Representing Polyhedra by Few Polynomials

Martin Henk

Banff, February, 2010

Why?

- By a theorem of Bröcker, Scheiderer in real algebraic geometry, every polyhedron in \mathbb{R}^{n} can be described by a few ($\approx n^{2}$) polynomial inequalities.

Why?

- By a theorem of Bröcker, Scheiderer in real algebraic geometry, every polyhedron in \mathbb{R}^{n} can be described by a few ($\approx n^{2}$) polynomial inequalities.
- Martin Grötschel Impact for hard combinatorial optimization problems?, Constructions?, Approximations by polynomial inequalities?
- Bröcker, Scheiderer, '84,...,'89. Every basic closed semi-algebraic set $S \subset \mathbb{R}^{n}$ can be represented by at most $n(n+1) / 2$ polynomial inequalities, i.e., there exist $p_{1}, \ldots, p_{n(n+1) / 2} \in \mathbb{R}[x]$ such that

$$
S=\left\{x \in \mathbb{R}^{n}: p_{1}(x) \geq 0, \ldots, p_{n(n+1) / 2}(x) \geq 0\right\}
$$

- Bröcker, Scheiderer, '84,...,'89. Every basic closed semi-algebraic set $S \subset \mathbb{R}^{n}$ can be represented by at most $n(n+1) / 2$ polynomial inequalities, i.e., there exist $p_{1}, \ldots, p_{n(n+1) / 2} \in \mathbb{R}[x]$ such that

$$
S=\left\{x \in \mathbb{R}^{n}: p_{1}(x) \geq 0, \ldots, p_{n(n+1) / 2}(x) \geq 0\right\}
$$

In the case of basic open semi-algebraic sets, n polynomials suffice, and both bounds are best possible.

- Open: For instance, the positive orthant $\left\{x \in \mathbb{R}^{n}: x_{i}>0,1 \leq i \leq n\right\}$ cannot be described by less than n strict polynomial inequalities.

- Open: For instance, the positive orthant $\left\{x \in \mathbb{R}^{n}: x_{i}>0,1 \leq i \leq n\right\}$ cannot be described by less than n strict polynomial inequalities.

- Closed: For instance, the family of stacked cubes cannot be described by less than $n(n+1) / 2$ polynomial inequalities.

- Open: For instance, the positive orthant $\left\{x \in \mathbb{R}^{n}: x_{i}>0,1 \leq i \leq n\right\}$ cannot be described by less than n strict polynomial inequalities.

- Closed: For instance, the family of stacked cubes cannot be described by less than $n(n+1) / 2$ polynomial inequalities.

- Can the bound be improved, e.g., for convex sets?

Consequences for polyhedra

- Every polyhedron

$$
P=\left\{x \in \mathbb{R}^{n}:\left\langle a_{i}, x\right\rangle \leq b_{i}, 1 \leq i \leq m\right\}
$$

given as the intersection of finitely many linear inequalities, can be described by at most $n(n+1) / 2$ polynomial inequalities. The interior of a polyhedron can even be described by n polynomials.

Consequences for polyhedra

- Every polyhedron

$$
P=\left\{x \in \mathbb{R}^{n}:\left\langle a_{i}, x\right\rangle \leq b_{i}, 1 \leq i \leq m\right\}
$$

given as the intersection of finitely many linear inequalities, can be described by at most $n(n+1) / 2$ polynomial inequalities. The interior of a polyhedron can even be described by n polynomials.

- Can the bound be improved?

Consequences for polyhedra

- Every polyhedron

$$
P=\left\{x \in \mathbb{R}^{n}:\left\langle a_{i}, x\right\rangle \leq b_{i}, 1 \leq i \leq m\right\}
$$

given as the intersection of finitely many linear inequalities, can be described by at most $n(n+1) / 2$ polynomial inequalities. The interior of a polyhedron can even be described by n polynomials.

- Can the bound be improved?

Yes!

Consequences for polyhedra

- Every polyhedron

$$
P=\left\{x \in \mathbb{R}^{n}:\left\langle a_{i}, x\right\rangle \leq b_{i}, 1 \leq i \leq m\right\}
$$

given as the intersection of finitely many linear inequalities, can be described by at most $n(n+1) / 2$ polynomial inequalities. The interior of a polyhedron can even be described by n polynomials.

