Lower bounds for a polynomial in terms of its coefficients

M. Ghasemi, M. Marshall Department of Mathematics & Statistics University of Saskatchewan Saskatoon, SK, Canada, S7N 5E6 February 16, 2010

Abstract

• We determine new sufficient conditions in terms of the coefficients for a polynomial $f \in \mathbb{R}[\underline{X}] := \mathbb{R}[X_1, \dots, X_n]$ of degree 2d $(d \ge 1)$ to be a sum of squares of polynomials, thereby strengthening results of Lasserre [6] and of Fidalgo and Kovacec [2].

• Exploiting these results, we determine, for any polynomial $f \in \mathbb{R}[X]$ of degree 2d whose highest degree term is an interior point in the cone of sos forms of degree 2d, a real number r such that f - r is a sum of squares of polynomials.

• Actually, we determine three different real numbers r having this property.

- The existence of such a number r was proved earlier by Marshall [8], but no estimates for r were given.
- We also determine lower bounds (more precisely, three lower bounds) for any polynomial f whose highest degree term is positive definite.

Contents

- 1. Introduction
- 2. Sufficient conditions for a polynomial to be sos
- 3. Determining lower bounds
- 4. Further remarks
- 5. References

Introduction 1

• Fix a non-constant polynomial $f \in \mathbb{R}[\underline{X}] := \mathbb{R}[X_1, \cdots, X_n]$, where $n \ge 1$ is an integer number, and define

$$f_* := \inf\{f(\underline{a}) \mid \underline{a} \in \mathbb{R}^n\}.$$

• Denote the cone of all sos polynomials by $\sum \mathbb{R}[\underline{X}]^2$ and define

$$f_{sos} := \sup\{r \in \mathbb{R} \mid f - r \in \sum \mathbb{R}[\underline{X}]^2\}.$$

• One can prove that $f_{sos} \leq f_*$. Computing f_* is difficult in general, and one of the successful approaches is to compute f_{sos} instead. This is accomplished by using *semidefinite* programming (SDP) which is a polynomial time algorithm [5] [9].

(1)

• When is a given polynomial $f \in \mathbb{R}[\underline{X}]$ a sum of squares? One obvious necessary condition is that $f \geq 0$ on \mathbb{R}^n , but there is a well known result due to Hilbert [3] that this necessary condition is not sufficient in general.

• In this paper we are interested in some recent results, due to Lasserre [6] and to Fidalgo and Kovacec [2], which give sufficient conditions on the coefficients for a polynomial to be a sum of squares. We establish new and improved versions of these results; see Ths. 2.3 and 2.5 and Cors. 2.4 and 2.6.

• Let $\deg(f) = 2d$, $d \ge 1$, and decompose f as $f = f_0 + \cdots + f_{2d}$ (the homogeneous decomposition of f), where f_i is a form of degree i, i = 0, ..., 2d.

• We denote the cone of all positive semidefinite forms and sos forms of degree 2d by $P_{2d,n}$ and $\Sigma_{2d,n}$, respectively. We denote by $P_{2d,n}^{\circ}$ and $\Sigma_{2d,n}^{\circ}$ the interior of $P_{2d,n}$ and $\Sigma_{2d,n}$, more precisely, the interior in the subspace of $\mathbb{R}[\underline{X}]$ consisting of forms of degree 2d.

• A necessary condition for $f_* \neq -\infty$ is that $f_{2d} \in P_{2d,n}$. A sufficient condition for $f_* \neq -\infty$ is that $f_{2d} \in P_{2d,n}^{\circ}$. A necessary condition for $f_{sos} \neq -\infty$ is that $f_{2d} \in \Sigma_{2d,n}$. A sufficient condition for $f_{sos} \neq -\infty$ is that $f_{2d} \in \Sigma_{2d,n}^{\circ}$ [8, Prop. 5.1].

• We apply Cors. 2.4 and 2.6 to determine, assuming that $f_{2d} \in \Sigma_{2d,n}^{\circ}$, two lower bounds for f_{sos} , which we denote by r_L and r_{FK} respectively; see Ths. 3.1 and 3.2. Yet another lower bound for f_{sos} , which we denote by r_{dmt} , is obtained by applying [2, Th. 2.3] directly; see Th. 3.3. The bounds r_L , r_{FK} and r_{dmt} are not comparable; see Ex. 4.2. If we assume

only that $f_{2d} \in P_{2d,n}^{\circ}$ then it is still possible to determine lower bounds for f_* , in a similar way, but these may not be lower bounds for f_{sos} ; see Th. 4.3.

• We introduce notation that we will need. Let $\mathbb{N} = \{0, 1, 2, ...\}$ be the set of natural numbers. For $\underline{X} = (X_1, \ldots, X_n)$ and $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$, define $\underline{X}^{\alpha} := X_1^{\alpha_1} \cdots X_n^{\alpha_n}$ and $|\alpha| := \alpha_1 + \cdots + \alpha_n$. Every polynomial $f \in \mathbb{R}[\underline{X}]$ of degree 2d can be written in the form

$$f = f_0 + \sum_{\alpha \in \Omega(f)} f_\alpha \underline{X}^\alpha + \sum_{i=1}^n f_{2d,i} X_i^{2d},$$

where $f_0, f_{2d,i} \in \mathbb{R}$ and, for each $\alpha \in \Omega(f), 0 \neq f_\alpha \in \mathbb{R}, 0 < |\alpha| \leq 2d$, and $\alpha \notin f_{\alpha}$ $\{2d\epsilon_1,\ldots,2d\epsilon_n\}$, where $\epsilon_i = (\delta_{i1},\ldots,\delta_{in})$, and

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}.$$

Let $\Delta(f) = \{ \alpha \in \Omega(f) \mid f_{\alpha} \underline{X}^{\alpha} \text{ is not a square in } \mathbb{R}[\underline{X}] \} = \{ \alpha \in \Omega(f) \mid \text{ either } f_{\alpha} < \beta \}$ 0 or α_i is odd for some $i \in \{1, \ldots, n\}$. Since our polynomial f is usually fixed, we will often denote $\Omega(f)$ and $\Delta(f)$ just by Ω and Δ for short.

