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Abstract

• We determine new sufficient conditions in terms of the coefficients for a polynomial
f ∈ R[X] := R[X1, . . . , Xn] of degree 2d (d ≥ 1) to be a sum of squares of polynomials,
thereby strengthening results of Lasserre [6] and of Fidalgo and Kovacec [2].

• Exploiting these results, we determine, for any polynomial f ∈ R[X] of degree 2d whose
highest degree term is an interior point in the cone of sos forms of degree 2d, a real number
r such that f − r is a sum of squares of polynomials.

• Actually, we determine three different real numbers r having this property.

• The existence of such a number r was proved earlier by Marshall [8], but no estimates
for r were given.

• We also determine lower bounds (more precisely, three lower bounds) for any polynomial
f whose highest degree term is positive definite.
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1 Introduction

• Fix a non-constant polynomial f ∈ R[X] := R[X1, · · · , Xn], where n ≥ 1 is an integer
number, and define

f∗ := inf{f(a) | a ∈ Rn}.
• Denote the cone of all sos polynomials by

∑
R[X]2 and define

fsos := sup{r ∈ R | f − r ∈
∑

R[X]2}. (1)

• One can prove that fsos ≤ f∗. Computing f∗ is difficult in general, and one of the
successful approaches is to compute fsos instead. This is accomplished by using semidefinite
programming (SDP) which is a polynomial time algorithm [5] [9].
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• When is a given polynomial f ∈ R[X] a sum of squares? One obvious necessary condition
is that f ≥ 0 on Rn, but there is a well known result due to Hilbert [3] that this necessary
condition is not sufficient in general.

• In this paper we are interested in some recent results, due to Lasserre [6] and to Fidalgo
and Kovacec [2], which give sufficient conditions on the coefficients for a polynomial to be
a sum of squares. We establish new and improved versions of these results; see Ths. 2.3
and 2.5 and Cors. 2.4 and 2.6.

• Let deg(f) = 2d, d ≥ 1, and decompose f as f = f0 + · · · + f2d (the homogeneous
decomposition of f), where fi is a form of degree i, i = 0, . . . , 2d.

• We denote the cone of all positive semidefinite forms and sos forms of degree 2d by P2d,n

and Σ2d,n, respectively. We denote by P ◦
2d,n and Σ◦

2d,n the interior of P2d,n and Σ2d,n, more
precisely, the interior in the subspace of R[X] consisting of forms of degree 2d.

• A necessary condition for f∗ 6= −∞ is that f2d ∈ P2d,n. A sufficient condition for f∗ 6= −∞
is that f2d ∈ P ◦

2d,n. A necessary condition for fsos 6= −∞ is that f2d ∈ Σ2d,n. A sufficient
condition for fsos 6= −∞ is that f2d ∈ Σ◦

2d,n [8, Prop. 5.1].

• We apply Cors. 2.4 and 2.6 to determine, assuming that f2d ∈ Σ◦
2d,n, two lower bounds

for fsos, which we denote by rL and rFK respectively; see Ths. 3.1 and 3.2. Yet another
lower bound for fsos, which we denote by rdmt, is obtained by applying [2, Th. 2.3] directly;
see Th. 3.3. The bounds rL, rFK and rdmt are not comparable; see Ex. 4.2. If we assume
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only that f2d ∈ P ◦
2d,n then it is still possible to determine lower bounds for f∗, in a similar

way, but these may not be lower bounds for fsos; see Th. 4.3.

• We introduce notation that we will need. Let N = {0, 1, 2, . . .} be the set of natural
numbers. For X = (X1, . . . , Xn) and α = (α1, . . . , αn) ∈ Nn, define Xα := Xα1

1 · · ·Xαn
n and

|α| := α1 + · · ·+ αn. Every polynomial f ∈ R[X] of degree 2d can be written in the form

f = f0 +
∑

α∈Ω(f)

fαXα +
n∑

i=1

f2d,iX
2d
i , (2)

where f0, f2d,i ∈ R and, for each α ∈ Ω(f), 0 6= fα ∈ R, 0 < |α| ≤ 2d, and α /∈
{2dε1, . . . , 2dεn}, where εi = (δi1, . . . , δin), and

δij =

{
1 i = j
0 i 6= j

.

