Lower bounds for a polynomial in terms of its coefficients

M. Ghasemi, M. Marshall
Department of Mathematics \& Statistics
University of Saskatchewan
Saskatoon, SK, Canada, S7N 5E6
February 16, 2010

Abstract

- We determine new sufficient conditions in terms of the coefficients for a polynomial $f \in \mathbb{R}[\underline{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ of degree $2 d(d \geq 1)$ to be a sum of squares of polynomials, thereby strengthening results of Lasserre [6] and of Fidalgo and Kovacec [2]. - Exploiting these results, we determine, for any polynomial $f \in \mathbb{R}[\underline{X}]$ of degree $2 d$ whose highest degree term is an interior point in the cone of sos forms of degree $2 d$, a real number r such that $f-r$ is a sum of squares of polynomials. - Actually, we determine three different real numbers r having this property. - The existence of such a number r was proved earlier by Marshall [8], but no estimates for r were given. - We also determine lower bounds (more precisely, three lower bounds) for any polynomial f whose highest degree term is positive definite.

Contents

1. Introduction
2. Sufficient conditions for a polynomial to be sos
3. Determining lower bounds
4. Further remarks
5. References

1 Introduction

- Fix a non-constant polynomial $f \in \mathbb{R}[\underline{X}]:=\mathbb{R}\left[X_{1}, \cdots, X_{n}\right]$, where $n \geq 1$ is an integer number, and define

$$
f_{*}:=\inf \left\{f(\underline{a}) \mid \underline{a} \in \mathbb{R}^{n}\right\} .
$$

- Denote the cone of all sos polynomials by $\sum \mathbb{R}[\underline{X}]^{2}$ and define

$$
\begin{equation*}
f_{\text {sos }}:=\sup \left\{r \in \mathbb{R} \mid f-r \in \sum \mathbb{R}[\underline{X}]^{2}\right\} . \tag{1}
\end{equation*}
$$

- One can prove that $f_{s o s} \leq f_{*}$. Computing f_{*} is difficult in general, and one of the successful approaches is to compute $f_{\text {sos }}$ instead. This is accomplished by using semidefinite programming (SDP) which is a polynomial time algorithm [5] [9].
- When is a given polynomial $f \in \mathbb{R}[\underline{X}]$ a sum of squares? One obvious necessary condition is that $f \geq 0$ on \mathbb{R}^{n}, but there is a well known result due to Hilbert [3] that this necessary condition is not sufficient in general.
- In this paper we are interested in some recent results, due to Lasserre [6] and to Fidalgo and Kovacec [2], which give sufficient conditions on the coefficients for a polynomial to be a sum of squares. We establish new and improved versions of these results; see Ths. 2.3 and 2.5 and Cors. 2.4 and 2.6.
- Let $\operatorname{deg}(f)=2 d, d \geq 1$, and decompose f as $f=f_{0}+\cdots+f_{2 d}$ (the homogeneous decomposition of f), where f_{i} is a form of degree $i, i=0, \ldots, 2 d$.
- We denote the cone of all positive semidefinite forms and sos forms of degree $2 d$ by $P_{2 d, n}$ and $\Sigma_{2 d, n}$, respectively. We denote by $P_{2 d, n}^{\circ}$ and $\Sigma_{2 d, n}^{\circ}$ the interior of $P_{2 d, n}$ and $\Sigma_{2 d, n}$, more precisely, the interior in the subspace of $\mathbb{R}[\underline{X}]$ consisting of forms of degree $2 d$.
- A necessary condition for $f_{*} \neq-\infty$ is that $f_{2 d} \in P_{2 d, n}$. A sufficient condition for $f_{*} \neq-\infty$ is that $f_{2 d} \in P_{2 d, n}^{\circ}$. A necessary condition for $f_{\text {sos }} \neq-\infty$ is that $f_{2 d} \in \Sigma_{2 d, n}$. A sufficient condition for $f_{\text {sos }} \neq-\infty$ is that $f_{2 d} \in \Sigma_{2 d, n}^{\circ}$ [8, Prop. 5.1].
- We apply Cors. 2.4 and 2.6 to determine, assuming that $f_{2 d} \in \Sigma_{2 d, n}^{\circ}$, two lower bounds for $f_{\text {sos }}$, which we denote by r_{L} and $r_{F K}$ respectively; see Ths. 3.1 and 3.2. Yet another lower bound for $f_{s o s}$, which we denote by $r_{d m t}$, is obtained by applying [2, Th. 2.3] directly; see Th. 3.3. The bounds $r_{L}, r_{F K}$ and $r_{d m t}$ are not comparable; see Ex. 4.2. If we assume
only that $f_{2 d} \in P_{2 d, n}^{\circ}$ then it is still possible to determine lower bounds for f_{*}, in a similar way, but these may not be lower bounds for $f_{\text {sos }}$; see Th. 4.3.
- We introduce notation that we will need. Let $\mathbb{N}=\{0,1,2, \ldots\}$ be the set of natural numbers. For $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$, define $\underline{X}^{\alpha}:=X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}}$ and $|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}$. Every polynomial $f \in \mathbb{R}[\underline{X}]$ of degree $2 d$ can be written in the form

$$
\begin{equation*}
f=f_{0}+\sum_{\alpha \in \Omega(f)} f_{\alpha} \underline{X}^{\alpha}+\sum_{i=1}^{n} f_{2 d, i} X_{i}^{2 d} \tag{2}
\end{equation*}
$$

where $f_{0}, f_{2 d, i} \in \mathbb{R}$ and, for each $\alpha \in \Omega(f), 0 \neq f_{\alpha} \in \mathbb{R}, 0<|\alpha| \leq 2 d$, and $\alpha \notin$ $\left\{2 d \epsilon_{1}, \ldots, 2 d \epsilon_{n}\right\}$, where $\epsilon_{i}=\left(\delta_{i 1}, \ldots, \delta_{\text {in }}\right)$, and

$$
\delta_{i j}=\left\{\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array} .\right.
$$

Let $\Delta(f)=\left\{\alpha \in \Omega(f) \mid f_{\alpha} \underline{X}^{\alpha}\right.$ is not a square in $\left.\mathbb{R}[\underline{X}]\right\}=\left\{\alpha \in \Omega(f) \mid\right.$ either $f_{\alpha}<$ 0 or α_{i} is odd for some $\left.i \in\{1, \ldots, n\}\right\}$. Since our polynomial f is usually fixed, we will often denote $\Omega(f)$ and $\Delta(f)$ just by Ω and Δ for short.