• Let $\widetilde{f}(\underline{X}, Y) = Y^{2d} f(\frac{X_1}{V}, \dots, \frac{X_n}{V})$. From (2), it is clear that

$$\widetilde{f}(\underline{X},Y) = f_0 Y^{2d} + \sum_{\alpha \in \Omega} f_\alpha \underline{X}^\alpha Y^{2d-|\alpha|} + \sum_{i=1}^n f_{2d,i} X_i^{2d}$$

(2)

is a form of degree 2d, called the homogenization of f. We have the following well-known result:

Proposition 1.1. f is sos if and only if \tilde{f} is sos.

Proof. See [7, Prop. 1.2.4].

• For a (univariate) polynomial of the form $p(t) = t^n - \sum_{i=0}^{n-1} a_i t^i$, where each a_i is nonnegative and at least one a_i is nonzero, we denote by C(p) the unique positive root of p [10, Th. 1.1.3]. For any polynomial $q(t) = \sum_{i=0}^{n} b_i t^i$, $b_n \neq 0$, the roots of q are bounded in absolute value by $C(t^n - \sum_{i=0}^{n-1} \frac{|b_i|}{|b_n|} t^i)$. By convention, $C(t^n) := 0$.

• There are various upper bounds for C(p) which are expressible in an elementary way in terms of the coefficients of p, for example,

Proposition 1.2. Suppose $p(t) = t^n - \sum_{i=0}^{n-1} a_i t^i$, where each a_i is nonnegative and at least one a_i is nonzero. Then

(1)
$$C(p) \le \max\{1, a_0 + a_1 + \dots + a_{n-1}\},$$

(2) $C(p) \le \max\{a_0, 1 + a_1, 1 + a_2, \dots, 1 + a_{n-1}\},$
(3) $C(p) \le 2\max\{a_{n-1}, (a_{n-2})^{1/2}, (a_{n-3})^{1/3}, \dots, (a_0)^{1/n}\}.$

Proof. Bounds (1) and (2) are due basically to Cauchy. See [1] for these bounds and for other bounds of this sort. See [4, Ex. 4.6.2; 20] for bound (3).

2 Sufficient conditions for a polynomial to be sos

• We make use of the following result:

Theorem 2.1 (Reznick). Suppose $p(\underline{x}) = \sum_{i=1}^{n} a_i x_i^{2d} - 2dx_1^{a_1} \cdots x_n^{a_n}, a = (a_1, \dots, a_n) \in \mathbb{N}^n$, |a| = 2d. Then p is sobs.

• Notes:

— sobs := sum of binomial squares, i.e., a sum of squares of the form $(\beta \underline{x}^b - \gamma \underline{x}^c)^2$ with $\beta, \gamma \in \mathbb{R} \text{ and } c, d \in \mathbb{N}^n.$

— Th. 2.1 can be deduced from results of Reznick in [11] and [12], specifically, from [12, Th. 2.2 and Th. 4.4]. A direct elementary proof of Th. 2.1 is given below. If one only wants to prove that p is sos the proof is even simpler.

Proof. By induction on n. If n = 1 then p = 0 and the result is clear. Assume now that $n \geq 2$. By induction on n we can assume each a_i is strictly positive.

Case 1: Suppose $\exists i_1 \neq i_2$ with $a_{i_1} \leq d$ and $a_{i_2} \leq d$. Decompose $a = (a_1, \ldots, a_n)$ as a = b + c with $b, c \in \mathbb{N}^n$, $b_{i_1} = 0$, $c_{i_2} = 0$ and $\sum_{i=1}^n b_i = \sum_{i=1}^n c_i = d$. Then $(\underline{x}^b - \underline{x}^c)^2 = b^{-1}$ $x^{2b} - 2x^b x^c + x^{2c} = x^{2b} - 2x^a + x^{2c}$, so

$$p = \sum_{i=1}^{n} a_i x_i^{2d} - 2d\underline{x}^a = \sum_{i=1}^{n} a_i x_i^{2d} - d[\underline{x}^{2b} + \underline{x}^{2c} - (\underline{x}^b - \underline{x}^c)^2 + \frac{1}{2} \sum_{i=1}^{n} 2b_i x_i^{2d} - 2d\underline{x}^{2b} + \frac{1}{2} \sum_{i=1}^{n} 2c_i x_i^{2d} - 2d\underline{x}^{2c} + d(\underline{x}^b - \underline{x}^c)^2 + \frac{1}{2} \sum_{i=1}^{n} 2c_i x_i^{2d} - 2d\underline{x}^{2c} + d(\underline{x}^b - \underline{x}^c)^2 + \frac{1}{2} \sum_{i=1}^{n} 2c_i x_i^{2d} - 2d\underline{x}^{2c} + d(\underline{x}^b - \underline{x}^c)^2 + \frac{1}{2} \sum_{i=1}^{n} 2c_i x_i^{2d} - 2d\underline{x}^{2c} + \frac{1}{2} \sum_{i=1}^{n} 2c_i x_i^{2d} + \frac{1}$$

Each term is sobs, by induction on n.

