for all $i, \sigma \in \mathbb{R}_{\geq 0}$.
So $\mathrm{QM}(A)$ contains every nonnegative linear polynomial with "degree bound" 0!

- Whenever S is bounded, then $\operatorname{QM}(A)$ is Archimedean, and thus contains every polynomial p with $p \geq \varepsilon$ on S for some $\varepsilon>0$.

Interlude: An Interesting Quadratic Module

Example:

Interlude: An Interesting Quadratic Module

Example: $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid \exists y \in[-1,1]:\left(x_{1}-y\right)^{2}+x_{2}^{2} \leq 1\right\}$:

Interlude: An Interesting Quadratic Module

Example: $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid \exists y \in[-1,1]:\left(x_{1}-y\right)^{2}+x_{2}^{2} \leq 1\right\}$:

Interlude: An Interesting Quadratic Module

Example: $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid \exists y \in[-1,1]:\left(x_{1}-y\right)^{2}+x_{2}^{2} \leq 1\right\}$:

The corresponding spectrahedron in \mathbb{R}^{3} is defined by the linear matrix polynomial

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)+x_{1}\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+y\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Interlude: An Interesting Quadratic Module

Example: $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid \exists y \in[-1,1]:\left(x_{1}-y\right)^{2}+x_{2}^{2} \leq 1\right\}$:

So every polynomial that is strictly positive on S is a sum of squares plus a polynomial of the following form:

Interlude: An Interesting Quadratic Module

Example: $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid \exists y \in[-1,1]:\left(x_{1}-y\right)^{2}+x_{2}^{2} \leq 1\right\}:$

So every polynomial that is strictly positive on S is a sum of squares plus a polynomial of the following form:

$$
\sum_{j} q_{1}^{(j)^{2}}+q_{2}^{(j)^{2}}+q_{3}^{(j)^{2}}+q_{4}^{(j)^{2}}+x_{1}\left(q_{3}^{(j)^{2}}-q_{4}^{(j)^{2}}\right)+x_{2}\left(q_{1}^{(j)^{2}}-q_{2}^{(j)^{2}}\right)
$$

where $q_{i}^{(j)} \in \mathbb{R}\left[x_{1}, x_{2}\right]$ with $\sum_{j} 2 q_{1}^{(j)} q_{2}^{(j)}-q_{3}^{(j)^{2}}-q_{4}^{(j)^{2}}=0$.

Constructions II: The Results of Helton \& Nie

Constructions II: The Results of Helton \& Nie

Using the above constructions and the result about convex hulls, Helton \& Nie (2009/2010) prove several results.

Constructions II: The Results of Helton \& Nie

Using the above constructions and the result about convex hulls, Helton \& Nie (2009/2010) prove several results.

Again let

$$
S=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}
$$

be basic closed semialgebraic.

Constructions II: The Results of Helton \& Nie

Using the above constructions and the result about convex hulls, Helton \& Nie $(2009 / 2010)$ prove several results.

Again let

$$
S=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}
$$

be basic closed semialgebraic. Further assume that S is compact, convex and has nonempty interior.

Constructions II: The Results of Helton \& Nie

Using the above constructions and the result about convex hulls, Helton \& Nie $(2009 / 2010)$ prove several results.

Again let

$$
S=\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}
$$

be basic closed semialgebraic. Further assume that S is compact, convex and has nonempty interior.

Theorem (Helton \& Nie)

If for each p_{i}, the negative Hessian matrix is either a sum of squares of polynomial matrices, or positive definite on the tangent space of p_{i} at each point of S, then S is semidefinitely representable.

Constructions II: The Results of Helton \& Nie

Examples:

Constructions II: The Results of Helton \& Nie

Examples:

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}:$

Constructions II: The Results of Helton \& Nie

Examples:

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}:$

For the Hessian of $p=1-x_{1}^{4}-x_{2}^{4}$ we find

Constructions II: The Results of Helton \& Nie

Examples:

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}:$

For the Hessian of $p=1-x_{1}^{4}-x_{2}^{4}$ we find

$$
-\nabla^{2} p=\left(\begin{array}{cc}
12 x_{1}^{2} & 0 \\
0 & 12 x_{2}^{2}
\end{array}\right)
$$

Constructions II: The Results of Helton \& Nie

Examples:

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}:$

For the Hessian of $p=1-x_{1}^{4}-x_{2}^{4}$ we find

$$
-\nabla^{2} p=\left(\begin{array}{cc}
\sqrt{12} x_{1} & 0 \\
0 & \sqrt{12} x_{2}
\end{array}\right)^{t}\left(\begin{array}{cc}
\sqrt{12} x_{1} & 0 \\
0 & \sqrt{12} x_{2}
\end{array}\right)
$$

Constructions II: The Results of Helton \& Nie

Examples:

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}:$

For the Hessian of $p=1-x_{1}^{4}-x_{2}^{4}$ we find

$$
-\nabla^{2} p=\left(\begin{array}{cc}
\sqrt{12} x_{1} & 0 \\
0 & \sqrt{12} x_{2}
\end{array}\right)^{t}\left(\begin{array}{cc}
\sqrt{12} x_{1} & 0 \\
0 & \sqrt{12} x_{2}
\end{array}\right)
$$

$\Rightarrow S$ is sdr .

Constructions II: The Results of Helton \& Nie

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid 1 \leq x_{1} \leq 2, x_{2} \leq 1,1 \leq x_{1}^{2} x_{2}\right\}:$

Constructions II: The Results of Helton \& Nie

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid 1 \leq x_{1} \leq 2, x_{2} \leq 1,1 \leq x_{1}^{2} x_{2}\right\}:$

Constructions II: The Results of Helton \& Nie

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid 1 \leq x_{1} \leq 2, x_{2} \leq 1,1 \leq x_{1}^{2} x_{2}\right\}:$

The negative Hessian of $p=x_{1}^{2} x_{2}-1$ is

Constructions II: The Results of Helton \& Nie

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid 1 \leq x_{1} \leq 2, x_{2} \leq 1,1 \leq x_{1}^{2} x_{2}\right\}:$

The negative Hessian of $p=x_{1}^{2} x_{2}-1$ is

$$
-\nabla^{2} p=-\left(\begin{array}{cc}
2 x_{2} & 2 x_{1} \\
2 x_{1} & 0
\end{array}\right)
$$

Constructions II: The Results of Helton \& Nie

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid 1 \leq x_{1} \leq 2, x_{2} \leq 1,1 \leq x_{1}^{2} x_{2}\right\}:$

The negative Hessian of $p=x_{1}^{2} x_{2}-1$ is

$$
-\nabla^{2} p=-\left(\begin{array}{cc}
2 x_{2} & 2 x_{1} \\
2 x_{1} & 0
\end{array}\right)
$$

which is not a sum of squares of matrices.

Constructions II: The Results of Helton \& Nie

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid 1 \leq x_{1} \leq 2, x_{2} \leq 1,1 \leq x_{1}^{2} x_{2}\right\}:$

The negative Hessian of $p=x_{1}^{2} x_{2}-1$ is

$$
-\nabla^{2} p=-\left(\begin{array}{cc}
2 x_{2} & 2 x_{1} \\
2 x_{1} & 0
\end{array}\right)
$$

which is not a sum of squares of matrices. But for every point ($a, \frac{1}{a^{2}}$) with $a>0$, the tangent space is spanned by $\left(-a^{2}, \frac{2}{a}\right)$.

Constructions II: The Results of Helton \& Nie

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid 1 \leq x_{1} \leq 2, x_{2} \leq 1,1 \leq x_{1}^{2} x_{2}\right\}:$

The negative Hessian of $p=x_{1}^{2} x_{2}-1$ is

$$
-\nabla^{2} p=-\left(\begin{array}{cc}
2 x_{2} & 2 x_{1} \\
2 x_{1} & 0
\end{array}\right)
$$

which is not a sum of squares of matrices. But for every point ($a, \frac{1}{a^{2}}$) with $a>0$, the tangent space is spanned by $\left(-a^{2}, \frac{2}{a}\right)$. We have

$$
\left(-a^{2}, \frac{2}{a}\right)\left(\begin{array}{cc}
-\frac{2}{a^{2}} & -2 a \\
-2 a & 0
\end{array}\right)\binom{-a^{2}}{\frac{2}{a}}=6 a^{2}>0
$$

Constructions II: The Results of Helton \& Nie

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid 1 \leq x_{1} \leq 2, x_{2} \leq 1,1 \leq x_{1}^{2} x_{2}\right\}:$

The negative Hessian of $p=x_{1}^{2} x_{2}-1$ is

$$
-\nabla^{2} p=-\left(\begin{array}{cc}
2 x_{2} & 2 x_{1} \\
2 x_{1} & 0
\end{array}\right)
$$

which is not a sum of squares of matrices. But for every point ($a, \frac{1}{a^{2}}$) with $a>0$, the tangent space is spanned by $\left(-a^{2}, \frac{2}{a}\right)$. We have

$$
\left(-a^{2}, \frac{2}{a}\right)\left(\begin{array}{cc}
-\frac{2}{a^{2}} & -2 a \\
-2 a & 0
\end{array}\right)\binom{-a^{2}}{\frac{2}{a}}=6 a^{2}>0
$$

So S is sdr.