- Let $\widetilde{f}(\underline{X}, Y)=Y^{2 d} f\left(\frac{X_{1}}{Y}, \ldots, \frac{X_{n}}{Y}\right)$. From (2), it is clear that

$$
\widetilde{f}(\underline{X}, Y)=f_{0} Y^{2 d}+\sum_{\alpha \in \Omega} f_{\alpha} \underline{X}^{\alpha} Y^{2 d-|\alpha|}+\sum_{i=1}^{n} f_{2 d, i} X_{i}^{2 d}
$$

is a form of degree $2 d$, called the homogenization of f. We have the following well-known result:
Proposition 1.1. f is sos if and only if \tilde{f} is sos.
Proof. See [7, Prop. 1.2.4].

- For a (univariate) polynomial of the form $p(t)=t^{n}-\sum_{i=0}^{n-1} a_{i} t^{i}$, where each a_{i} is nonnegative and at least one a_{i} is nonzero, we denote by $C(p)$ the unique positive root of p [10, Th. 1.1.3]. For any polynomial $q(t)=\sum_{i=0}^{n} b_{i} t^{i}, b_{n} \neq 0$, the roots of q are bounded in absolute value by $C\left(t^{n}-\sum_{i=0}^{n-1} \frac{\left|b_{i}\right|}{\left|b_{n}\right|} t^{i}\right)$. By convention, $C\left(t^{n}\right):=0$.
- There are various upper bounds for $C(p)$ which are expressible in an elementary way in terms of the coefficients of p, for example,
Proposition 1.2. Suppose $p(t)=t^{n}-\sum_{i=0}^{n-1} a_{i} t^{i}$, where each a_{i} is nonnegative and at least one a_{i} is nonzero. Then
(1) $C(p) \leq \max \left\{1, a_{0}+a_{1}+\cdots+a_{n-1}\right\}$,
(2) $C(p) \leq \max \left\{a_{0}, 1+a_{1}, 1+a_{2}, \ldots, 1+a_{n-1}\right\}$,
(3) $C(p) \leq 2 \max \left\{a_{n-1},\left(a_{n-2}\right)^{1 / 2},\left(a_{n-3}\right)^{1 / 3}, \ldots,\left(a_{0}\right)^{1 / n}\right\}$.

Proof. Bounds (1) and (2) are due basically to Cauchy. See [1] for these bounds and for other bounds of this sort. See [4, Ex. 4.6.2: 20] for bound (3).

2 Sufficient conditions for a polynomial to be sos

- We make use of the following result:

Theorem 2.1 (Reznick). Suppose $p(\underline{x})=\sum_{i=1}^{n} a_{i} x_{i}^{2 d}-2 d x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}, a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$, $|a|=2 d$. Then p is sobs.

- Notes:
- sobs $:=$ sum of binomial squares, i.e., a sum of squares of the form $\left(\beta \underline{x}^{b}-\gamma \underline{x}^{c}\right)^{2}$ with $\beta, \gamma \in \mathbb{R}$ and $c, d \in \mathbb{N}^{n}$.
- Th. 2.1 can be deduced from results of Reznick in [11] and [12], specifically, from [12, Th. 2.2 and Th. 4.4]. A direct elementary proof of Th. 2.1 is given below. If one only wants to prove that p is sos the proof is even simpler.

Proof. By induction on n. If $n=1$ then $p=0$ and the result is clear. Assume now that $n \geq 2$. By induction on n we can assume each a_{i} is strictly positive.

Case 1: Suppose $\exists i_{1} \neq i_{2}$ with $a_{i_{1}} \leq d$ and $a_{i_{2}} \leq d$. Decompose $a=\left(a_{1}, \ldots, a_{n}\right)$ as $a=b+c$ with $b, c \in \mathbb{N}^{n}, b_{i_{1}}=0, c_{i_{2}}=0$ and $\sum_{i=1}^{n} b_{i}=\sum_{i=1}^{n} c_{i}=d$. Then $\left(\underline{x}^{b}-\underline{x}^{c}\right)^{2}=$ $\underline{x}^{2 b}-2 \underline{x}^{b} \underline{x}^{c}+\underline{x}^{2 c}=\underline{x}^{2 b}-2 \underline{x}^{a}+\underline{x}^{2 c}$, so

$$
\begin{aligned}
p & =\sum_{i=1}^{n} a_{i} x_{i}^{2 d}-2 d \underline{x}^{a}=\sum_{i=1}^{n} a_{i} x_{i}^{2 d}-d\left[\underline{x}^{2 b}+\underline{x}^{2 c}-\left(\underline{x}^{b}-\underline{x}^{c}\right)^{2}\right] \\
& =\frac{1}{2}\left[\sum_{i=1}^{n} 2 b_{i} x_{i}^{2 d}-2 d \underline{x}^{2 b}\right]+\frac{1}{2}\left[\sum_{i=1}^{n} 2 c_{i} x_{i}^{2 d}-2 d \underline{x}^{2 c}\right]+d\left(\underline{x}^{b}-\underline{x}^{c}\right)^{2} .
\end{aligned}
$$

Each term is sobs, by induction on n.
Case 2: Suppose we are not in Case 1. Since there is at most one i satisfying $a_{i}>d$ it follows that $n=2$, so $p=a_{1} x_{1}^{2 d}+a_{2} x_{2}^{2 d}-2 d x_{1}^{a_{1}} x_{2}^{a_{2}}$. We know that $p \geq 0$ on \mathbb{R}^{2}, by the arithmetic-geometric inequality. Since $n=2$ and p is homogeneous, it follows that p is sos (dehomogenize p and apply [8], Prop. 1.2.1 and Prop. 1.2.4).