Case 2: Suppose we are not in Case 1. Since there is at most one *i* satisfying $a_i > d$ it follows that n = 2, so $p = a_1 x_1^{2d} + a_2 x_2^{2d} - 2dx_1^{a_1} x_2^{a_2}$. We know that $p \ge 0$ on \mathbb{R}^2 , by the arithmetic-geometric inequality. Since n = 2 and p is homogeneous, it follows that p is sos (dehomogenize p and apply [8], Prop. 1.2.1 and Prop. 1.2.4).

But we want to show p is sobs, which requires more work. Denote by AGI(2, d) the set of all homogeneous polynomials of the form $p = a_1 x_1^{2d} + a_2 x_2^{2d} - 2dx_1^{a_1} x_2^{a_2}, a_1, a_2 \in \mathbb{N},$ $a_1 + a_2 = 2d$. This set is finite. If $a_1 = 0$ or $a_1 = 2d$ then p = 0 which is trivially sobs. If $a_1 = a_2 = d$ then $p = d(x_1^d - x_2^d)^2$, which is also sobs. Suppose now that $0 < a_1 < 2d$, $a_1 \neq d$. Suppose $a_1 > a_2$ (The argument for $a_1 < a_2$ is similar.) Decompose $a = (a_1, a_2)$ as a = b + c, b = (d, 0), $c = (a_1 - d, a_2)$. Expand p as in the proof of Case 1 to obtain

$$p = \frac{1}{2} \left[\sum_{i=1}^{2} 2b_i x_i^{2d} - 2d\underline{x}^{2b} \right] + \frac{1}{2} \left[\sum_{i=1}^{2} 2c_i x_i^{2d} - 2d\underline{x}^{2c} \right] + d(\underline{x}^b - d\underline{x}^{2c}) + d(\underline$$

ן2

 $(\underline{x}^c)^2$.

 $(x^{c})^{2}$.

Observe that $\sum_{i=1}^{2} 2b_i x_i^{2d} - 2d\underline{x}^{2b} = 0$. Thus $p = \frac{1}{2}p_1 + d(\underline{x}^b - \underline{x}^c)^2$, where $p_1 := \sum_{i=1}^{2} 2c_i x_i^{2d} - d\underline{x}^{2d} 2d\underline{x}^{2c}$. If p_1 is sobs the p is also sobs. If p_1 is not sobs then we can repeat to get $p_1 =$ $\frac{1}{2}p_2 + d(\underline{x}^{d'} - \underline{x}^{c'})^2$. Continuing in this way we get a sequence $p = p_0, p_1, p_2, \ldots$ with each \bar{p}_i an element of the finite set AGI(2, d), so $p_i = p_j$ for some i < j. Since $p_i = 2^{i-j}p_j + a$ sum of binomial squares, this implies p_i is sobs and hence that p is sobs.

Corollary 2.2 (Fidalgo-Kovacec [2, Th. 2.3]). For a form $p(\underline{X}) = \sum_{i=1}^{n} \beta_i X_i^{2d} - \mu \underline{X}^{\alpha}$ such that $\alpha_i > 0$ and $\beta_i \ge 0$ for every i = 1, ..., n and $\mu \ge 0$ if all α_i are even, the following are equivalent:

i. p is positive semidefinite.

ii.
$$|\mu| \le 2d \prod_{i=1}^{n} \left(\frac{\beta_i}{\alpha_i}\right)^{\frac{\alpha_i}{2d}}$$

iii. p is sobs.

iv. p is sos.

- Cor. 2.2 is an easy consequence on Th. 2.1. See [2] for the proof.
- In what follows we use Cor. 2.2 to improve on the sufficient conditions given in [6, Th. 3] and [2, Th. 4.3].

Theorem 2.3. Suppose $f \in \mathbb{R}[\underline{X}]$ is a form of degree 2d and $f_{2d,i} \ge \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}, \quad i = 1, \dots, n.$

Then f is a sum of (binomial) squares.

Proof. We claim that

$$\sum_{i=1}^{n} |f_{\alpha}| \frac{\alpha_{i}}{2d} X_{i}^{2d} + f_{\alpha} \underline{X}^{\alpha}$$

is sobs, for each $\alpha \in \Delta$. It suffices to show that $\sum_{\alpha_i \neq 0} |f_\alpha| \frac{\alpha_i}{2d} X_i^{2d} + f_\alpha \underline{X}^\alpha$ is sobs, for each $\alpha \in \Delta$. Since

$$2d\prod_{\alpha_i\neq 0} \left(\frac{|f_{\alpha}|\frac{\alpha_i}{2d}}{\alpha_i}\right)^{\frac{\alpha_i}{2d}} = 2d\frac{|f_{\alpha}|}{2d} = |f_{\alpha}| \ge |f_{\alpha}|,$$

and since $f_{\alpha} < 0$ if all the α_i are even, by definition of Δ , this follows, as a consequence of Cor. 2.2. This proves the claim. Adding, as α runs through Δ , this implies

$$\sum_{i=1}^{n} \left(\sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_{i}}{2d}\right) X_{i}^{2d} + \sum_{\alpha \in \Delta} f_{\alpha} \underline{X}^{\alpha}$$

is sobs. Since $f_{2d,i} \ge \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}$, for each i,

$$\sum_{i=1}^{n} f_{2d,i} X_i^{2d} - \sum_{i=1}^{n} \left(\sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}\right) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}) X_i^{2d} = \sum_{i=1$$

is sobs. Adding again, this implies that

$$\sum_{i=1}^{n} f_{2d,i} X_i^{2d} + \sum_{\alpha \in \Delta} f_{\alpha} \underline{X}^{\alpha}$$

is sobs. Finally, since the remaining terms $f_{\alpha} \underline{X}^{\alpha}$, $\alpha \in \Omega \setminus \Delta$, are squares of monomials, by definition of Δ , this implies that f is sobs.