- Can the bound be improved?
Yes!
- Can we (really) construct these (few) polynomials?

Consequences for polyhedra

- Every polyhedron

$$
P=\left\{x \in \mathbb{R}^{n}:\left\langle a_{i}, x\right\rangle \leq b_{i}, 1 \leq i \leq m\right\}
$$

given as the intersection of finitely many linear inequalities, can be described by at most $n(n+1) / 2$ polynomial inequalities. The interior of a polyhedron can even be described by n polynomials.

- Can the bound be improved?
Yes!
- Can we (really) construct these (few) polynomials?

It depends...!

(Trivial) Examples

(Trivial) Examples

- The (regular) n-cube

$$
C_{n}=\left\{x \in \mathbb{R}^{n}:-1 \leq x_{i} \leq 1,1 \leq i \leq n\right\}
$$

(Trivial) Examples

- The (regular) n-cube (or any other parallelepiped)

$$
\begin{aligned}
C_{n} & =\left\{x \in \mathbb{R}^{n}:-1 \leq x_{i} \leq 1,1 \leq i \leq n\right\} \\
& =\left\{x \in \mathbb{R}^{n}:\left(x_{i}\right)^{2} \leq 1,1 \leq i \leq n\right\} .
\end{aligned}
$$

(Trivial) Examples

- The n-simplex

$$
T_{n}=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, x_{1}+\cdots+x_{n} \leq 1\right\}
$$

(Trivial) Examples

- The n-simplex

$$
\begin{aligned}
T_{n} & =\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, x_{1}+\cdots+x_{n} \leq 1\right\} \\
& =\left\{x \in \mathbb{R}^{n}: x_{i}\left(1-\sum_{k=i}^{n} x_{k}\right) \geq 0,1 \leq i \leq n\right\} .
\end{aligned}
$$

- The regular n-crosspolytope

$$
C_{n}^{\star}=\left\{x \in \mathbb{R}^{n}: \sum\left|x_{i}\right| \leq 1\right\}
$$

- The regular n-crosspolytope

$$
\begin{aligned}
C_{n}^{\star} & =\left\{x \in \mathbb{R}^{n}: \sum\left|x_{i}\right| \leq 1\right\} \\
& =?
\end{aligned}
$$

- The regular n-crosspolytope

$$
\begin{aligned}
C_{n}^{\star} & =\left\{x \in \mathbb{R}^{n}: \sum\left|x_{i}\right| \leq 1\right\} \\
& =?
\end{aligned}
$$

- Bosse, 2003, $n=3$:
$p_{1 / 2}=$ product of 4 facet defining in-
- equalities which do not have an edge in common.

- The regular n-crosspolytope

$$
\begin{aligned}
C_{n}^{\star} & =\left\{x \in \mathbb{R}^{n}: \sum\left|x_{i}\right| \leq 1\right\} \\
& =?
\end{aligned}
$$

- Bosse, 2003, $n=3$:
$p_{1 / 2}=$ product of 4 facet defining in-
- equalities which do not have an edge in common.
- $p_{0}=$ circumsphere of C_{3}^{\star}.

Grötschel\&H., 2002.

Grötschel\&H., 2002.

- Each facet defining linear polynomial $b_{i}-\left\langle a_{i}, x\right\rangle$ is a factor of one of the polynomials in a polynomial representation.

Grötschel\&H., 2002.

- Each facet defining linear polynomial $b_{i}-\left\langle a_{i}, x\right\rangle$ is a factor of one of the polynomials in a polynomial representation.
- Hence, the sum of the degrees in any polynomial representation is at least the number of facets of the polyhedron.

Grötschel\&H., 2002.

- Each facet defining linear polynomial $b_{i}-\left\langle a_{i}, x\right\rangle$ is a factor of one of the polynomials in a polynomial representation.
- Hence, the sum of the degrees in any polynomial representation is at least the number of facets of the polyhedron.
- For every k-face there exist at least $n-k$ polynomials in a polynomial representation vanishing on aff F.

Grötschel\&H., 2002.