But we want to show p is sobs, which requires more work. Denote by $\operatorname{AGI}(2, d)$ the set of all homogeneous polynomials of the form $p=a_{1} x_{1}^{2 d}+a_{2} x_{2}^{2 d}-2 d x_{1}^{a_{1}} x_{2}^{a_{2}}, a_{1}, a_{2} \in \mathbb{N}$, $a_{1}+a_{2}=2 d$. This set is finite. If $a_{1}=0$ or $a_{1}=2 d$ then $p=0$ which is trivially sobs. If $a_{1}=a_{2}=d$ then $p=d\left(x_{1}^{d}-x_{2}^{d}\right)^{2}$, which is also sobs. Suppose now that $0<a_{1}<2 d$, $a_{1} \neq d$. Suppose $a_{1}>a_{2}$ (The argument for $a_{1}<a_{2}$ is similar.) Decompose $a=\left(a_{1}, a_{2}\right)$ as $a=b+c, b=(d, 0), c=\left(a_{1}-d, a_{2}\right)$. Expand p as in the proof of Case 1 to obtain

$$
p=\frac{1}{2}\left[\sum_{i=1}^{2} 2 b_{i} x_{i}^{2 d}-2 d \underline{x}^{2 b}\right]+\frac{1}{2}\left[\sum_{i=1}^{2} 2 c_{i} x_{i}^{2 d}-2 d \underline{x}^{2 c}\right]+d\left(\underline{x}^{b}-\underline{x}^{c}\right)^{2} .
$$

Observe that $\sum_{i=1}^{2} 2 b_{i} x_{i}^{2 d}-2 d \underline{x}^{2 b}=0$. Thus $p=\frac{1}{2} p_{1}+d\left(\underline{x}^{b}-\underline{x}^{c}\right)^{2}$, where $p_{1}:=\sum_{i=1}^{2} 2 c_{i} x_{i}^{2 d}-$ $2 d \underline{x}^{2 c}$. If p_{1} is sobs the p is also sobs. If p_{1} is not sobs then we can repeat to get $p_{1}=$ $\frac{1}{2} p_{2}+d\left(\underline{x}^{d^{\prime}}-\underline{x}^{c^{\prime}}\right)^{2}$. Continuing in this way we get a sequence $p=p_{0}, p_{1}, p_{2}, \ldots$ with each p_{i} an element of the finite set $\operatorname{AGI}(2, d)$, so $p_{i}=p_{j}$ for some $i<j$. Since $p_{i}=2^{i-j} p_{j}+$ a sum of binomial squares, this implies p_{i} is sobs and hence that p is sobs.
Corollary 2.2 (Fidalgo-Kovacec [2, Th. 2.3]). For a form $p(\underline{X})=\sum_{i=1}^{n} \beta_{i} X_{i}^{2 d}-\mu \underline{X}^{\alpha}$ such that $\alpha_{i}>0$ and $\beta_{i} \geq 0$ for every $i=1, \ldots, n$ and $\mu \geq 0$ if all α_{i} are even, the following are equivalent:
i. p is positive semidefinite.
ii. $|\mu| \leq 2 d \prod_{i=1}^{n}\left(\frac{\beta_{i}}{\alpha_{i}}\right)^{\frac{\alpha_{i}}{2 d}}$.
iii. p is sobs.
iv. p is sos.

- Cor. 2.2 is an easy consequence on Th. 2.1. See [2] for the proof.
- In what follows we use Cor. 2.2 to improve on the sufficient conditions given in [6, Th. $3]$ and [2, Th. 4.3].

Theorem 2.3. Suppose $f \in \mathbb{R}[\underline{X}]$ is a form of degree $2 d$ and

$$
f_{2 d, i} \geq \sum_{\alpha \in \Delta}\left|f_{\alpha}\right| \frac{\alpha_{i}}{2 d}, \quad i=1, \ldots, n
$$

Then f is a sum of (binomial) squares.
Proof. We claim that

$$
\sum_{i=1}^{n}\left|f_{\alpha}\right| \frac{\alpha_{i}}{2 d} X_{i}^{2 d}+f_{\alpha} \underline{X}^{\alpha}
$$

is sobs, for each $\alpha \in \Delta$. It suffices to show that $\sum_{\alpha_{i} \neq 0}\left|f_{\alpha}\right| \frac{\alpha_{i}}{2 d} X_{i}^{2 d}+f_{\alpha} \underline{X}^{\alpha}$ is sobs, for each $\alpha \in \Delta$. Since

$$
2 d \prod_{\alpha_{i} \neq 0}\left(\frac{\left|f_{\alpha}\right| \frac{\alpha_{i}}{2 d}}{\alpha_{i}}\right)^{\frac{\alpha_{i}}{2 d}}=2 d \frac{\left|f_{\alpha}\right|}{2 d}=\left|f_{\alpha}\right| \geq\left|f_{\alpha}\right|
$$

and since $f_{\alpha}<0$ if all the α_{i} are even, by definition of Δ, this follows, as a consequence of Cor. 2.2. This proves the claim. Adding, as α runs through Δ, this implies

$$
\sum_{i=1}^{n}\left(\sum_{\alpha \in \Delta}\left|f_{\alpha}\right| \frac{\alpha_{i}}{2 d}\right) X_{i}^{2 d}+\sum_{\alpha \in \Delta} f_{\alpha} \underline{X}^{\alpha}
$$

is sobs. Since $f_{2 d, i} \geq \sum_{\alpha \in \Delta}\left|f_{\alpha}\right| \frac{\alpha_{i}}{2 d}$, for each i,

$$
\sum_{i=1}^{n} f_{2 d, i} X_{i}^{2 d}-\sum_{i=1}^{n}\left(\sum_{\alpha \in \Delta}\left|f_{\alpha}\right| \frac{\alpha_{i}}{2 d}\right) X_{i}^{2 d}=\sum_{i=1}^{n}\left(f_{2 d, i}-\sum_{\alpha \in \Delta}\left|f_{\alpha}\right| \frac{\alpha_{i}}{2 d}\right) X_{i}^{2 d}
$$

is sobs. Adding again, this implies that

$$
\sum_{i=1}^{n} f_{2 d, i} X_{i}^{2 d}+\sum_{\alpha \in \Delta} f_{\alpha} \underline{X}^{\alpha}
$$

is sobs. Finally, since the remaining terms $f_{\alpha} \underline{X}^{\alpha}, \alpha \in \Omega \backslash \Delta$, are squares of monomials, by definition of Δ, this implies that f is sobs.