Corollary 2.4. For any polynomial $f \in \mathbb{R}[\underline{X}]$ of degree 2d, if

(L1)
$$f_0 \ge \sum_{\alpha \in \Delta} |f_\alpha| \frac{2d - |\alpha|}{2d}$$
 and (L2) $f_{2d,i} \ge \sum_{\alpha \in \Delta} |f_\alpha| \frac{\alpha_i}{2d}$, $i = 1, \dots,$

then f is a sum of squares.

Proof. Apply Th. 2.3 to the homogenization \tilde{f} of f to conclude that \tilde{f} is sos. Consequently, by Prop. 1.1, f is also sos.

, n,

• In [6, Th. 3], it is proved that if

$$f_0 \ge \sum_{\alpha \in \Delta} |f_{\alpha}|$$
 and $f_{2d,i} \ge \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{|\alpha|}{2d}, \quad i = 1, \dots, n,$

then f is a sum of squares. Since $1 \ge \frac{2d-|\alpha|}{2d}$ and $\frac{|\alpha|}{2d} \ge \frac{\alpha_i}{2d}$, it is clear that Cor. 2.4 improves on [6, Th. 3].

Theorem 2.5. Suppose $f \in \mathbb{R}[\underline{X}]$ is a form of degree 2d and

$$\min_{i=1,\dots,n} f_{2d,i} \ge \frac{1}{2d} \sum_{\alpha \in \Delta} |f_{\alpha}| (\alpha^{\alpha})^{\frac{1}{2d}}.$$

Then f is a sum of (binomial) squares.

Here, $\alpha^{\alpha} := \alpha_1^{\alpha_1} \cdots \alpha_n^{\alpha_n}$ (the convention being that $0^0 := 1$). *Proof.* Let $e_{\alpha} := \frac{1}{2d} |f_{\alpha}| (\alpha^{\alpha})^{\frac{1}{2d}}$. We claim that

$$e_{\alpha} \sum_{i=1}^{n} X_i^{2d} + f_{\alpha} \underline{X}^{\alpha}$$

is sobs, for each $\alpha \in \Delta$. Since $e_{\alpha} \geq 0$, $e_{\alpha} \sum_{\alpha_i=0} X_i^{2d}$ is sobs, so it suffices to show that $e_{\alpha} \sum_{\alpha_i \neq 0} X_i^{2d} - f_{\alpha} \underline{X}^{\alpha}$ is sobs. Since

$$2d\prod_{\alpha_i\neq 0} \left(\frac{e_{\alpha}}{\alpha_i}\right)^{\frac{\alpha_i}{2d}} = \frac{2de_{\alpha}}{(\alpha^{\alpha})^{\frac{1}{2d}}} = |f_{\alpha}| \ge |f_{\alpha}|,$$

and since $f_{\alpha} < 0$ if all the α_i are even, by definition of Δ , this follows from Cor. 2.2. This proves the claim. Adding, this implies

$$\sum_{\alpha \in \Delta} e_{\alpha} \sum_{i=1}^{n} X_{i}^{2d} + \sum_{\alpha \in \Delta} f_{\alpha} \underline{X}^{\alpha}$$

is sobs. Since $f_{2d,i} \ge \sum_{\alpha \in \Delta} e_{\alpha}$, for each *i*,

$$\sum_{i=1}^{n} f_{2d,i} X_i^{2d} - \sum_{\alpha \in \Delta} e_\alpha \sum_{i=1}^{n} X_i^{2d} = \sum_{i=1}^{n} (f_{2d,i} - \sum_{\alpha \in \Delta} e_\alpha) X_i^2$$

is sobs. Adding again, this implies

$$\sum_{i=1}^{n} f_{2d,i} X_i^{2d} + \sum_{\alpha \in \Delta} f_{\alpha} \underline{X}^{\alpha}$$

0-11

2d

is sobs. Finally, since the remaining terms $f_{\alpha} \underline{X}^{\alpha}$, $\alpha \in \Omega \setminus \Delta$, are squares of monomials, this implies f is sobs.

• In [2, Th. 4.3] it is proved that if $f \in \mathbb{R}[\underline{X}]$ is any form of degree 2d and

$$\min_{i=1,\dots,n} f_{2d,i} \ge \frac{1}{n} (\frac{n}{2d})^{2d} \sum_{\alpha \in \Delta} |f_{\alpha}| \alpha^{\alpha}$$

then f is a sum of squares. Using $\alpha^{\alpha} \geq (\frac{2d}{n})^{2d}$, one sees immediately that

$$\frac{1}{n} \left(\frac{n}{2d}\right)^{2d} \alpha^{\alpha} \ge \frac{1}{2d} (\alpha^{\alpha})^{\frac{1}{2d}}.$$

Consequently, Th. 2.5 improves on [2, Th. 4.3]. The fact that $\alpha^{\alpha} \geq (\frac{2d}{n})^{2d}$ is an immediate consequence of the fact that the minimum value of the function

$$G(t_1,\ldots,t_n):=t_1^{t_1}\cdots t_n^{t_n}$$

on the compact subset of \mathbb{R}^n defined by $t_i \ge 0, i = 1, \ldots, n, \sum_{i=1}^n t_i = 2d$ is equal to $(\frac{2d}{n})^{2d}$, the minimum occurring at the point $t_1 = \cdots = t_n = \frac{2d}{n}$.