Let ∆(f) = {α ∈ Ω(f) | fαXα is not a square in R[X]} = {α ∈ Ω(f) | either fα <
0 or αi is odd for some i ∈ {1, . . . , n}}. Since our polynomial f is usually fixed, we will
often denote Ω(f) and ∆(f) just by Ω and ∆ for short.

• Let f̃(X, Y ) = Y 2df(X1

Y
, . . . , Xn

Y
). From (2), it is clear that

f̃(X,Y ) = f0Y
2d +

∑
α∈Ω

fαXαY 2d−|α| +
n∑

i=1

f2d,iX
2d
i
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is a form of degree 2d, called the homogenization of f . We have the following well-known
result:

Proposition 1.1. f is sos if and only if f̃ is sos.

Proof. See [7, Prop. 1.2.4].

• For a (univariate) polynomial of the form p(t) = tn −∑n−1
i=0 ait

i, where each ai is non-
negative and at least one ai is nonzero, we denote by C(p) the unique positive root of p
[10, Th. 1.1.3]. For any polynomial q(t) =

∑n
i=0 bit

i, bn 6= 0, the roots of q are bounded in

absolute value by C(tn −∑n−1
i=0

|bi|
|bn|t

i). By convention, C(tn) := 0.

• There are various upper bounds for C(p) which are expressible in an elementary way in
terms of the coefficients of p, for example,

Proposition 1.2. Suppose p(t) = tn−∑n−1
i=0 ait

i, where each ai is nonnegative and at least
one ai is nonzero. Then

(1) C(p) ≤ max{1, a0 + a1 + · · ·+ an−1},
(2) C(p) ≤ max{a0, 1 + a1, 1 + a2, . . . , 1 + an−1},
(3) C(p) ≤ 2 max{an−1, (an−2)

1/2, (an−3)
1/3, . . . , (a0)

1/n}.
Proof. Bounds (1) and (2) are due basically to Cauchy. See [1] for these bounds and for
other bounds of this sort. See [4, Ex. 4.6.2: 20] for bound (3).
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2 Sufficient conditions for a polynomial to be sos

• We make use of the following result:

Theorem 2.1 (Reznick). Suppose p(x) =
n∑

i=1

aix
2d
i − 2dxa1

1 · · · xan
n , a = (a1, . . . , an) ∈ Nn,

|a| = 2d. Then p is sobs.

• Notes:
— sobs := sum of binomial squares, i.e., a sum of squares of the form (βxb− γxc)2 with

β, γ ∈ R and c, d ∈ Nn.
— Th. 2.1 can be deduced from results of Reznick in [11] and [12], specifically, from

[12, Th. 2.2 and Th. 4.4]. A direct elementary proof of Th. 2.1 is given below. If one only
wants to prove that p is sos the proof is even simpler.

Proof. By induction on n. If n = 1 then p = 0 and the result is clear. Assume now that
n ≥ 2. By induction on n we can assume each ai is strictly positive.

Case 1: Suppose ∃ i1 6= i2 with ai1 ≤ d and ai2 ≤ d. Decompose a = (a1, . . . , an) as
a = b + c with b, c ∈ Nn, bi1 = 0, ci2 = 0 and

∑n
i=1 bi =

∑n
i=1 ci = d. Then (xb − xc)2 =

x2b − 2xbxc + x2c = x2b − 2xa + x2c, so
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p =
n∑

i=1

aix
2d
i − 2dxa =

n∑
i=1

aix
2d
i − d[x2b + x2c − (xb − xc)2]

=
1

2
[

n∑
i=1

2bix
2d
i − 2dx2b] +

1

2
[

n∑
i=1

2cix
2d
i − 2dx2c] + d(xb − xc)2.

Each term is sobs, by induction on n.

Case 2: Suppose we are not in Case 1. Since there is at most one i satisfying ai > d it
follows that n = 2, so p = a1x

2d
1 + a2x

2d
2 − 2dxa1

1 xa2
2 . We know that p ≥ 0 on R2, by the

arithmetic-geometric inequality. Since n = 2 and p is homogeneous, it follows that p is sos
(dehomogenize p and apply [8], Prop. 1.2.1 and Prop. 1.2.4).