Corollary 2.4. For any polynomial $f \in \mathbb{R}[\underline{X}]$ of degree $2 d$, if
(L1) $\quad f_{0} \geq \sum_{\alpha \in \Delta}\left|f_{\alpha}\right| \frac{2 d-|\alpha|}{2 d} \quad$ and (L2) $\quad f_{2 d, i} \geq \sum_{\alpha \in \Delta}\left|f_{\alpha}\right| \frac{\alpha_{i}}{2 d}, \quad i=1, \ldots, n$,
then f is a sum of squares.
Proof. Apply Th. 2.3 to the homogenization \tilde{f} of f to conclude that \tilde{f} is sos. Consequently, by Prop. 1.1, f is also sos.

- In [6, Th. 3], it is proved that if

$$
f_{0} \geq \sum_{\alpha \in \Delta}\left|f_{\alpha}\right| \text { and } f_{2 d, i} \geq \sum_{\alpha \in \Delta}\left|f_{\alpha}\right| \frac{|\alpha|}{2 d}, \quad i=1, \ldots, n
$$

then f is a sum of squares. Since $1 \geq \frac{2 d-|\alpha|}{2 d}$ and $\frac{|\alpha|}{2 d} \geq \frac{\alpha_{i}}{2 d}$, it is clear that Cor. 2.4 improves on [6, Th. 3].

Theorem 2.5. Suppose $f \in \mathbb{R}[\underline{X}]$ is a form of degree $2 d$ and

$$
\min _{i=1, \ldots, n} f_{2 d, i} \geq \frac{1}{2 d} \sum_{\alpha \in \Delta}\left|f_{\alpha}\right|\left(\alpha^{\alpha}\right)^{\frac{1}{2 d}}
$$

Then f is a sum of (binomial) squares.
Here, $\alpha^{\alpha}:=\alpha_{1}^{\alpha_{1}} \cdots \alpha_{n}^{\alpha_{n}}$ (the convention being that $0^{0}:=1$).
Proof. Let $e_{\alpha}:=\frac{1}{2 d}\left|f_{\alpha}\right|\left(\alpha^{\alpha}\right)^{\frac{1}{2 d}}$. We claim that

$$
e_{\alpha} \sum_{i=1}^{n} X_{i}^{2 d}+f_{\alpha} \underline{X}^{\alpha}
$$

is sobs, for each $\alpha \in \Delta$. Since $e_{\alpha} \geq 0, e_{\alpha} \sum_{\alpha_{i}=0} X_{i}^{2 d}$ is sobs, so it suffices to show that $e_{\alpha} \sum_{\alpha_{i} \neq 0} X_{i}^{2 d}-f_{\alpha} \underline{X}^{\alpha}$ is sobs. Since

$$
2 d \prod_{\alpha_{i} \neq 0}\left(\frac{e_{\alpha}}{\alpha_{i}}\right)^{\frac{\alpha_{i}}{2 d}}=\frac{2 d e_{\alpha}}{\left(\alpha^{\alpha}\right)^{\frac{1}{2 d}}}=\left|f_{\alpha}\right| \geq\left|f_{\alpha}\right|
$$

and since $f_{\alpha}<0$ if all the α_{i} are even, by definition of Δ, this follows from Cor. 2.2. This proves the claim. Adding, this implies

$$
\sum_{\alpha \in \Delta} e_{\alpha} \sum_{i=1}^{n} X_{i}^{2 d}+\sum_{\alpha \in \Delta} f_{\alpha} \underline{X}^{\alpha}
$$

is sobs. Since $f_{2 d, i} \geq \sum_{\alpha \in \Delta} e_{\alpha}$, for each i,

$$
\sum_{i=1}^{n} f_{2 d, i} X_{i}^{2 d}-\sum_{\alpha \in \Delta} e_{\alpha} \sum_{i=1}^{n} X_{i}^{2 d}=\sum_{i=1}^{n}\left(f_{2 d, i}-\sum_{\alpha \in \Delta} e_{\alpha}\right) X_{i}^{2 d}
$$

is sobs. Adding again, this implies

$$
\sum_{i=1}^{n} f_{2 d, i} X_{i}^{2 d}+\sum_{\alpha \in \Delta} f_{\alpha} \underline{X}^{\alpha}
$$

is sobs. Finally, since the remaining terms $f_{\alpha} \underline{X}^{\alpha}, \alpha \in \Omega \backslash \Delta$, are squares of monomials, this implies f is sobs.

- In $[2$, Th. 4.3$]$ it is proved that if $f \in \mathbb{R}[\underline{X}]$ is any form of degree $2 d$ and

$$
\min _{i=1, \ldots, n} f_{2 d, i} \geq \frac{1}{n}\left(\frac{n}{2 d}\right)^{2 d} \sum_{\alpha \in \Delta}\left|f_{\alpha}\right| \alpha^{\alpha}
$$

then f is a sum of squares. Using $\alpha^{\alpha} \geq\left(\frac{2 d}{n}\right)^{2 d}$, one sees immediately that

$$
\frac{1}{n}\left(\frac{n}{2 d}\right)^{2 d} \alpha^{\alpha} \geq \frac{1}{2 d}\left(\alpha^{\alpha}\right)^{\frac{1}{2 d}}
$$

Consequently, Th. 2.5 improves on [2, Th. 4.3]. The fact that $\alpha^{\alpha} \geq\left(\frac{2 d}{n}\right)^{2 d}$ is an immediate consequence of the fact that the minimum value of the function

$$
G\left(t_{1}, \ldots, t_{n}\right):=t_{1}^{t_{1}} \cdots t_{n}^{t_{n}}
$$

on the compact subset of \mathbb{R}^{n} defined by $t_{i} \geq 0, i=1, \ldots, n, \sum_{i=1}^{n} t_{i}=2 d$ is equal to $\left(\frac{2 d}{n}\right)^{2 d}$, the minimum occurring at the point $t_{1}=\cdots=t_{n}=\frac{2 d}{n}$.
Corollary 2.6. If $f \in \mathbb{R}[\underline{X}]$ is a polynomial of degree $2 d$ and
(FK)

$$
\min _{i=1, \ldots, n}\left\{f_{2 d, i}, f_{0}\right\} \geq \frac{1}{2 d} \sum_{\alpha \in \Delta}\left|f_{\alpha}\right|\left(\alpha^{\alpha}\right)^{\frac{1}{2 d}}(2 d-|\alpha|)^{\frac{2 d-|\alpha|}{2 d}}
$$

then f is a sum of squares.
Proof. Homogenize f and apply Th. 2.5 and Prop. 1.1.