Constructions III: Convex Hulls of Curves

Constructions III: Convex Hulls of Curves

Again using the Lasserre-Parrilo method, one can prove results on convex hulls of curves:

Constructions III: Convex Hulls of Curves

Again using the Lasserre-Parrilo method, one can prove results on convex hulls of curves:

Theorem (Parrilo)
Let $S \subseteq \mathbb{R}^{n}$ be a semi-algebraic subset of a rational curve. Then $\operatorname{conv}(S)$ is semidefinitely representable.

Constructions III: Convex Hulls of Curves

Again using the Lasserre-Parrilo method, one can prove results on convex hulls of curves:

Theorem (Parrilo)
Let $S \subseteq \mathbb{R}^{n}$ be a semi-algebraic subset of a rational curve. Then $\operatorname{conv}(S)$ is semidefinitely representable.

Theorem
Let $S \subseteq \mathbb{R}^{n}$ be the rational image of a smooth elliptic curve with at least one non-real point at infinity. Then $\overline{\operatorname{conv}(S)}$ is semidefinitely representable.

Constructions III: Convex Hulls of Curves

Again using the Lasserre-Parrilo method, one can prove results on convex hulls of curves:

Theorem (Parrilo)
Let $S \subseteq \mathbb{R}^{n}$ be a semi-algebraic subset of a rational curve. Then $\operatorname{conv}(S)$ is semidefinitely representable.

Theorem
Let $S \subseteq \mathbb{R}^{n}$ be the rational image of a smooth elliptic curve with at least one non-real point at infinity. Then $\overline{\operatorname{conv}(S)}$ is semidefinitely representable.
Both results use representations of nonnegative polynomials as sums of squares, together with degree bounds (Kuhlmann, Marshall \& Schwartz; Scheiderer).

Constructions III: Convex Hulls of Curves

Examples:

Constructions III: Convex Hulls of Curves

Examples:

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid-1 \leq x_{1}, 0 \leq x_{2} \leq 1, x_{1}^{3} \leq x_{2}^{2}\right\}:$

Constructions III: Convex Hulls of Curves

Examples:

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid-1 \leq x_{1}, 0 \leq x_{2} \leq 1, x_{1}^{3} \leq x_{2}^{2}\right\}:$

Constructions III: Convex Hulls of Curves

Examples:

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid-1 \leq x_{1}, 0 \leq x_{2} \leq 1, x_{1}^{3} \leq x_{2}^{2}\right\}:$

S is bounded by segments of rational curves, and thus semidefinitely representable.

Constructions III: Convex Hulls of Curves

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2}^{2} \leq 1-x_{1}^{4}\right\}:$

Constructions III: Convex Hulls of Curves

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2}^{2} \leq 1-x_{1}^{4}\right\}:$

Constructions III: Convex Hulls of Curves

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2}^{2} \leq 1-x_{1}^{4}\right\}:$

S is bounded by a smooth elliptic curve with a non-real point at infinity, and thus sdr.

Constructions III: Convex Hulls of Curves

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2}^{2} \leq 1-x_{1}^{4}\right\}:$

S is bounded by a smooth elliptic curve with a non-real point at infinity, and thus sdr.
- Apply the polynomial map $\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{1} x_{2}\right)$:

Constructions III: Convex Hulls of Curves

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2}^{2} \leq 1-x_{1}^{4}\right\}:$

S is bounded by a smooth elliptic curve with a non-real point at infinity, and thus sdr.
- Apply the polynomial map $\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{1} x_{2}\right)$:

Constructions III: Convex Hulls of Curves

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2}^{2} \leq 1-x_{1}^{4}\right\}:$

S is bounded by a smooth elliptic curve with a non-real point at infinity, and thus sdr.
- Apply the polynomial map $\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{1} x_{2}\right)$:

Then take the convex hull.