But we want to show p is sobs, which requires more work. Denote by AGI(2, d) the
set of all homogeneous polynomials of the form p = a1x

2d
1 + a2x

2d
2 − 2dxa1

1 xa2
2 , a1, a2 ∈ N,

a1 + a2 = 2d. This set is finite. If a1 = 0 or a1 = 2d then p = 0 which is trivially sobs.
If a1 = a2 = d then p = d(xd

1 − xd
2)

2, which is also sobs. Suppose now that 0 < a1 < 2d,
a1 6= d. Suppose a1 > a2 (The argument for a1 < a2 is similar.) Decompose a = (a1, a2) as
a = b + c, b = (d, 0), c = (a1 − d, a2). Expand p as in the proof of Case 1 to obtain

p =
1

2
[

2∑
i=1

2bix
2d
i − 2dx2b] +

1

2
[

2∑
i=1

2cix
2d
i − 2dx2c] + d(xb − xc)2.
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Observe that
∑2

i=1 2bix
2d
i −2dx2b = 0. Thus p = 1

2
p1+d(xb−xc)2, where p1 :=

∑2
i=1 2cix

2d
i −

2dx2c. If p1 is sobs the p is also sobs. If p1 is not sobs then we can repeat to get p1 =
1
2
p2 + d(xd′ − xc′)2. Continuing in this way we get a sequence p = p0, p1, p2, . . . with each

pi an element of the finite set AGI(2, d), so pi = pj for some i < j. Since pi = 2i−jpj+ a
sum of binomial squares, this implies pi is sobs and hence that p is sobs.

Corollary 2.2 (Fidalgo-Kovacec [2, Th. 2.3]). For a form p(X) =
n∑

i=1

βiX
2d
i − µXα such

that αi > 0 and βi ≥ 0 for every i = 1, . . . , n and µ ≥ 0 if all αi are even, the following
are equivalent:

i. p is positive semidefinite.

ii. |µ| ≤ 2d
n∏

i=1

(
βi

αi

)αi
2d

.

iii. p is sobs.

iv. p is sos.

• Cor. 2.2 is an easy consequence on Th. 2.1. See [2] for the proof.

• In what follows we use Cor. 2.2 to improve on the sufficient conditions given in [6, Th.
3] and [2, Th. 4.3].
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Theorem 2.3. Suppose f ∈ R[X] is a form of degree 2d and

f2d,i ≥
∑
α∈∆

|fα|αi

2d
, i = 1, . . . , n.

Then f is a sum of (binomial) squares.

Proof. We claim that
n∑

i=1

|fα|αi

2d
X2d

i + fαXα

is sobs, for each α ∈ ∆. It suffices to show that
∑

αi 6=0

|fα|αi

2d
X2d

i + fαXα is sobs, for each

α ∈ ∆. Since

2d
∏

αi 6=0

( |fα|αi

2d

αi

)αi
2d

= 2d
|fα|
2d

= |fα| ≥ |fα|,

and since fα < 0 if all the αi are even, by definition of ∆, this follows, as a consequence of
Cor. 2.2. This proves the claim. Adding, as α runs through ∆, this implies

n∑
i=1

(
∑
α∈∆

|fα|αi

2d
)X2d

i +
∑
α∈∆

fαXα
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is sobs. Since f2d,i ≥
∑

α∈∆ |fα|αi

2d
, for each i,

n∑
i=1

f2d,iX
2d
i −

n∑
i=1

(
∑
α∈∆

|fα|αi

2d
)X2d

i =
n∑

i=1

(f2d,i −
∑
α∈∆

|fα|αi

2d
)X2d

i

is sobs. Adding again, this implies that

n∑
i=1

f2d,iX
2d
i +

∑
α∈∆

fαXα

is sobs. Finally, since the remaining terms fαXα, α ∈ Ω\∆, are squares of monomials, by
definition of ∆, this implies that f is sobs.

Corollary 2.4. For any polynomial f ∈ R[X] of degree 2d, if

(L1) f0 ≥
∑

α∈∆

|fα|2d−|α|
2d

and (L2) f2d,i ≥
∑

α∈∆

|fα|αi

2d
, i = 1, . . . , n,

then f is a sum of squares.

Proof. Apply Th. 2.3 to the homogenization f̃ of f to conclude that f̃ is sos. Consequently,
by Prop. 1.1, f is also sos.
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• In [6, Th. 3], it is proved that if

f0 ≥
∑
α∈∆

|fα| and f2d,i ≥
∑
α∈∆

|fα| |α|
2d

, i = 1, . . . , n,

then f is a sum of squares. Since 1 ≥ 2d−|α|
2d

and |α|
2d
≥ αi

2d
, it is clear that Cor. 2.4 improves

on [6, Th. 3].