- Recall that $\Sigma_{2 d, n}^{\circ}$ (resp., $P_{2 d, n}^{\circ}$) denotes the interior of the cone $\Sigma_{2 d, n}$ (resp., $P_{2 d, n}$) in the real vector space consisting of forms of degree $2 d$. The following result is well-known. It is proved, for example, in [8, Prop. 5.3(2)].
Corollary 2.7. $X_{1}^{2 d}+\cdots+X_{n}^{2 d} \in \Sigma_{2 d, n}^{\circ}$.
Proof. Let $f(\underline{X})=X_{1}^{2 d}+\cdots+X_{n}^{2 d}+h(\underline{X})$ where $h(\underline{X})$ is any form of degree $2 d$ whose coefficients have absolute value $\leq \epsilon$ where ϵ is some small positive real. Applying Th. 2.3 or Th. 2.5, one sees that f is sos, for ϵ sufficiently small.

Remark 2.8. Let C be a cone in a finite dimensional real vector space V. Let C° denote the interior of C. If $f \in C^{\circ}$ and $g \in V$ then $g \in C^{\circ}$ iff $g-\epsilon f \in C$ for some real $\epsilon>0$.

Proof. Suppose $g-\epsilon f \in C$. Let $h \in V$. Since f belongs to the interior of C, there exists some real $\delta>0$ such that $f+\frac{\delta}{\epsilon} h \in C$. Then $g+\delta h=(g-\epsilon f)+\epsilon\left(f+\frac{\delta}{\epsilon} h\right) \in C$. This proves that g belongs to the interior of C. The other implication is clear.

- It follows from Cor. 2.7 and Rem. 2.8 that a form f of degree $2 d$ is an interior point of $\Sigma_{2 d, n}$ iff $f-\epsilon \sum_{i=1}^{n} X_{i}^{2 d} \in \Sigma_{2 d, n}$ for some real $\epsilon>0$.
- Ths. 2.3 and 2.5 provide sufficient conditions for $f \in \Sigma_{2 d, n}^{\circ}$ to hold and have the nice additional property of allowing computation of ϵ :
Corollary 2.9. If f is a form of degree $2 d$ and $\epsilon:=\max \left\{\epsilon_{1}, \epsilon_{2}\right\}>0$ where

$$
\epsilon_{1}:=\min _{i=1, \ldots, n}\left(f_{2 d, i}-\sum_{\alpha \in \Delta}\left|f_{\alpha}\right| \frac{\alpha_{i}}{2 d}\right), \epsilon_{2}:=\min _{i=1, \ldots, n} f_{2 d, i}-\frac{1}{2 d} \sum_{\alpha \in \Delta}\left|f_{\alpha}\right|\left(\alpha^{\alpha}\right)^{\frac{1}{2 d}},
$$

then $f \in \Sigma_{2 d, n}^{\circ}$ and $f-\epsilon \sum_{i=1}^{n} X_{i}^{2 d} \in \Sigma_{2 d, n}$.
Proof. Applying Th. 2.3 or Th. 2.5 (depending on whether $\epsilon=\epsilon_{1}$ or $\epsilon=\epsilon_{2}$) to the form $f-\epsilon \sum_{i=1}^{n} X_{i}^{2 d}$, we see that $f-\epsilon \sum_{i=1}^{n} X_{i}^{2 d}$ is sos.

3 Determining lower bounds

- In this section we assume $f_{2 d} \in \Sigma_{2 d, n}^{\circ}$ and we use Cor. 2.4 and Cor. 2.6 to produce concrete lower bounds for $f_{\text {sos }}$, which we denote by r_{L} and $r_{F K}$, respectively. We also apply Cor. 2.2 more or less directly to produce another concrete lower bound for $f_{\text {sos }}$, which we denote by $r_{d m t}$.
- Our lower bounds $r_{L}, r_{F K}$ and $r_{d m t}$ depend on the coefficients $f_{\alpha}, \alpha \in \Delta,|\alpha|<2 d$, and ϵ, where ϵ is such that $\epsilon>0$ and $f_{2 d}-\epsilon \sum_{i=1}^{n} X_{i}^{2 d} \in \Sigma_{2 d, n}$. Existence of ϵ is a consequence of Cor. 2.7 and Rem. 2.8. I'll say more about ϵ and $r_{L}, r_{F K}$ and $r_{d m t}$ in Section 4.
- We use Cor. 2.4 to produce a concrete lower bound r_{L} for $f_{\text {sos }}$ as follows:

Theorem 3.1. If $f_{2 d} \in \Sigma_{2 d, n}^{\circ}$ then $f_{\text {sos }} \geq r_{L}$, where

$$
\begin{aligned}
r_{L} & :=f_{0}-\sum_{\alpha \in \Delta,|\alpha|<2 d}\left|f_{\alpha}\right| \frac{2 d-|\alpha|}{2 d} \epsilon^{-\frac{|\alpha|}{2 d}} k^{|\alpha|} \\
k & :=\max _{i=1, \ldots, n} C\left(t^{2 d}-\sum_{\alpha \in \Delta,|\alpha|<2 d}\left|f_{\alpha}\right| \frac{\alpha_{i}}{2 d} \epsilon^{-\frac{|\alpha|}{2 d}} t^{|\alpha|}\right)
\end{aligned}
$$

and $\epsilon>0$ is such that $f_{2 d}-\epsilon \sum_{i=1}^{n} X_{i}^{2 d} \in \Sigma_{2 d, n}$.