Constructions III: Convex Hulls of Curves

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2}^{2} \leq 1-x_{1}^{4}\right\}:$

S is bounded by a smooth elliptic curve with a non-real point at infinity, and thus sdr.
- Apply the polynomial map $\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{1} x_{2}\right)$:

Then take the convex hull.

Constructions III: Convex Hulls of Curves

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2}^{2} \leq 1-x_{1}^{4}\right\}:$

S is bounded by a smooth elliptic curve with a non-real point at infinity, and thus sdr.
- Apply the polynomial map $\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{1} x_{2}\right)$:

Then take the convex hull. The set is semidefinitely representable.

Constructions IV: Non-Closed Sets

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?

Let $S \subseteq \mathbb{R}^{n}$ be convex.

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?
Let $S \subseteq \mathbb{R}^{n}$ be convex. A face of S is a convex subset $F \subseteq S$ with:

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?
Let $S \subseteq \mathbb{R}^{n}$ be convex. A face of S is a convex subset $F \subseteq S$ with: whenever $x, y \in S, \lambda \in(0,1)$ and $\lambda x+(1-\lambda) y \in F$,

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?
Let $S \subseteq \mathbb{R}^{n}$ be convex. A face of S is a convex subset $F \subseteq S$ with: whenever $x, y \in S, \lambda \in(0,1)$ and $\lambda x+(1-\lambda) y \in F$, then $x, y \in F$.

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?
Let $S \subseteq \mathbb{R}^{n}$ be convex. A face of S is a convex subset $F \subseteq S$ with: whenever $x, y \in S, \lambda \in(0,1)$ and $\lambda x+(1-\lambda) y \in F$, then $x, y \in F$.

Observation: Each convex set S is the disjoint union of the relative interiors of its faces:

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?
Let $S \subseteq \mathbb{R}^{n}$ be convex. A face of S is a convex subset $F \subseteq S$ with: whenever $x, y \in S, \lambda \in(0,1)$ and $\lambda x+(1-\lambda) y \in F$, then $x, y \in F$.

Observation: Each convex set S is the disjoint union of the relative interiors of its faces:

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?
Let $S \subseteq \mathbb{R}^{n}$ be convex. A face of S is a convex subset $F \subseteq S$ with: whenever $x, y \in S, \lambda \in(0,1)$ and $\lambda x+(1-\lambda) y \in F$, then $x, y \in F$.

Observation: Each convex set S is the disjoint union of the relative interiors of its faces:

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?
Let $S \subseteq \mathbb{R}^{n}$ be convex. A face of S is a convex subset $F \subseteq S$ with: whenever $x, y \in S, \lambda \in(0,1)$ and $\lambda x+(1-\lambda) y \in F$, then $x, y \in F$.

Observation: Each convex set S is the disjoint union of the relative interiors of its faces:

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?
Let $S \subseteq \mathbb{R}^{n}$ be convex. A face of S is a convex subset $F \subseteq S$ with: whenever $x, y \in S, \lambda \in(0,1)$ and $\lambda x+(1-\lambda) y \in F$, then $x, y \in F$.

Observation: Each convex set S is the disjoint union of the relative interiors of its faces:

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?
Let $S \subseteq \mathbb{R}^{n}$ be convex. A face of S is a convex subset $F \subseteq S$ with: whenever $x, y \in S, \lambda \in(0,1)$ and $\lambda x+(1-\lambda) y \in F$, then $x, y \in F$.

Observation: Each convex set S is the disjoint union of the relative interiors of its faces:

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?
Let $S \subseteq \mathbb{R}^{n}$ be convex. A face of S is a convex subset $F \subseteq S$ with: whenever $x, y \in S, \lambda \in(0,1)$ and $\lambda x+(1-\lambda) y \in F$, then $x, y \in F$.

Observation: Each convex set S is the disjoint union of the relative interiors of its faces:

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?
Let $S \subseteq \mathbb{R}^{n}$ be convex. A face of S is a convex subset $F \subseteq S$ with: whenever $x, y \in S, \lambda \in(0,1)$ and $\lambda x+(1-\lambda) y \in F$, then $x, y \in F$.

Observation: Each convex set S is the disjoint union of the relative interiors of its faces:

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?
Let $S \subseteq \mathbb{R}^{n}$ be convex. A face of S is a convex subset $F \subseteq S$ with: whenever $x, y \in S, \lambda \in(0,1)$ and $\lambda x+(1-\lambda) y \in F$, then $x, y \in F$.