- Each facet defining linear polynomial $b_{i}-\left\langle a_{i}, x\right\rangle$ is a factor of one of the polynomials in a polynomial representation.
- Hence, the sum of the degrees in any polynomial representation is at least the number of facets of the polyhedron.
- For every k-face there exist at least $n-k$ polynomials in a polynomial representation vanishing on aff F.
- Hence, a polynomial representation of a polyhedra having a vertex consists of at least n polynomials.

Grötschel\&H., 2002.

- Each facet defining linear polynomial $b_{i}-\left\langle a_{i}, x\right\rangle$ is a factor of one of the polynomials in a polynomial representation.
- Hence, the sum of the degrees in any polynomial representation is at least the number of facets of the polyhedron.
- For every k-face there exist at least $n-k$ polynomials in a polynomial representation vanishing on aff F.
- Hence, a polynomial representation of a polyhedra having a vertex consists of at least n polynomials.
- For prisms and pyramids a polynomial representation can be constructed from a polynomial representation of the basis plus one additional polynomial.

Grötschel\&H., 2002.

- Each facet defining linear polynomial $b_{i}-\left\langle a_{i}, x\right\rangle$ is a factor of one of the polynomials in a polynomial representation.
- Hence, the sum of the degrees in any polynomial representation is at least the number of facets of the polyhedron.
- For every k-face there exist at least $n-k$ polynomials in a polynomial representation vanishing on aff F.
- Hence, a polynomial representation of a polyhedra having a vertex consists of at least n polynomials.
- For prisms and pyramids a polynomial representation can be constructed from a polynomial representation of the basis plus one additional polynomial.
- For bi-pyramids?

Dimension 2

- vom Hofe, 1992. For each polygon we can construct 3 polynomial inequalities representing the polygon.

Dimension 2

- vom Hofe, 1992. For each polygon we can construct 3 polynomial inequalities representing the polygon.
- Bernig, 1998. For each (bounded) polygon we can construct 2 polynomial inequalities representing the polygon.
- Let $P=\left\{x \in \mathbb{R}^{2}:\left\langle a_{i}, x\right\rangle \leq b_{i}, 1 \leq i \leq m\right\}$ be a polygon.

- Let $P=\left\{x \in \mathbb{R}^{2}:\left\langle a_{i}, x\right\rangle \leq b_{i}, 1 \leq i \leq m\right\}$ be a polygon.

$$
p_{1}(x)=\left(b_{1}-\left\langle a_{1}, x\right\rangle\right) \cdot\left(b_{2}-\left\langle a_{2}, x\right\rangle\right) \cdot \ldots \cdot\left(b_{m}-\left\langle a_{m}, x\right\rangle\right)
$$

- Let $P=\left\{x \in \mathbb{R}^{2}:\left\langle a_{i}, x\right\rangle \leq b_{i}, 1 \leq i \leq m\right\}$ be a polygon. $p_{1}(x)=\left(b_{1}-\left\langle a_{1}, x\right\rangle\right) \cdot\left(b_{2}-\left\langle a_{2}, x\right\rangle\right) \cdot \ldots \cdot\left(b_{m}-\left\langle a_{m}, x\right\rangle\right)$ $p_{0}(x)=$ concave polynomial through the vertices

- $p_{0}(x)$ is of the form

$$
p_{0}(x)=1-\sum_{i=1}^{m} \lambda_{i}\left[\frac{\left\langle w_{i}, x\right\rangle-l_{i}}{u_{i}-l_{i}}\right]^{2 k}
$$

where w_{i} are normal vectors of support hyperplanes of the vertices,

$$
I_{i}=\min _{x \in P}\left\langle w_{i}, x\right\rangle, \quad u_{i}=\max _{x \in P}\left\langle w_{i}, x\right\rangle
$$

and $\lambda_{i}>0$ and k are chosen such that $p_{0}(x)$ vanishes on the vertices.

- $p_{0}(x)$ is of the form

$$
p_{0}(x)=1-\sum_{i=1}^{m} \lambda_{i}\left[\frac{\left\langle w_{i}, x\right\rangle-l_{i}}{u_{i}-l_{i}}\right]^{2 k}
$$

where w_{i} are normal vectors of support hyperplanes of the vertices,

$$
I_{i}=\min _{x \in P}\left\langle w_{i}, x\right\rangle, \quad u_{i}=\max _{x \in P}\left\langle w_{i}, x\right\rangle
$$

and $\lambda_{i}>0$ and k are chosen such that $p_{0}(x)$ vanishes on the vertices.