Theorem 2.5. Suppose f ∈ R[X] is a form of degree 2d and

min
i=1,...,n

f2d,i ≥ 1

2d

∑
α∈∆

|fα|(αα)
1
2d .

Then f is a sum of (binomial) squares.

Here, αα := αα1
1 · · ·ααn

n (the convention being that 00 := 1).

Proof. Let eα := 1
2d
|fα|(αα)

1
2d . We claim that

eα

n∑
i=1

X2d
i + fαXα
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is sobs, for each α ∈ ∆. Since eα ≥ 0, eα

∑
αi=0

X2d
i is sobs, so it suffices to show that

eα

∑
αi 6=0

X2d
i − fαXα is sobs. Since

2d
∏

αi 6=0

(
eα

αi

)
αi
2d =

2deα

(αα)
1
2d

= |fα| ≥ |fα|,

and since fα < 0 if all the αi are even, by definition of ∆, this follows from Cor. 2.2. This
proves the claim. Adding, this implies

∑
α∈∆

eα

n∑
i=1

X2d
i +

∑
α∈∆

fαXα

is sobs. Since f2d,i ≥
∑

α∈∆ eα, for each i,

n∑
i=1

f2d,iX
2d
i −

∑
α∈∆

eα

n∑
i=1

X2d
i =

n∑
i=1

(f2d,i −
∑
α∈∆

eα)X2d
i

is sobs. Adding again, this implies

n∑
i=1

f2d,iX
2d
i +

∑
α∈∆

fαXα
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is sobs. Finally, since the remaining terms fαXα, α ∈ Ω\∆, are squares of monomials, this
implies f is sobs.

• In [2, Th. 4.3] it is proved that if f ∈ R[X] is any form of degree 2d and

min
i=1,...,n

f2d,i ≥ 1

n
(

n

2d
)2d

∑
α∈∆

|fα|αα

then f is a sum of squares. Using αα ≥ (2d
n

)2d, one sees immediately that

1

n
(

n

2d
)2dαα ≥ 1

2d
(αα)

1
2d .

Consequently, Th. 2.5 improves on [2, Th. 4.3]. The fact that αα ≥ (2d
n

)2d is an immediate
consequence of the fact that the minimum value of the function

G(t1, . . . , tn) := tt11 · · · ttnn
on the compact subset of Rn defined by ti ≥ 0, i = 1, . . . , n,

∑n
i=1 ti = 2d is equal to (2d

n
)2d,

the minimum occurring at the point t1 = · · · = tn = 2d
n

.

Corollary 2.6. If f ∈ R[X] is a polynomial of degree 2d and

(FK) min
i=1,...,n

{f2d,i, f0} ≥ 1
2d

∑
α∈∆

|fα|(αα)
1
2d (2d− |α|) 2d−|α|

2d
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then f is a sum of squares.

Proof. Homogenize f and apply Th. 2.5 and Prop. 1.1.

• Recall that Σ◦
2d,n (resp., P ◦

2d,n) denotes the interior of the cone Σ2d,n (resp., P2d,n) in the
real vector space consisting of forms of degree 2d. The following result is well-known. It is
proved, for example, in [8, Prop. 5.3(2)].

Corollary 2.7. X2d
1 + · · ·+ X2d

n ∈ Σ◦
2d,n.

Proof. Let f(X) = X2d
1 + · · · + X2d

n + h(X) where h(X) is any form of degree 2d whose
coefficients have absolute value ≤ ε where ε is some small positive real. Applying Th. 2.3
or Th. 2.5, one sees that f is sos, for ε sufficiently small.

Remark 2.8. Let C be a cone in a finite dimensional real vector space V . Let C◦ denote
the interior of C. If f ∈ C◦ and g ∈ V then g ∈ C◦ iff g − εf ∈ C for some real ε > 0.

Proof. Suppose g − εf ∈ C. Let h ∈ V . Since f belongs to the interior of C, there exists
some real δ > 0 such that f + δ

ε
h ∈ C. Then g + δh = (g − εf) + ε(f + δ

ε
h) ∈ C. This

proves that g belongs to the interior of C. The other implication is clear.