- Notes:
- Th. 3.1 proves in particular that if $f_{2 d} \in \Sigma_{2 d, n}^{\circ}$ then $f_{s o s} \neq-\infty$, i.e., it provides another proof of [8, Prop. 5.1].
- If $\ell \geq k$ then

$$
f_{0}-\sum_{\alpha \in \Delta,|\alpha|<2 d}\left|f_{\alpha}\right| \frac{2 d-|\alpha|}{2 d} \epsilon^{-\frac{|\alpha|}{2 d}} \ell^{|\alpha|} \leq f_{0}-\sum_{\alpha \in \Delta,|\alpha|<2 d}\left|f_{\alpha}\right| \frac{2 d-|\alpha|}{2 d} \epsilon^{-\frac{|\alpha|}{2 d}} k^{|\alpha|}=r_{L}
$$

In this way, by taking ℓ to be an upper bound for k computed using Prop. 1.2, we obtain a lower bound $f_{0}-\sum_{\alpha \in \Delta,|\alpha|<2 d}\left|f_{\alpha}\right| \frac{2 d-|\alpha|}{2 d} \epsilon^{-\frac{|\alpha|}{2 d}} \ell^{|\alpha|}$ for $f_{\text {sos }}$ which is expressible in an elementary way in terms of ϵ and the coefficients $f_{\alpha}, \alpha \in \Delta,|\alpha|<2 d$.

Proof. Since $f_{2 d} \in \Sigma_{2 d, n}^{\circ}$, by Cor. 2.7 and Rem. 2.8, there exists $\epsilon>0$ such that $f_{2 d}=$ $\epsilon\left(X_{1}^{2 d}+\cdots+X_{n}^{2 d}\right)+g$ for some $g \in \Sigma_{2 d, n}$. Scaling suitably ($X_{i} \mapsto \frac{X_{i}}{\sqrt[2 d / \epsilon]{\epsilon}}$, we can assume that $\epsilon=1$. Let $\hat{f}:=f-g$. Decomposing \hat{f} as in equation (2) yields

$$
\begin{equation*}
\hat{f}=f_{0}+\sum_{\alpha \in \Omega,|\alpha|<2 d} f_{\alpha} \underline{X}^{\alpha}+\sum_{i=1}^{n} X_{i}^{2 d} \tag{3}
\end{equation*}
$$

If $\left\{\alpha \in \Delta||\alpha|<2 d\}=\emptyset\right.$, then $\hat{f}-r_{L}=\hat{f}-f_{0}$ is sos, using equation (3) and the definition of Δ, so $f-r_{L}$ is also sos and the result is clear. Thus we can assume $\{\alpha \in \Delta||\alpha|<2 d\} \neq \emptyset$, so $k>0$. Scaling by $X_{i} \mapsto k X_{i}$, and rewriting condition (L2) of Cor. 2.4 for the polynomial $\hat{f}(k \underline{X})-r$, using equation (3), yields

$$
k^{2 d} \geq \sum_{\alpha \in \Delta,|\alpha|<2 d}\left|f_{\alpha}\right| \frac{\alpha_{i}}{2 d} k^{|\alpha|}, \quad i=1, \ldots, n
$$

By definition of $k, k^{2 d} \geq \sum_{\alpha \in \Delta,|\alpha|<2 d}\left|f_{\alpha}\right| \frac{\alpha_{i}}{2 d} k^{|\alpha|}$ for all i, so condition (L2) holds for $\hat{f}(k \underline{X})-$ r. Rewriting condition (L1) of Cor. 2.4 for the polynomial $\hat{f}(k \underline{X})-r$, we see that if $r \leq r_{L}$ then (L1) holds for $\hat{f}(k \underline{X})-r$ so $\hat{f}-r$ is sos and hence also $\hat{f}-r$ is sos.

- In a similar way, we use Cor. 2.6 to produce a concrete lower bound $r_{F K}$ for $f_{\text {sos }}$:

Theorem 3.2. If $f_{2 d} \in \Sigma_{2 d, n}^{\circ}$ then $f_{\text {sos }} \geq r_{F K}$, where $r_{F K}:=f_{0}-k^{2 d}$,

$$
\begin{aligned}
k & :=C\left(t^{2 d}-\sum_{i=1}^{2 d-1} b_{i} t^{i}\right) \\
b_{i} & :=\frac{1}{2 d}(2 d-i)^{\frac{2 d-i}{2 d}} \epsilon^{-\frac{i}{2 d}} \sum_{\alpha \in \Delta,|\alpha|=i}\left|f_{\alpha}\right|\left(\alpha^{\alpha}\right)^{\frac{1}{2 d}}, i=1, \ldots, 2 d-1
\end{aligned}
$$

and $\epsilon>0$ is given as in Th. 3.1.

- Note: If $\ell \geq k$ then

$$
f_{0}-\sum_{i=1}^{2 d-1} b_{i} \ell^{i} \leq f_{0}-\sum_{i=1}^{2 d-1} b_{i} k^{i}=f_{0}-k^{2 d}=r_{F K}
$$

so, using Prop. 1.2 again, we get another lower bound for $f_{\text {sos }}$ expressible in an elementary way in terms of ϵ and the coefficients $f_{\alpha}, \alpha \in \Delta,|\alpha|<2 d$.
Proof. After scaling we can assume that $\epsilon=1$ and $f_{2 d}=X_{1}^{2 d}+\cdots+X_{n}^{2 d}+g$, where $g \in \Sigma_{2 d, n}$. If $\left\{\alpha \in \Delta||\alpha|<2 d\}=\emptyset\right.$, then $b_{i}=0$ for $i=1, \ldots 2 d-1, k=0$ (by definition of $C\left(t^{2 d}\right)$), so $r_{F K}=f_{0}$. In this case the result is clear. So we can assume $\{\alpha \in \Delta||\alpha|<2 d\} \neq \emptyset$,
so $k>0$. Set $r=r_{F K}$. Rewriting condition (FK) for the polynomial $\hat{f}(k \underline{X})-r$, where $\hat{f}:=f-g$, yields the condition:

$$
\begin{equation*}
\min \left\{\left(f_{0}-r\right), k^{2 d}\right\} \geq \sum_{i=1}^{2 d-1} b_{i} k^{i} \tag{4}
\end{equation*}
$$

By definition of k and r, (4) holds, in fact, $f_{0}-r=k^{2 d}=\sum_{i=1}^{2 d-1} b_{i} k^{i}$. This proves that $\hat{f}-r$ is sos and hence also that $f-r$ is sos.