- In particular, the degree depends on metric properties of the polygon.
- The obvious generalization of that 2-dimensional approach to consider polynomials
$p_{k}(x)=\prod$ support hyperplanes of k-faces, $k=1, \ldots, n-1$,
$p_{0}(x)=$ concave polynomial through the vertices does not work for $n \geq 3$ (see, e.g., crosspolytope).
- Bosse\&Grötschel\&H., 2005. For every n-dimensional polyhedron we can construct $2 n$ polynomial inequalities representing the polytope.
- Bosse\&Grötschel\&H., 2005. For every n-dimensional polyhedron we can construct $2 n$ polynomial inequalities representing the polytope.
- Consequence: Let

$$
S=\left\{x \in \mathbb{R}^{n}: f_{1}(x) \geq 0, \ldots, f_{m}(x) \geq 0\right\}
$$

with $\operatorname{deg}\left(f_{i}\right) \leq d$. Then we can find $2\binom{n+d}{n}-2$ polynomials representing the set S.

Simple polytopes seem to be simpler

- Averkov\&H., 2008. For every n-dimensional simple polytope we can construct n polynomial inequalities representing the polytope.

Simple polytopes seem to be simpler

- Averkov\&H., 2008. For every n-dimensional simple polytope we can construct n polynomial inequalities representing the polytope.
- Rough idea:
- Let $l_{i}(x)=b_{i}-\left\langle a_{i}, x\right\rangle$ and let

$$
P=\left\{x \in \mathbb{R}^{n}: I_{i}(x) \geq 0,1 \leq i \leq m\right\} .
$$

Simple polytopes seem to be simpler

- Averkov\&H., 2008. For every n-dimensional simple polytope we can construct n polynomial inequalities representing the polytope.
- Rough idea:
- Let $l_{i}(x)=b_{i}-\left\langle a_{i}, x\right\rangle$ and let

$$
P=\left\{x \in \mathbb{R}^{n}: I_{i}(x) \geq 0,1 \leq i \leq m\right\} .
$$

- Let

$$
\sigma_{j}(x)=\sum_{\substack{J \subseteq\{1, \ldots, m\} \\ \# J=j}} \prod_{k \in J} I_{k}(x)
$$

be the j-th elementary symmetric polynomial of $I_{1}(x), \ldots, I_{m}(x)$.

- $P=\left\{x \in \mathbb{R}^{n}: \sigma_{i}(x) \geq 0,1 \leq i \leq m\right\}$

I Let $x \in \mathbb{R}^{n}$ such that $\sigma_{i}(x) \geq 0,1 \leq i \leq m$. Let

$$
f(t)=\prod_{i=1}^{m}\left(l_{i}(x)+t\right)=\sum_{i=0}^{m} \sigma_{i}(x) t^{m-i} .
$$

All coefficients are non-negative and hence, the roots $-l_{i}(x)$, $1 \leq i \leq m$, are non-positive, i.e., $x \in P$.

- $P=\left\{x \in \mathbb{R}^{n}: \sigma_{i}(x) \geq 0,1 \leq i \leq m\right\}$.
- $P=\left\{x \in \mathbb{R}^{n}: \sigma_{i}(x) \geq 0,1 \leq i \leq m\right\}$.

If P is simple then there exists an $\epsilon>0$ such that for $x \in P+\epsilon B_{n}$

$$
\sigma_{i}(x) \geq 0,1 \leq i \leq m-n .
$$

H Let $x \in P$. Since P is simple, there exist at most n linear forms $I_{i}(x)$ vanishing at x.

- Hence at least $m-n$ linear forms are positive at x and so

$$
\sigma_{j}(x)>0, \quad j \leq m-n .
$$

II Let $x \in P$. Since P is simple, there exist at most n linear forms $I_{i}(x)$ vanishing at x.