Corollary 2.6. If $f \in \mathbb{R}[\underline{X}]$ is a polynomial of degree 2d and

(FK)
$$\min_{i=1,\dots,n} \{ f_{2d,i}, f_0 \} \ge \frac{1}{2d} \sum_{\alpha \in \Delta} |f_\alpha| (\alpha^\alpha)^{\frac{1}{2d}} (2d - |\alpha|)^{\frac{2d - |\alpha|}{2d}}$$

then f is a sum of squares.

Proof. Homogenize f and apply Th. 2.5 and Prop. 1.1.

• Recall that $\Sigma_{2d,n}^{\circ}$ (resp., $P_{2d,n}^{\circ}$) denotes the interior of the cone $\Sigma_{2d,n}$ (resp., $P_{2d,n}$) in the real vector space consisting of forms of degree 2d. The following result is well-known. It is proved, for example, in [8, Prop. 5.3(2)].

Corollary 2.7. $X_1^{2d} + \cdots + X_n^{2d} \in \Sigma_{2d,n}^{\circ}$.

Proof. Let $f(\underline{X}) = X_1^{2d} + \cdots + X_n^{2d} + h(\underline{X})$ where $h(\underline{X})$ is any form of degree 2d whose coefficients have absolute value $\leq \epsilon$ where ϵ is some small positive real. Applying Th. 2.3 or Th. 2.5, one sees that f is sos, for ϵ sufficiently small.

Remark 2.8. Let C be a cone in a finite dimensional real vector space V. Let C° denote the interior of C. If $f \in C^{\circ}$ and $g \in V$ then $g \in C^{\circ}$ iff $g - \epsilon f \in C$ for some real $\epsilon > 0$.

Proof. Suppose $g - \epsilon f \in C$. Let $h \in V$. Since f belongs to the interior of C, there exists some real $\delta > 0$ such that $f + \frac{\delta}{\epsilon}h \in C$. Then $g + \delta h = (g - \epsilon f) + \epsilon(f + \frac{\delta}{\epsilon}h) \in C$. This proves that g belongs to the interior of C. The other implication is clear.

• It follows from Cor. 2.7 and Rem. 2.8 that a form f of degree 2d is an interior point of $\Sigma_{2d,n}$ iff $f - \epsilon \sum_{i=1}^{n} X_i^{2d} \in \Sigma_{2d,n}$ for some real $\epsilon > 0$.

• Ths. 2.3 and 2.5 provide sufficient conditions for $f \in \Sigma_{2d,n}^{\circ}$ to hold and have the nice additional property of allowing computation of ϵ :

Corollary 2.9. If f is a form of degree 2d and $\epsilon := \max{\{\epsilon_1, \epsilon_2\}} > 0$ where

$$\epsilon_1 := \min_{i=1,...,n} (f_{2d,i} - \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\alpha_i}{2d}), \ \epsilon_2 := \min_{i=1,...,n} f_{2d,i} - \frac{1}{2d} \sum_{\alpha \in \Delta} |f_{\alpha}| \frac{\beta_{\alpha}}{2d}$$

then $f \in \Sigma_{2d,n}^{\circ}$ and $f - \epsilon \sum_{i=1}^{n} X_i^{2d} \in \Sigma_{2d,n}$.

Proof. Applying Th. 2.3 or Th. 2.5 (depending on whether $\epsilon = \epsilon_1$ or $\epsilon = \epsilon_2$) to the form $f - \epsilon \sum_{i=1}^{n} X_i^{2d}$, we see that $f - \epsilon \sum_{i=1}^{n} X_i^{2d}$ is sos.

3 Determining lower bounds

• In this section we assume $f_{2d} \in \Sigma_{2d,n}^{\circ}$ and we use Cor. 2.4 and Cor. 2.6 to produce concrete lower bounds for f_{sos} , which we denote by r_L and r_{FK} , respectively. We also apply Cor. 2.2 more or less directly to produce another concrete lower bound for f_{sos} , which we denote by r_{dmt} .

• Our lower bounds r_L , r_{FK} and r_{dmt} depend on the coefficients f_{α} , $\alpha \in \Delta$, $|\alpha| < 2d$, and ϵ , where ϵ is such that $\epsilon > 0$ and $f_{2d} - \epsilon \sum_{i=1}^{n} X_i^{2d} \in \Sigma_{2d,n}$. Existence of ϵ is a consequence of Cor. 2.7 and Rem. 2.8. I'll say more about ϵ and r_L , r_{FK} and r_{dmt} in Section 4.

 $_{\alpha}|(\alpha^{\alpha})^{\frac{1}{2d}},$

• We use Cor. 2.4 to produce a concrete lower bound r_L for f_{sos} as follows: **Theorem 3.1.** If $f_{2d} \in \Sigma_{2d,n}^{\circ}$ then $f_{sos} \geq r_L$, where

$$r_L := f_0 - \sum_{\alpha \in \Delta, |\alpha| < 2d} |f_\alpha| \frac{2d - |\alpha|}{2d} e^{-\frac{|\alpha|}{2d}} k^{|\alpha|},$$
$$k := \max_{i=1,\dots,n} C(t^{2d} - \sum_{\alpha \in \Delta, |\alpha| < 2d} |f_\alpha| \frac{\alpha_i}{2d} e^{-\frac{|\alpha|}{2d}} t^{|\alpha|})$$

and $\epsilon > 0$ is such that $f_{2d} - \epsilon \sum_{i=1}^{n} X_i^{2d} \in \Sigma_{2d,n}$.

• Notes:

— Th. 3.1 proves in particular that if $f_{2d} \in \Sigma_{2d,n}^{\circ}$ then $f_{sos} \neq -\infty$, i.e., it provides another proof of [8, Prop. 5.1].