• It follows from Cor. 2.7 and Rem. 2.8 that a form f of degree 2d is an interior point of
Σ2d,n iff f − ε

∑n
i=1 X2d

i ∈ Σ2d,n for some real ε > 0.
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• Ths. 2.3 and 2.5 provide sufficient conditions for f ∈ Σ◦
2d,n to hold and have the nice

additional property of allowing computation of ε:

Corollary 2.9. If f is a form of degree 2d and ε := max{ε1, ε2} > 0 where

ε1 := min
i=1,...,n

(f2d,i −
∑
α∈∆

|fα|αi

2d
), ε2 := min

i=1,...,n
f2d,i − 1

2d

∑
α∈∆

|fα|(αα)
1
2d ,

then f ∈ Σ◦
2d,n and f − ε

∑n
i=1 X2d

i ∈ Σ2d,n.

Proof. Applying Th. 2.3 or Th. 2.5 (depending on whether ε = ε1 or ε = ε2) to the form
f − ε

∑n
i=1 X2d

i , we see that f − ε
∑n

i=1 X2d
i is sos.

3 Determining lower bounds

• In this section we assume f2d ∈ Σ◦
2d,n and we use Cor. 2.4 and Cor. 2.6 to produce

concrete lower bounds for fsos, which we denote by rL and rFK , respectively. We also
apply Cor. 2.2 more or less directly to produce another concrete lower bound for fsos,
which we denote by rdmt.

• Our lower bounds rL, rFK and rdmt depend on the coefficients fα, α ∈ ∆, |α| < 2d, and
ε, where ε is such that ε > 0 and f2d − ε

∑n
i=1 X2d

i ∈ Σ2d,n. Existence of ε is a consequence
of Cor. 2.7 and Rem. 2.8. I’ll say more about ε and rL, rFK and rdmt in Section 4.
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• We use Cor. 2.4 to produce a concrete lower bound rL for fsos as follows:

Theorem 3.1. If f2d ∈ Σ◦
2d,n then fsos ≥ rL, where

rL := f0 −
∑

α∈∆,|α|<2d

|fα|2d− |α|
2d

ε−
|α|
2d k|α|,

k := max
i=1,...,n

C(t2d −
∑

α∈∆,|α|<2d

|fα|αi

2d
ε−

|α|
2d t|α|)

and ε > 0 is such that f2d − ε
∑n

i=1 X2d
i ∈ Σ2d,n.

• Notes:
— Th. 3.1 proves in particular that if f2d ∈ Σ◦

2d,n then fsos 6= −∞, i.e., it provides
another proof of [8, Prop. 5.1].

— If ` ≥ k then

f0 −
∑

α∈∆,|α|<2d

|fα|2d− |α|
2d

ε−
|α|
2d `|α| ≤ f0 −

∑

α∈∆,|α|<2d

|fα|2d− |α|
2d

ε−
|α|
2d k|α| = rL.

In this way, by taking ` to be an upper bound for k computed using Prop. 1.2, we obtain a

lower bound f0−
∑

α∈∆,|α|<2d |fα|2d−|α|
2d

ε−
|α|
2d `|α| for fsos which is expressible in an elementary

way in terms of ε and the coefficients fα, α ∈ ∆, |α| < 2d.
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Proof. Since f2d ∈ Σ◦
2d,n, by Cor. 2.7 and Rem. 2.8, there exists ε > 0 such that f2d =

ε(X2d
1 + · · · + X2d

n ) + g for some g ∈ Σ2d,n. Scaling suitably (Xi 7→ Xi
2d
√

ε
), we can assume

that ε = 1. Let f̂ := f − g. Decomposing f̂ as in equation (2) yields

f̂ = f0 +
∑

α∈Ω,|α|<2d

fαXα +
n∑

i=1

X2d
i . (3)

If {α ∈ ∆ | |α| < 2d} = ∅, then f̂−rL = f̂−f0 is sos, using equation (3) and the definition of
∆, so f−rL is also sos and the result is clear. Thus we can assume {α ∈ ∆ | |α| < 2d} 6= ∅,
so k > 0. Scaling by Xi 7→ kXi, and rewriting condition (L2) of Cor. 2.4 for the polynomial

f̂(kX)− r, using equation (3), yields

k2d ≥
∑

α∈∆,|α|<2d

|fα|αi

2d
k|α|, i = 1, . . . , n.

By definition of k, k2d ≥ ∑
α∈∆,|α|<2d |fα|αi

2d
k|α| for all i, so condition (L2) holds for f̂(kX)−

r. Rewriting condition (L1) of Cor. 2.4 for the polynomial f̂(kX)−r, we see that if r ≤ rL

then (L1) holds for f̂(kX)− r so f̂ − r is sos and hence also f − r is sos.