- Hence at least $m-n$ linear forms are positive at x and so

$$
\sigma_{j}(x)>0, \quad j \leq m-n
$$

- Thus by continuity we can find an $\epsilon>0$ such that for all $x \in P+\epsilon B_{n}$

$$
\sigma_{j}(x) \geq 0, \quad j \leq m-n
$$

- $P=\left\{x \in \mathbb{R}^{n}: \sigma_{i}(x) \geq 0,1 \leq i \leq m\right\}$
- If P is simple then there exists an $\epsilon>0$ such that for $x \in P+\epsilon B_{n}$

$$
\sigma_{i}(x) \geq 0,1 \leq i \leq m-n
$$

- Thus

$$
P=\left\{x \in \mathbb{R}^{n}: \sigma_{m-n+i+1}(x) \geq 0,0 \leq i \leq n-1, p_{\epsilon}(x) \geq 0\right\}
$$ where $\left\{x \in \mathbb{R}^{n}: p_{\epsilon}(x) \geq 0\right\}$ is a "good" approximation of P.

- A simple polytope $P=\left\{x \in \mathbb{R}^{n}: l_{i}(x) \geq 0,1 \leq i \leq m\right\}$ is described by the n polynomial inequalities

$$
p_{i}(x):=\sigma_{m-n+i+1}(x) \geq 0,1 \leq i \leq n-1, \quad p_{0}(x) \geq 0,
$$

where $p_{0}(x)$ is a concave polynomial passing through the vertices of P and which approximates $P \epsilon$-well.

- A simple polytope $P=\left\{x \in \mathbb{R}^{n}: l_{i}(x) \geq 0,1 \leq i \leq m\right\}$ is described by the n polynomial inequalities

$$
p_{i}(x):=\sigma_{m-n+i+1}(x) \geq 0,1 \leq i \leq n-1, \quad p_{0}(x) \geq 0,
$$

where $p_{0}(x)$ is a concave polynomial passing through the vertices of P and which approximates $P \epsilon$-well.

- In particular, $p_{i}(x)$ vanishes on the i-faces of P, $i=0, \ldots, n-1$.

Example

- For a regular simplex $P \subseteq \mathbb{R}^{3}$ we can choose

$$
\begin{array}{ll}
I_{1}(x)=1+x_{1}-x_{2}+x_{3}, & I_{2}(x)=1-x_{1}+x_{2}+x_{3} \\
I_{3}(x)=1+x_{1}+x_{2}-x_{3}, & I_{4}(x)=1-x_{1}-x_{2}-x_{3}
\end{array}
$$

Example

- For a regular simplex $P \subseteq \mathbb{R}^{3}$ we can choose

$$
\begin{array}{ll}
I_{1}(x)=1+x_{1}-x_{2}+x_{3}, & I_{2}(x)=1-x_{1}+x_{2}+x_{3} \\
I_{3}(x)=1+x_{1}+x_{2}-x_{3}, & I_{4}(x)=1-x_{1}-x_{2}-x_{3}
\end{array}
$$

$$
\begin{aligned}
p_{2} & =I_{1} I_{2} I_{3} I_{4} \\
p_{1} & =I_{1} I_{2} I_{3}+I_{1} I_{2} I_{4}+I_{1} I_{3} I_{4}+I_{2} I_{3} I_{4} \\
& =4\left(1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-2 x_{1} x_{2} x_{3}\right) \\
p_{0} & =3-x_{1}^{2}-x_{2}^{2}-x_{3}^{2} .
\end{aligned}
$$

- For $J \subset\{0,1,2\}$ let $P_{J}=\left\{x \in \mathbb{R}^{3}: p_{j}(x) \geq 0, j \in J\right\}$

Simplex

- For $J \subset\{0,1,2\}$ let $P_{J}=\left\{x \in \mathbb{R}^{3}: p_{j}(x) \geq 0, j \in J\right\}$

Cube

The general case

- Averkov\&H., 2009. If every n-polytope can be described by n polynomials then also any unbounded n-dimensional polyhedron.

The general case

- Averkov\&H., 2009.

If every n-polytope can be described by n polynomials then also any unbounded n-dimensional polyhedron.

For every 3-dimensional polyhedra we can construct 3 polynomials representing the polyhedra.

Averkov\&Bröcker, 2010. Let

$$
S=\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}
$$

be a basic closed semi-algebraic set.

- If all $f_{i}(x)$ are linear, i.e., S is a polyhedron, then S can be represented by n polynomials.

Averkov\&Bröcker, 2010. Let

$$
S=\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}
$$

be a basic closed semi-algebraic set.