— If $\ell \geq k$ then

$$f_0 - \sum_{\alpha \in \Delta, |\alpha| < 2d} |f_\alpha| \frac{2d - |\alpha|}{2d} \epsilon^{-\frac{|\alpha|}{2d}} \ell^{|\alpha|} \le f_0 - \sum_{\alpha \in \Delta, |\alpha| < 2d} |f_\alpha| \frac{2d - |\alpha|}{2d} \epsilon^{-\frac{|\alpha|}{2d}} k^{|\alpha|} = r_L.$$

In this way, by taking ℓ to be an upper bound for k computed using Prop. 1.2, we obtain a lower bound $f_0 - \sum_{\alpha \in \Delta, |\alpha| < 2d} |f_\alpha| \frac{2d - |\alpha|}{2d} e^{-\frac{|\alpha|}{2d}} \ell^{|\alpha|}$ for f_{sos} which is expressible in an elementary way in terms of ϵ and the coefficients $f_{\alpha}, \alpha \in \Delta, |\alpha| < 2d$.

Proof. Since $f_{2d} \in \Sigma_{2d,n}^{\circ}$, by Cor. 2.7 and Rem. 2.8, there exists $\epsilon > 0$ such that $f_{2d} =$ $\epsilon(X_1^{2d} + \cdots + X_n^{2d}) + g$ for some $g \in \Sigma_{2d,n}$. Scaling suitably $(X_i \mapsto \frac{X_i}{2d/\epsilon})$, we can assume that $\epsilon = 1$. Let $\hat{f} := f - g$. Decomposing \hat{f} as in equation (2) yields

$$\hat{f} = f_0 + \sum_{\alpha \in \Omega, |\alpha| < 2d} f_{\alpha} \underline{X}^{\alpha} + \sum_{i=1}^n X_i^{2d}.$$

If $\{\alpha \in \Delta \mid |\alpha| < 2d\} = \emptyset$, then $\hat{f} - r_L = \hat{f} - f_0$ is sos, using equation (3) and the definition of Δ , so $f - r_L$ is also so and the result is clear. Thus we can assume $\{\alpha \in \Delta \mid |\alpha| < 2d\} \neq \emptyset$, so k > 0. Scaling by $X_i \mapsto kX_i$, and rewriting condition (L2) of Cor. 2.4 for the polynomial $\hat{f}(k\underline{X}) - r$, using equation (3), yields

$$k^{2d} \ge \sum_{\alpha \in \Delta, |\alpha| < 2d} |f_{\alpha}| \frac{\alpha_i}{2d} k^{|\alpha|}, \quad i = 1, \dots, n.$$

By definition of $k, k^{2d} \geq \sum_{\alpha \in \Delta, |\alpha| < 2d} |f_{\alpha}| \frac{\alpha_i}{2d} k^{|\alpha|}$ for all i, so condition (L2) holds for $\hat{f}(k\underline{X}) - \hat{f}(k\underline{X})$ r. Rewriting condition (L1) of Cor. 2.4 for the polynomial $\hat{f}(k\underline{X}) - r$, we see that if $r \leq r_L$ then (L1) holds for $\hat{f}(k\underline{X}) - r$ so $\hat{f} - r$ is sos and hence also f - r is sos.

• In a similar way, we use Cor. 2.6 to produce a concrete lower bound r_{FK} for f_{sos} :

(3)

Theorem 3.2. If $f_{2d} \in \Sigma_{2d,n}^{\circ}$ then $f_{sos} \geq r_{FK}$, where $r_{FK} := f_0 - k^{2d}$,

$$k := C(t^{2d} - \sum_{i=1}^{2d-1} b_i t^i),$$

$$b_i := \frac{1}{2d} (2d - i)^{\frac{2d-i}{2d}} \epsilon^{-\frac{i}{2d}} \sum_{\alpha \in \Delta, |\alpha| = i} |f_{\alpha}| (\alpha^{\alpha})^{\frac{1}{2d}}, \ i = 1, \dots, 2d$$

and $\epsilon > 0$ is given as in Th. 3.1.

• Note: If $\ell \geq k$ then

$$f_0 - \sum_{i=1}^{2d-1} b_i \ell^i \le f_0 - \sum_{i=1}^{2d-1} b_i k^i = f_0 - k^{2d} = r_{FK}$$

so, using Prop. 1.2 again, we get another lower bound for f_{sos} expressible in an elementary way in terms of ϵ and the coefficients $f_{\alpha}, \alpha \in \Delta, |\alpha| < 2d$.

Proof. After scaling we can assume that $\epsilon = 1$ and $f_{2d} = X_1^{2d} + \cdots + X_n^{2d} + g$, where $g \in \Sigma_{2d,n}$. If $\{\alpha \in \Delta \mid |\alpha| < 2d\} = \emptyset$, then $b_i = 0$ for $i = 1, \dots 2d - 1$, k = 0 (by definition of $C(t^{2d})$), so $r_{FK} = f_0$. In this case the result is clear. So we can assume $\{\alpha \in \Delta \mid |\alpha| < 2d\} \neq \emptyset$,

-1

so k > 0. Set $r = r_{FK}$. Rewriting condition (FK) for the polynomial $\hat{f}(k\underline{X}) - r$, where $\hat{f} := f - g$, yields the condition:

$$\min\{(f_0 - r), k^{2d}\} \ge \sum_{i=1}^{2d-1} b_i k^i.$$

By definition of k and r, (4) holds, in fact, $f_0 - r = k^{2d} = \sum_{i=1}^{2d-1} b_i k^i$. This proves that $\hat{f} - r$ is sos and hence also that f - r is sos.