Observation: Each convex set S is the disjoint union of the relative interiors of its faces:

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?
Let $S \subseteq \mathbb{R}^{n}$ be convex. A face of S is a convex subset $F \subseteq S$ with: whenever $x, y \in S, \lambda \in(0,1)$ and $\lambda x+(1-\lambda) y \in F$, then $x, y \in F$.

Observation: Each convex set S is the disjoint union of the relative interiors of its faces:

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?
Let $S \subseteq \mathbb{R}^{n}$ be convex. A face of S is a convex subset $F \subseteq S$ with: whenever $x, y \in S, \lambda \in(0,1)$ and $\lambda x+(1-\lambda) y \in F$, then $x, y \in F$.

Observation: Each convex set S is the disjoint union of the relative interiors of its faces:

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?
Let $S \subseteq \mathbb{R}^{n}$ be convex. A face of S is a convex subset $F \subseteq S$ with: whenever $x, y \in S, \lambda \in(0,1)$ and $\lambda x+(1-\lambda) y \in F$, then $x, y \in F$.

Observation: Each convex set S is the disjoint union of the relative interiors of its faces:

Constructions IV: Non-Closed Sets

Almost all of the results so far concern closed convex sets.
What about non-closed sets?
Let $S \subseteq \mathbb{R}^{n}$ be convex. A face of S is a convex subset $F \subseteq S$ with: whenever $x, y \in S, \lambda \in(0,1)$ and $\lambda x+(1-\lambda) y \in F$, then $x, y \in F$.

Observation: Each convex set S is the disjoint union of the relative interiors of its faces:

Constructions IV: Non-Closed Sets

Let

$$
T \subseteq S
$$

be two convex sets.

Constructions IV: Non-Closed Sets

Let

$$
T \subseteq S
$$

be two convex sets. Define

$$
T \leftrightarrow S:=\bigcup_{F \cap T \neq \emptyset} \operatorname{relint}(F)
$$

Constructions IV: Non-Closed Sets

Let

$$
T \subseteq S
$$

be two convex sets. Define

$$
T \leftarrow S:=\bigcup_{F \cap T \neq \emptyset} \operatorname{relint}(F)
$$

Example:

Constructions IV: Non-Closed Sets

Let

$$
T \subseteq S
$$

be two convex sets. Define

$$
T \leftarrow S:=\bigcup_{F \cap T \neq \emptyset} \operatorname{relint}(F)
$$

Example: S

Constructions IV: Non-Closed Sets

Let

$$
T \subseteq S
$$

be two convex sets. Define

$$
T \leftarrow S:=\bigcup_{F \cap T \neq \emptyset} \operatorname{relint}(F)
$$

Example: $\quad T \subseteq S$

Constructions IV: Non-Closed Sets

Let

$$
T \subseteq S
$$

be two convex sets. Define

$$
T \leftarrow S:=\bigcup_{F \cap T \neq \emptyset} \operatorname{relint}(F)
$$

Example: $\quad T \leftarrow S$

Constructions IV: Non-Closed Sets

Let

$$
T \subseteq S
$$

be two convex sets. Define

$$
T \leftarrow S:=\bigcup_{F \cap T \neq \emptyset} \operatorname{relint}(F)
$$

Example: $\quad T \leftarrow S$

Constructions IV: Non-Closed Sets

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets.

Constructions IV: Non-Closed Sets

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.

Constructions IV: Non-Closed Sets

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.

Corollary
The relative interior of an sdr set is sdr.

Constructions IV: Non-Closed Sets

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.

Corollary
The relative interior of an sdr set is sdr.
Proof.

Constructions IV: Non-Closed Sets

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.

Corollary
The relative interior of an sdr set is sdr.
Proof.
Take $x \in \operatorname{relint}(S)$.

Constructions IV: Non-Closed Sets

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.

Corollary
The relative interior of an sdr set is sdr.
Proof.
Take $x \in \operatorname{relint}(S)$. Then $\operatorname{relint}(S)=\{x\} \leftrightarrows S$.

Constructions IV: Non-Closed Sets

More examples of sdr sets:

Constructions IV: Non-Closed Sets

More examples of sdr sets:

Constructions IV: Non-Closed Sets

More examples of sdr sets:

Constructions IV: Non-Closed Sets

More examples of sdr sets:

Constructions IV: Non-Closed Sets

More examples of sdr sets:

Non-Closed Sets: Sketch of Proof

Non-Closed Sets: Sketch of Proof

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.