• In a similar way, we use Cor. 2.6 to produce a concrete lower bound rFK for fsos:
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Theorem 3.2. If f2d ∈ Σ◦
2d,n then fsos ≥ rFK, where rFK := f0 − k2d,

k :=C(t2d −
2d−1∑
i=1

bit
i),

bi :=
1

2d
(2d− i)

2d−i
2d ε−

i
2d

∑

α∈∆,|α|=i

|fα|(αα)
1
2d , i = 1, . . . , 2d− 1

and ε > 0 is given as in Th. 3.1.

• Note: If ` ≥ k then

f0 −
2d−1∑
i=1

bi`
i ≤ f0 −

2d−1∑
i=1

bik
i = f0 − k2d = rFK

so, using Prop. 1.2 again, we get another lower bound for fsos expressible in an elementary
way in terms of ε and the coefficients fα, α ∈ ∆, |α| < 2d.

Proof. After scaling we can assume that ε = 1 and f2d = X2d
1 +· · ·+X2d

n +g, where g ∈ Σ2d,n.
If {α ∈ ∆ | |α| < 2d} = ∅, then bi = 0 for i = 1, . . . 2d− 1, k = 0 (by definition of C(t2d)),
so rFK = f0. In this case the result is clear. So we can assume {α ∈ ∆ | |α| < 2d} 6= ∅,
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so k > 0. Set r = rFK . Rewriting condition (FK) for the polynomial f̂(kX) − r, where

f̂ := f − g, yields the condition:

min{(f0 − r), k2d} ≥
2d−1∑
i=1

bik
i. (4)

By definition of k and r, (4) holds, in fact, f0 − r = k2d =
∑2d−1

i=1 bik
i. This proves that

f̂ − r is sos and hence also that f − r is sos.

• One can also apply Cor. 2.2 directly to obtain a lower bound rdmt for fsos.

Theorem 3.3. If f2d ∈ Σ◦
2d,n then

fsos ≥ rdmt := f0 −
∑

α∈∆,|α|<2d

(2d− |α|)
[(

fα

2d

)2d

((
t

ε
)|α|αα)

] 1
2d−|α|

,

where t := |{α ∈ ∆ | |α| < 2d}| and ε > 0 is given as in Th. 3.1.

Proof. Let ∆′ = {α ∈ ∆ | |α| < 2d}. After scaling, we can assume that ε = 1. Let
f = f0 +

∑
α∈∆′ fαXα + X2d

1 + · · · + X2d
n and let F (X,Y ) denote the homogenization of
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f( 2d
√

tX)− r, where r := f0 −
∑

α∈∆′ rα, each rα ≥ 0. Then

F (X,Y ) = (f0 − r)Y 2d +
∑

α∈∆′
(X2d

1 + · · ·+ X2d
n + fαt|α|/2dXαY 2d−|α|)

=
∑

α∈∆′
(rαY 2d + X2d

1 + · · ·+ X2d
n + fαt|α|/2dXαY 2d−|α|).

By Cor. 2.2, each term appearing in this sum will be sos if

|fα|t
|α|
2d ≤ 2d

(
rα

2d− |α|
) 2d−|α|

2d ∏

αi 6=0

(
1

αi

)αi
2d

,

or, equivalently, if

rα ≥ (2d− |α|)
[(

fα

2d

)2d

t|α|αα

] 1
2d−|α|

.

Hence if r ≤ rdmt then f − r is sos, so also f − r is sos.
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4 Further remarks

(1) The sufficient conditions given in Ths. 2.3 and 2.5 are not comparable. These conditions
are also not necessary.

Example 4.1.

(a) f(X, Y, Z) = X4 + Y 4 + 4Z4 + 4XZ3 is sos, by Th. 2.3, but Th. 2.5 does not apply.

(b) f(X, Y, Z) = X4 + Y 4 + Z4 +
√

8XY Z2 is sos, by Th. 2.5, but Th. 2.3 does not
apply.

(c) f(X,Y, Z) = 16X4 + Y 4 + 4Z4 + 8XZ3 is sos, but neither Th. 2.3 nor Th. 2.5
applies.

(2) The bounds rL, rFK and rdmt described in Ths. 3.1, 3.2 and 3.3 are not comparable.

Example 4.2.