- One can also apply Cor. 2.2 directly to obtain a lower bound $r_{d m t}$ for $f_{s o s}$.

Theorem 3.3. If $f_{2 d} \in \Sigma_{2 d, n}^{\circ}$ then

$$
f_{\text {sos }} \geq r_{d m t}:=f_{0}-\sum_{\alpha \in \Delta,|\alpha|<2 d}(2 d-|\alpha|)\left[\left(\frac{f_{\alpha}}{2 d}\right)^{2 d}\left(\left(\frac{t}{\epsilon}\right)^{|\alpha|} \alpha^{\alpha}\right)\right]^{\frac{1}{2 d-|\alpha|}}
$$

where $t:=|\{\alpha \in \Delta| | \alpha \mid<2 d\}|$ and $\epsilon>0$ is given as in Th. 3.1.
Proof. Let $\Delta^{\prime}=\{\alpha \in \Delta| | \alpha \mid<2 d\}$. After scaling, we can assume that $\epsilon=1$. Let $\bar{f}=f_{0}+\sum_{\alpha \in \Delta^{\prime}} f_{\alpha} \underline{X}^{\alpha}+X_{1}^{2 d}+\cdots+X_{n}^{2 d}$ and let $F(\underline{X}, Y)$ denote the homogenization of
$\bar{f}(\sqrt[2 d]{t} \underline{X})-r$, where $r:=f_{0}-\sum_{\alpha \in \Delta^{\prime}} r_{\alpha}$, each $r_{\alpha} \geq 0$. Then

$$
\begin{aligned}
F(\underline{X}, Y) & =\left(f_{0}-r\right) Y^{2 d}+\sum_{\alpha \in \Delta^{\prime}}\left(X_{1}^{2 d}+\cdots+X_{n}^{2 d}+f_{\alpha} t^{|\alpha| / 2 d} \underline{X}^{\alpha} Y^{2 d-|\alpha|}\right) \\
& =\sum_{\alpha \in \Delta^{\prime}}\left(r_{\alpha} Y^{2 d}+X_{1}^{2 d}+\cdots+X_{n}^{2 d}+f_{\alpha} t^{|\alpha| / 2 d} \underline{X}^{\alpha} Y^{2 d-|\alpha|}\right)
\end{aligned}
$$

By Cor. 2.2, each term appearing in this sum will be sos if

$$
\left.\left|f_{\alpha}\right|\right|^{\frac{|\alpha|}{2 d}} \leq 2 d\left(\frac{r_{\alpha}}{2 d-|\alpha|}\right)^{\frac{2 d-|\alpha|}{2 d}} \prod_{\alpha_{i} \neq 0}\left(\frac{1}{\alpha_{i}}\right)^{\frac{\alpha_{i}}{2 d}}
$$

or, equivalently, if

$$
r_{\alpha} \geq(2 d-|\alpha|)\left[\left(\frac{f_{\alpha}}{2 d}\right)^{2 d} t^{|\alpha|} \alpha^{\alpha}\right]^{\frac{1}{2 d-|\alpha|}}
$$

Hence if $r \leq r_{d m t}$ then $\bar{f}-r$ is sos, so also $f-r$ is sos.

4 Further remarks

(1) The sufficient conditions given in Ths. 2.3 and 2.5 are not comparable. These conditions are also not necessary.

Example 4.1.

(a) $f(X, Y, Z)=X^{4}+Y^{4}+4 Z^{4}+4 X Z^{3}$ is sos, by Th. 2.3 , but Th. 2.5 does not apply.
(b) $f(X, Y, Z)=X^{4}+Y^{4}+Z^{4}+\sqrt{8} X Y Z^{2}$ is sos, by Th. 2.5, but Th. 2.3 does not apply.
(c) $f(X, Y, Z)=16 X^{4}+Y^{4}+4 Z^{4}+8 X Z^{3}$ is sos, but neither Th. 2.3 nor Th. 2.5 applies.
(2) The bounds $r_{L}, r_{F K}$ and $r_{d m t}$ described in Ths. 3.1, 3.2 and 3.3 are not comparable.

Example 4.2.

(a) For $f(X, Y)=X^{6}+Y^{6}+7 X Y-2 X^{2}+7$, we have $r_{L} \approx-1.124, r_{F K} \approx-0.99$ and $r_{d m t} \approx-1.67$, so $r_{F K}>r_{L}>r_{d m t}$.
(b) For $f(X, Y)=X^{6}+Y^{6}+4 X Y+10 Y+13, r_{L} \approx-0.81, r_{F K} \approx-0.93$ and $r_{d m t} \approx-0.69$, so $r_{d m t}>r_{L}>r_{F K}$.
(c) For $f(X, Y)=X^{4}+Y^{4}+X Y-X^{2}-Y^{2}+1, r_{L} \approx-0.125, r_{F K} \approx-0.832$ and $r_{d m t} \approx-0.875$, so $r_{L}>r_{F K}>r_{d m t}$.
(3) To be able to compute $r_{L}, r_{F K}$ and $r_{d m t}$ one needs to know ϵ and the coefficients f_{α}, $|\alpha|<2 d$. What can one do if ϵ is not given, i.e., if only the coefficients $f_{\alpha},|\alpha| \leq 2 d$ are given? Applying Cor. 2.9 to the form $f_{2 d}$ allows us to compute ϵ in certain cases: If $\epsilon:=\max \left\{\epsilon_{1}, \epsilon_{2}\right\}>0$ where

$$
\epsilon_{1}:=\min _{i=1, \ldots, n}\left(f_{2 d, i}-\sum_{\alpha \in \Delta,|\alpha|=2 d}\left|f_{\alpha}\right| \frac{\alpha_{i}}{2 d}\right), \epsilon_{2}:=\min _{i=1, \ldots, n} f_{2 d, i}-\frac{1}{2 d} \sum_{\alpha \in \Delta,|\alpha|=2 d}\left|f_{\alpha}\right|\left(\alpha^{\alpha}\right)^{\frac{1}{2 d}},
$$