• One can also apply Cor. 2.2 directly to obtain a lower bound r_{dmt} for f_{sos} . **Theorem 3.3.** If $f_{2d} \in \Sigma_{2d,n}^{\circ}$ then

$$f_{sos} \ge r_{dmt} := f_0 - \sum_{\alpha \in \Delta, |\alpha| < 2d} (2d - |\alpha|) \left[\left(\frac{f_\alpha}{2d} \right)^{2d} \left(\left(\frac{t}{\epsilon} \right)^{|\alpha|} \alpha^{\alpha} \right) \right]$$

where $t := |\{\alpha \in \Delta \mid |\alpha| < 2d\}|$ and $\epsilon > 0$ is given as in Th. 3.1.

Proof. Let $\Delta' = \{ \alpha \in \Delta \mid |\alpha| < 2d \}$. After scaling, we can assume that $\epsilon = 1$. Let $\overline{f} = f_0 + \sum_{\alpha \in \Delta'} f_\alpha \underline{X}^\alpha + X_1^{2d} + \cdots + X_n^{2d}$ and let $F(\underline{X}, Y)$ denote the homogenization of

(4)

 $\frac{1}{2d-|\alpha|}$

$$\overline{f}(\sqrt[2^d]{t\underline{X}}) - r, \text{ where } r := f_0 - \sum_{\alpha \in \Delta'} r_\alpha, \text{ each } r_\alpha \ge 0. \text{ Then}$$

$$F(\underline{X}, Y) = (f_0 - r)Y^{2d} + \sum_{\alpha \in \Delta'} (X_1^{2d} + \dots + X_n^{2d} + f_\alpha t^{|\alpha|/2d} \underline{X}^\alpha)$$

$$= \sum_{\alpha \in \Delta'} (r_\alpha Y^{2d} + X_1^{2d} + \dots + X_n^{2d} + f_\alpha t^{|\alpha|/2d} \underline{X}^\alpha Y^{2d-|\alpha|/2d})$$

By Cor. 2.2, each term appearing in this sum will be sos if

$$|f_{\alpha}|t^{\frac{|\alpha|}{2d}} \leq 2d\left(\frac{r_{\alpha}}{2d-|\alpha|}\right)^{\frac{2d-|\alpha|}{2d}} \prod_{\alpha_i \neq 0} \left(\frac{1}{\alpha_i}\right)^{\frac{\alpha_i}{2d}},$$

or, equivalently, if

$$r_{\alpha} \ge \left(2d - |\alpha|\right) \left[\left(\frac{f_{\alpha}}{2d}\right)^{2d} t^{|\alpha|} \alpha^{\alpha} \right]^{\frac{1}{2d - |\alpha|}}.$$

Hence if $r \leq r_{dmt}$ then $\overline{f} - r$ is sos, so also f - r is sos.

 $|\alpha|$).

Further remarks 4

(1) The sufficient conditions given in Ths. 2.3 and 2.5 are not comparable. These conditions are also not necessary.

Example 4.1.

(a) $f(X, Y, Z) = X^4 + Y^4 + 4Z^4 + 4XZ^3$ is sos, by Th. 2.3, but Th. 2.5 does not apply.

(b) $f(X, Y, Z) = X^4 + Y^4 + Z^4 + \sqrt{8}XYZ^2$ is sos, by Th. 2.5, but Th. 2.3 does not apply.

(c) $f(X, Y, Z) = 16X^4 + Y^4 + 4Z^4 + 8XZ^3$ is sos, but neither Th. 2.3 nor Th. 2.5 applies.

(2) The bounds r_L , r_{FK} and r_{dmt} described in Ths. 3.1, 3.2 and 3.3 are not comparable. Example 4.2.

(a) For $f(X,Y) = X^6 + Y^6 + 7XY - 2X^2 + 7$, we have $r_L \approx -1.124$, $r_{FK} \approx -0.99$ and $r_{dmt} \approx -1.67$, so $r_{FK} > r_L > r_{dmt}$.

(b) For $f(X,Y) = X^6 + Y^6 + 4XY + 10Y + 13$, $r_L \approx -0.81$, $r_{FK} \approx -0.93$ and $r_{dmt} \approx -0.69$, so $r_{dmt} > r_L > r_{FK}$.

(c) For $f(X,Y) = X^4 + Y^4 + XY - X^2 - Y^2 + 1$, $r_L \approx -0.125$, $r_{FK} \approx -0.832$ and $r_{dmt} \approx -0.875$, so $r_L > r_{FK} > r_{dmt}$.

(3) To be able to compute r_L , r_{FK} and r_{dmt} one needs to know ϵ and the coefficients f_{α} , $|\alpha| < 2d$. What can one do if ϵ is not given, i.e., if only the coefficients f_{α} , $|\alpha| \leq 2d$ are given? Applying Cor. 2.9 to the form f_{2d} allows us to compute ϵ in certain cases: If $\epsilon := \max{\epsilon_1, \epsilon_2} > 0$ where

$$\epsilon_1 := \min_{i=1,\dots,n} (f_{2d,i} - \sum_{\alpha \in \Delta, |\alpha| = 2d} |f_{\alpha}| \frac{\alpha_i}{2d}), \ \epsilon_2 := \min_{i=1,\dots,n} f_{2d,i} - \frac{1}{2d} \sum_{\alpha \in \Delta, |\alpha| = 2d} |f_{\alpha}| (\alpha^{\alpha})^{\frac{1}{2d}},$$

then $f_{2d} \in \Sigma_{2d,n}^{\circ}$ and $f_{2d} - \epsilon \sum_{i=1}^{n} X_i^{2d} \in \Sigma_{2d,n}$.