Non-Closed Sets: Sketch of Proof

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.
Lemma
Let $A \in \operatorname{Sym}_{k}(\mathbb{R})$ and $B \in \mathbb{R}^{m \times k}$. Let I_{m} denote the identity matrix of dimension m. Then the following are equivalent:
(i) there is some $\lambda \in \mathbb{R}$ such that $\left(\begin{array}{c|c}A & B^{t} \\ \hline B & \lambda \cdot I_{m}\end{array}\right) \succeq 0$
(ii) $A \succeq 0$ and $\operatorname{ker} A \subseteq \operatorname{ker} B$

Non-Closed Sets: Sketch of Proof

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.
Proof of the Theorem.

Non-Closed Sets: Sketch of Proof

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.
Proof of the Theorem.
First assume that S is a spectrahedron.

Non-Closed Sets: Sketch of Proof

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.
Proof of the Theorem.
First assume that S is a spectrahedron. Let $A(x)$ be a k-dimensional symmetric linear matrix polynomial defining S.

Non-Closed Sets: Sketch of Proof

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.
Proof of the Theorem.
First assume that S is a spectrahedron. Let $A(x)$ be a k-dimensional symmetric linear matrix polynomial defining S. For $z \in T$ we have

Non-Closed Sets: Sketch of Proof

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.
Proof of the Theorem.
First assume that S is a spectrahedron. Let $A(x)$ be a k-dimensional symmetric linear matrix polynomial defining S. For $z \in T$ we have

$$
\bigcup_{z \in F} \operatorname{relint}(F)=\left\{x \in \mathbb{R}^{n} \mid A(x) \succeq 0, \text { ker } A(x) \subseteq \operatorname{ker} A(z)\right\}
$$

Non-Closed Sets: Sketch of Proof

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.
Proof of the Theorem.
First assume that S is a spectrahedron. Let $A(x)$ be a k-dimensional symmetric linear matrix polynomial defining S. For $z \in T$ we have

$$
\bigcup_{z \in F} \operatorname{relint}(F)=\left\{x \in \mathbb{R}^{n} \mid A(x) \succeq 0, \operatorname{ker} A(x) \subseteq \operatorname{ker} A(z)\right\} .
$$

So

$$
(T \leftrightarrow S)=\left\{x \in \mathbb{R}^{n} \mid \exists z \in T: A(x) \succeq 0 \text { and } \operatorname{ker} A(x) \subseteq \operatorname{ker} A(z)\right\},
$$

Non-Closed Sets: Sketch of Proof

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.
Proof of the Theorem.
First assume that S is a spectrahedron. Let $A(x)$ be a k-dimensional symmetric linear matrix polynomial defining S. For $z \in T$ we have

$$
\bigcup_{z \in F} \operatorname{relint}(F)=\left\{x \in \mathbb{R}^{n} \mid A(x) \succeq 0, \operatorname{ker} A(x) \subseteq \operatorname{ker} A(z)\right\} .
$$

So

$$
(T \leftrightarrow S)=\left\{x \in \mathbb{R}^{n} \left\lvert\, \exists z \in T \exists \lambda\left(\begin{array}{c|c}
A(x) & A(z) \\
\hline A(z) & \lambda \cdot I_{k}
\end{array}\right) \succeq 0\right.\right\},
$$

Non-Closed Sets: Sketch of Proof

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.
Proof of the Theorem.
First assume that S is a spectrahedron. Let $A(x)$ be a k-dimensional symmetric linear matrix polynomial defining S. For $z \in T$ we have

$$
\bigcup_{z \in F} \operatorname{relint}(F)=\left\{x \in \mathbb{R}^{n} \mid A(x) \succeq 0, \text { ker } A(x) \subseteq \operatorname{ker} A(z)\right\}
$$

So

$$
(T \leftrightarrow S)=\left\{x \in \mathbb{R}^{n} \left\lvert\, \exists z \in T \exists \lambda\left(\begin{array}{c|c}
A(x) & A(z) \\
\hline A(z) & \lambda \cdot I_{k}
\end{array}\right) \succeq 0\right.\right\}
$$

which is a semidefinite representation.