- If all $f_{i}(x)$ are linear, i.e., S is a polyhedron, then S can be represented by n polynomials.
- Let d be the maximal number of polynomials vanishing at a point. Then there exist $d+1$ polynomials p_{0}, \ldots, p_{d} representing S.

Averkov\&Bröcker, 2010. Let

$$
S=\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}
$$

be a basic closed semi-algebraic set.

- If all $f_{i}(x)$ are linear, i.e., S is a polyhedron, then S can be represented by n polynomials.
- Let d be the maximal number of polynomials vanishing at a point. Then there exist $d+1$ polynomials p_{0}, \ldots, p_{d} representing S.
- If there are only finitely many points where d polynomials $f_{i}(x)$ vanish then d polynomials suffice.

Averkov\&Bröcker, 2010. Let

$$
S=\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}
$$

be a basic closed semi-algebraic set.

- If all $f_{i}(x)$ are linear, i.e., S is a polyhedron, then S can be represented by n polynomials.
- Let d be the maximal number of polynomials vanishing at a point. Then there exist $d+1$ polynomials p_{0}, \ldots, p_{d} representing S.
- If there are only finitely many points where d polynomials $f_{i}(x)$ vanish then d polynomials suffice.
- The proofs are "semi-effective".
- Separation theorems based on Stone-Weierstrass approximation.
- How many polynomials are needed if we fix the degree?
- How many polynomials are needed if we fix the degree?
- H.\&Matzke, 2007. Let P be a 2-polyhedron with m edges and let $k \in \mathbb{N}$. Then one can construct d polynomials q_{1}, \ldots, q_{d} of degree at most k and with

$$
d \leq\left\lceil\frac{m}{k}\right\rceil+\left\lfloor\log _{2}(k-1)\right\rfloor+1
$$

such that

$$
P=\left\{x \in \mathbb{R}^{2}: q_{i}(x) \geq 0,1 \leq i \leq d\right\} .
$$

- How many polynomials are needed if we fix the degree?
- H.\&Matzke, 2007. Let P be a 2-polyhedron with m edges and let $k \in \mathbb{N}$. Then one can construct d polynomials q_{1}, \ldots, q_{d} of degree at most k and with

$$
d \leq\left\lceil\frac{m}{k}\right\rceil+\left\lfloor\log _{2}(k-1)\right\rfloor+1
$$

such that

$$
P=\left\{x \in \mathbb{R}^{2}: q_{i}(x) \geq 0,1 \leq i \leq d\right\} .
$$

- How many polynomials are needed if we fix the degree?
- H.\&Matzke, 2007. Let P be a 2-polyhedron with m edges and let $k \in \mathbb{N}$. Then one can construct d polynomials q_{1}, \ldots, q_{d} of degree at most k and with

$$
d \leq\left\lceil\frac{m}{k}\right\rceil+\left\lfloor\log _{2}(k-1)\right\rfloor+1
$$

such that

$$
P=\left\{x \in \mathbb{R}^{2}: q_{i}(x) \geq 0,1 \leq i \leq d\right\} .
$$

- Best possible for $k=O\left(m / \log _{2} m\right)$.
- How many polynomials are needed if we fix the degree?
- H.\&Matzke, 2007. Let P be a 2-polyhedron with m edges and let $k \in \mathbb{N}$. Then one can construct d polynomials q_{1}, \ldots, q_{d} of degree at most k and with

$$
d \leq\left\lceil\frac{m}{k}\right\rceil+\left\lfloor\log _{2}(k-1)\right\rfloor+1
$$

such that

$$
P=\left\{x \in \mathbb{R}^{2}: q_{i}(x) \geq 0,1 \leq i \leq d\right\} .
$$

- Best possible for $k=O\left(m / \log _{2} m\right)$.
- Averkov\&Bey, 2010. $d \leq \max \left\{\frac{m}{k}, \log _{2}(m)\right\}$, and it is best possible for any k among a certain family of polynomials.

More Open Questions

- Can we bound the degree of the polynomials by purely combinatorial data?

More Open Questions

- Can we bound the degree of the polynomials by purely combinatorial data?
- Is it reasonable to take the product of the facet defining inequalities?

More Open Questions

- Can we bound the degree of the polynomials by purely combinatorial data?
- Is it reasonable to take the product of the facet defining inequalities?
-

Thank you for your attention!