then $f_{2 d} \in \Sigma_{2 d, n}^{\circ}$ and $f_{2 d}-\epsilon \sum_{i=1}^{n} X_{i}^{2 d} \in \Sigma_{2 d, n}$.
(4) So far we have been assuming that $f_{2 d} \in \Sigma_{2 d, n}^{\circ}$ and we have used this assumption to determine lower bounds for $f_{\text {sos }}$. What can one say if one assumes only that $f_{2 d} \in P_{2 d, n}^{\circ}$? Suppose $\epsilon>0$ is given such that $f_{2 d}-\epsilon \sum_{i=1}^{n} X_{i}^{2 d} \in P_{2 d, n}$. One can then define r_{L} exactly as in Th. 3.1, but using this new ϵ, i.e.,

$$
\begin{aligned}
r_{L} & :=f_{0}-\sum_{\alpha \in \Delta,|\alpha|<2 d}\left|f_{\alpha}\right| \frac{2 d-|\alpha|}{2 d} \epsilon^{\left.-\frac{|\alpha|}{2 d} \right\rvert\,} k^{|\alpha|} \\
k & :=\max _{i=1, \ldots, n} C\left(t^{2 d}-\sum_{\alpha \in \Delta,|\alpha|<2 d}\left|f_{\alpha}\right| \frac{\alpha_{i}}{2 d} \epsilon^{-\frac{|\alpha|}{2 d}} t^{|\alpha|}\right) .
\end{aligned}
$$

The r_{L} defined in this way might not be a lower bound for $f_{s o s}$ (it is even possible that
$f_{\text {sos }}=-\infty$), but it will be a lower bound for f_{*}. Similar remarks apply to the other bounds $r_{F K}$ and $r_{d m t}$.

Theorem 4.3. If $f_{2 d} \in P_{2 d, n}^{\circ}$ and $\epsilon>0$ is such that $f_{2 d}-\epsilon \sum_{i=1}^{n} X_{i}^{2 d} \in P_{2 d, n}$ then $r_{L}, r_{F K}$ and $r_{d m t}$, defined as in Ths. 3.1, 3.2 and 3.3, respectively, but using this new choice of ϵ, are lower bounds for f on \mathbb{R}^{n}.

Proof. Argue as in the proof of Ths. 3.1, 3.2 and 3.3. The form g is no longer sos but it is positive semidefinite, which is all one needs for the conclusion.

Note: In Th. 4.3, the largest possible choice for ϵ is the minimum value of the rational function $f_{2 d} / \sum_{i=1}^{n} X_{i}^{2 d}$ on the $n-1$-sphere

$$
\mathbb{S}^{n-1}:=\left\{\underline{a} \in \mathbb{R}^{n} \mid a_{1}^{2}+\cdots+a_{n}^{2}=1\right\} .
$$

(5) Denote by $\mathbb{R}[\underline{X}]_{k}$ the vector space of polynomials of degree $\leq k$. We know that for any $p \in P_{2 d, n}^{\circ}$ and any $g \in \mathbb{R}[\underline{X}]_{2 d-1},(p+g)_{*} \neq-\infty$ and, for any $p \in \Sigma_{2 d, n}^{\circ}$ and any $g \in \mathbb{R}[\underline{X}]_{2 d-1}$, $(p+g)_{\text {sos }} \neq-\infty$. Note that if $p \in P_{2 d, n}$ is not positive definite then there exists $\underline{0} \neq \underline{a} \in \mathbb{R}^{n}$ such that $p(\underline{a})=0$. Let $g(\underline{X})=\sum_{i=1}^{n} a_{i} X_{i}$. Then $(p+g)(t \underline{a})=t\|\underline{a}\|^{2} \rightarrow-\infty$ as $t \rightarrow-\infty$, so $(p+g)_{*}=-\infty$. Therefore for any $p \in \partial P_{2 d, n}\left(\partial P_{2 d, n}\right.$ denotes the boundary of $P_{2 d, n}$, i.e. $\left.\partial P_{2 d, n}=P_{2 d, n} \backslash P_{2 d, n}^{\circ}\right)$, there exists $g \in \mathbb{R}[\underline{X}]_{2 d-1}$, such that $(p+g)_{*}=-\infty$. The validity of the corresponding result for boundary points of $\Sigma_{2 d, n}$ is unknown to the authors.

Question 4.4. Is it true that for any $p \in \partial \Sigma_{2 d, n}$ there exists $g \in \mathbb{R}[\underline{X}]_{2 d-1}$ such that $(p+g)_{s o s}=-\infty$?

The answer to this question is 'yes' if $n \leq 2$ or $d=1$ or ($n=3$ and $d=2$) by Hilbert's result [3]. In fact these are precisely the cases where $P_{2 d, n}$ and $\Sigma_{2 d, n}$ coincide.

References

[1] E. Deutsch, Bounds for the zeros of polynomials, Amer. Math. Monthly 88 (205-206), 1981.
[2] C. Fidalgo, and A. Kovacec, Positive semidefinite diagonal minus tail forms are sums of squares, Preprint, 2009.
[3] D. Hilbert, Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann. 32 (342-350), 1888.
[4] D. Knuth, The Art of Computer Programming, Volume 2, Addison-Wesley, New York, 1969.
[5] J. B. Lasserre, Global Optimization with Polynomials and the Problem of Moments, SIAM J. Optim. Volume 11, Issue 3 (796-817), 2001.
[6] J. B. Lasserre, Sufficient Conditions for a Real Polynomial to be a Sum of Squares, Arch. Math. (Basel) 89 (390-398), 2007.
[7] M. Marshall, Positive Polynomials and Sum of Squares, Mathematical Surveys and Monographs, Vol.146, 2008.
[8] M. Marshall, Representation of Non-Negative Polynomials, Degree Bounds and Applications to Optimization, Canad. J. Math., 61 (205-221), 2009.
[9] P. A. Parrilo, B. Sturmfels, Minimizing Polynomial Functions, Ser. Discrete Math. Theor. Comput. Sci. 60 (83-99), 2003.
[10] V. V. Prasolov, Polynomials, Algorithms and Computation in Mathematics Vol.11, 2004.
[11] B. Reznick, A quantitative version of Hurwitz' theorem on the arithmetic-geometric inequality, J. reine angew. Math. 377 (108-112), 1987.
[12] B. Reznick, Forms derived from the arithmetic geometric inequality, Math. Ann. 283 (431-464), 1989.