Non-Closed Sets: Sketch of Proof

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.
Proof of the Theorem.
The case when S is sdr but not a spectrahedron can then be reduced to the above case.

Non-Closed Sets: Sketch of Proof

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.
Proof of the Theorem.
The case when S is sdr but not a spectrahedron can then be reduced to the above case.
Note: The proof gives an explicit construction of a spectrahedron projecting to $T \leftrightarrow S$.

Non-Closed Sets: Sketch of Proof

Theorem
Suppose $T \subseteq S$ are both semidefinitely representable sets. Then

$$
T \leftrightarrow S
$$

is again semidefinitely representable.
Proof of the Theorem.
The case when S is sdr but not a spectrahedron can then be reduced to the above case.
Note: The proof gives an explicit construction of a spectrahedron projecting to $T \leftrightarrow S$. One can for example see that rational coefficients in the representations of T and S are preserved.

Future Work/Open Problems

Future Work/Open Problems

- Let $\nu_{d}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ be the Veronese embedding,

Future Work/Open Problems

- Let $\nu_{d}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ be the Veronese embedding, i.e.

$$
x \mapsto\left(x^{\alpha}\right)_{|\alpha| \leq d}
$$

Future Work/Open Problems

- Let $\nu_{d}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ be the Veronese embedding, i.e.

$$
x \mapsto\left(x^{\alpha}\right)_{|\alpha| \leq d}
$$

What about $\operatorname{conv}\left(\nu_{d}\left(\mathbb{R}^{n}\right)\right)$ or $\operatorname{conv}\left(\nu_{d}\left([0,1]^{n}\right)\right)$?

Future Work/Open Problems

- Let $\nu_{d}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ be the Veronese embedding, i.e.

$$
x \mapsto\left(x^{\alpha}\right)_{|\alpha| \leq d}
$$

What about $\operatorname{conv}\left(\nu_{d}\left(\mathbb{R}^{n}\right)\right)$ or $\operatorname{conv}\left(\nu_{d}\left([0,1]^{n}\right)\right)$? Are these sets sdr?

Future Work/Open Problems

- Let $\nu_{d}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ be the Veronese embedding, i.e.

$$
x \mapsto\left(x^{\alpha}\right)_{|\alpha| \leq d}
$$

What about $\operatorname{conv}\left(\nu_{d}\left(\mathbb{R}^{n}\right)\right)$ or $\operatorname{conv}\left(\nu_{d}\left([0,1]^{n}\right)\right)$? Are these sets sdr?

Reason:

Future Work/Open Problems

- Let $\nu_{d}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ be the Veronese embedding, i.e.

$$
x \mapsto\left(x^{\alpha}\right)_{|\alpha| \leq d}
$$

What about $\operatorname{conv}\left(\nu_{d}\left(\mathbb{R}^{n}\right)\right)$ or $\operatorname{conv}\left(\nu_{d}\left([0,1]^{n}\right)\right)$? Are these sets sdr?

Reason: Convex hulls of images of arbitrary polynomial mappings can be reduced to this case.

Future Work/Open Problems

- Let $\nu_{d}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ be the Veronese embedding, i.e.

$$
x \mapsto\left(x^{\alpha}\right)_{|\alpha| \leq d}
$$

What about $\operatorname{conv}\left(\nu_{d}\left(\mathbb{R}^{n}\right)\right)$ or $\operatorname{conv}\left(\nu_{d}\left([0,1]^{n}\right)\right)$? Are these sets sdr?

Reason: Convex hulls of images of arbitrary polynomial mappings can be reduced to this case.

- What about the complexity of semidefinite representations?

Future Work/Open Problems

- Let $\nu_{d}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ be the Veronese embedding, i.e.

$$
x \mapsto\left(x^{\alpha}\right)_{|\alpha| \leq d}
$$

What about $\operatorname{conv}\left(\nu_{d}\left(\mathbb{R}^{n}\right)\right)$ or $\operatorname{conv}\left(\nu_{d}\left([0,1]^{n}\right)\right)$? Are these sets sdr?

Reason: Convex hulls of images of arbitrary polynomial mappings can be reduced to this case.

- What about the complexity of semidefinite representations? How many additional variables are needed?

Future Work/Open Problems

For example:

Future Work/Open Problems

For example:
Can anyone prove that the set $S=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{4}+x_{2}^{4} \leq 1\right\}$ is not the projection of a spectrahedron from \mathbb{R}^{3} ?

Thank you for your attention!