(a) For f(X, Y ) = X6 + Y 6 + 7XY − 2X2 + 7, we have rL ≈ −1.124, rFK ≈ −0.99 and
rdmt ≈ −1.67, so rFK > rL > rdmt.

(b) For f(X, Y ) = X6 + Y 6 + 4XY + 10Y + 13, rL ≈ −0.81, rFK ≈ −0.93 and
rdmt ≈ −0.69, so rdmt > rL > rFK .

(c) For f(X,Y ) = X4 + Y 4 + XY − X2 − Y 2 + 1, rL ≈ −0.125, rFK ≈ −0.832 and
rdmt ≈ −0.875, so rL > rFK > rdmt.

0-20



(3) To be able to compute rL, rFK and rdmt one needs to know ε and the coefficients fα,
|α| < 2d. What can one do if ε is not given, i.e., if only the coefficients fα, |α| ≤ 2d
are given? Applying Cor. 2.9 to the form f2d allows us to compute ε in certain cases: If
ε := max{ε1, ε2} > 0 where

ε1 := min
i=1,...,n

(f2d,i −
∑

α∈∆,|α|=2d

|fα|αi

2d
), ε2 := min

i=1,...,n
f2d,i − 1

2d

∑

α∈∆,|α|=2d

|fα|(αα)
1
2d ,

then f2d ∈ Σ◦
2d,n and f2d − ε

∑n
i=1 X2d

i ∈ Σ2d,n.

(4) So far we have been assuming that f2d ∈ Σ◦
2d,n and we have used this assumption to

determine lower bounds for fsos. What can one say if one assumes only that f2d ∈ P ◦
2d,n?

Suppose ε > 0 is given such that f2d − ε
∑n

i=1 X2d
i ∈ P2d,n. One can then define rL exactly

as in Th. 3.1, but using this new ε, i.e.,

rL := f0 −
∑

α∈∆,|α|<2d

|fα|2d− |α|
2d

ε−
|α|
2d k|α|,

k := max
i=1,...,n

C(t2d −
∑

α∈∆,|α|<2d

|fα|αi

2d
ε−

|α|
2d t|α|).

The rL defined in this way might not be a lower bound for fsos (it is even possible that
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fsos = −∞), but it will be a lower bound for f∗. Similar remarks apply to the other bounds
rFK and rdmt.

Theorem 4.3. If f2d ∈ P ◦
2d,n and ε > 0 is such that f2d − ε

∑n
i=1 X2d

i ∈ P2d,n then rL, rFK

and rdmt, defined as in Ths. 3.1, 3.2 and 3.3, respectively, but using this new choice of ε,
are lower bounds for f on Rn.

Proof. Argue as in the proof of Ths. 3.1, 3.2 and 3.3. The form g is no longer sos but it is
positive semidefinite, which is all one needs for the conclusion.

Note: In Th. 4.3, the largest possible choice for ε is the minimum value of the rational
function f2d/

∑n
i=1 X2d

i on the n− 1-sphere

Sn−1 := {a ∈ Rn | a2
1 + · · ·+ a2

n = 1}.
(5) Denote by R[X]k the vector space of polynomials of degree ≤ k. We know that for any
p ∈ P ◦

2d,n and any g ∈ R[X]2d−1, (p+g)∗ 6= −∞ and, for any p ∈ Σ◦
2d,n and any g ∈ R[X]2d−1,

(p+g)sos 6= −∞. Note that if p ∈ P2d,n is not positive definite then there exists 0 6= a ∈ Rn

such that p(a) = 0. Let g(X) =
∑n

i=1 aiXi. Then (p + g)(ta) = t‖a‖2 → −∞ as t → −∞,
so (p + g)∗ = −∞. Therefore for any p ∈ ∂P2d,n (∂P2d,n denotes the boundary of P2d,n, i.e.
∂P2d,n = P2d,n \ P ◦

2d,n), there exists g ∈ R[X]2d−1, such that (p + g)∗ = −∞. The validity
of the corresponding result for boundary points of Σ2d,n is unknown to the authors.
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Question 4.4. Is it true that for any p ∈ ∂Σ2d,n there exists g ∈ R[X]2d−1 such that
(p + g)sos = −∞?

The answer to this question is ‘yes’ if n ≤ 2 or d = 1 or (n = 3 and d = 2) by Hilbert’s
result [3]. In fact these are precisely the cases where P2d,n and Σ2d,n coincide.
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