(4) So far we have been assuming that $f_{2d} \in \Sigma_{2d,n}^{\circ}$ and we have used this assumption to determine lower bounds for f_{sos} . What can one say if one assumes only that $f_{2d} \in P_{2d,n}^{\circ}$? Suppose $\epsilon > 0$ is given such that $f_{2d} - \epsilon \sum_{i=1}^{n} X_i^{2d} \in P_{2d,n}$. One can then define r_L exactly as in Th. 3.1, but using this new ϵ , i.e.,

$$r_L := f_0 - \sum_{\alpha \in \Delta, |\alpha| < 2d} |f_\alpha| \frac{2d - |\alpha|}{2d} e^{-\frac{|\alpha|}{2d}} k^{|\alpha|},$$

$$k := \max_{i=1,\dots,n} C(t^{2d} - \sum_{\alpha \in \Delta, |\alpha| < 2d} |f_\alpha| \frac{\alpha_i}{2d} e^{-\frac{|\alpha|}{2d}} t^{|\alpha|}).$$

The r_L defined in this way might not be a lower bound for f_{sos} (it is even possible that

 $f_{sos} = -\infty$), but it will be a lower bound for f_* . Similar remarks apply to the other bounds r_{FK} and r_{dmt} .

Theorem 4.3. If $f_{2d} \in P_{2d,n}^{\circ}$ and $\epsilon > 0$ is such that $f_{2d} - \epsilon \sum_{i=1}^{n} X_i^{2d} \in P_{2d,n}$ then r_L , r_{FK} and r_{dmt} , defined as in Ths. 3.1, 3.2 and 3.3, respectively, but using this new choice of ϵ , are lower bounds for f on \mathbb{R}^n .

Proof. Argue as in the proof of Ths. 3.1, 3.2 and 3.3. The form g is no longer sos but it is positive semidefinite, which is all one needs for the conclusion.

Note: In Th. 4.3, the largest possible choice for ϵ is the minimum value of the rational function $f_{2d} / \sum_{i=1}^{n} X_i^{2d}$ on the n-1-sphere

$$\mathbb{S}^{n-1} := \{ \underline{a} \in \mathbb{R}^n \mid a_1^2 + \dots + a_n^2 = 1 \}.$$

(5) Denote by $\mathbb{R}[\underline{X}]_k$ the vector space of polynomials of degree $\leq k$. We know that for any $p \in P_{2d,n}^{\circ}$ and any $g \in \mathbb{R}[\underline{X}]_{2d-1}, (p+g)_* \neq -\infty$ and, for any $p \in \Sigma_{2d,n}^{\circ}$ and any $g \in \mathbb{R}[\underline{X}]_{2d-1}, (p+g)_* \neq -\infty$ $(p+g)_{sos} \neq -\infty$. Note that if $p \in P_{2d,n}$ is not positive definite then there exists $\underline{0} \neq \underline{a} \in \mathbb{R}^n$ such that $p(\underline{a}) = 0$. Let $g(\underline{X}) = \sum_{i=1}^{n} a_i X_i$. Then $(p+g)(t\underline{a}) = t ||\underline{a}||^2 \to -\infty$ as $t \to -\infty$, so $(p+g)_* = -\infty$. Therefore for any $p \in \partial P_{2d,n}$ ($\partial P_{2d,n}$ denotes the boundary of $P_{2d,n}$, i.e. $\partial P_{2d,n} = P_{2d,n} \setminus P_{2d,n}^{\circ}$, there exists $g \in \mathbb{R}[\underline{X}]_{2d-1}$, such that $(p+g)_* = -\infty$. The validity of the corresponding result for boundary points of $\Sigma_{2d,n}$ is unknown to the authors.

Question 4.4. Is it true that for any $p \in \partial \Sigma_{2d,n}$ there exists $g \in \mathbb{R}[\underline{X}]_{2d-1}$ such that $(p+g)_{sos} = -\infty?$

The answer to this question is 'yes' if $n \leq 2$ or d = 1 or (n = 3 and d = 2) by Hilbert's result [3]. In fact these are precisely the cases where $P_{2d,n}$ and $\Sigma_{2d,n}$ coincide.

References

- [1] E. Deutsch, Bounds for the zeros of polynomials, Amer. Math. Monthly 88 (205–206), 1981.
- 2 C. Fidalgo, and A. Kovacec, *Positive semidefinite diagonal minus tail forms are sums* of squares, Preprint, 2009.
- D. Hilbert, Uber die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann. 32 (342-350), 1888.
- D. Knuth, The Art of Computer Programming, Volume 2, Addison-Wesley, New York, 1969.
- J. B. Lasserre, Global Optimization with Polynomials and the Problem of Moments, |5| SIAM J. Optim. Volume 11, Issue 3 (796-817), 2001.

- [6] J. B. Lasserre, Sufficient Conditions for a Real Polynomial to be a Sum of Squares, Arch. Math. (Basel) 89 (390-398), 2007.
- [7] M. Marshall, *Positive Polynomials and Sum of Squares*, Mathematical Surveys and Monographs, Vol.146, 2008.
- M. Marshall, Representation of Non-Negative Polynomials, Degree Bounds and Appli-8 cations to Optimization, Canad. J. Math., 61 (205-221), 2009.
- 9 P. A. Parrilo, B. Sturmfels, Minimizing Polynomial Functions, Ser. Discrete Math. Theor. Comput. Sci. 60 (83-99), 2003.
- 10 V. V. Prasolov, *Polynomials*, Algorithms and Computation in Mathematics Vol.11, 2004.
- [11] B. Reznick, A quantitative version of Hurwitz' theorem on the arithmetic-geometric inequality, J. reine angew. Math. 377 (108-112), 1987.
- B. Reznick, Forms derived from the arithmetic geometric inequality, Math. Ann. 283 |12|(431-464), 1989.