Tropicalization of hyperbolic polynomials

Petter Brändén

Stockholm University

Banff, Feb 17, 2010

- A polynomial $P(\mathbf{z}) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ is stable if

$$
\mathbf{z} \in\{z \in \mathbb{C}: \operatorname{lm}(z)>0\}^{n} \Longrightarrow P(\mathbf{z}) \neq 0
$$

- For $P \in \mathbb{R}[\mathbf{z}]$ of degree d, stability is equivalent to that the homogenization $y^{d} P\left(z_{1} / y, \ldots, z_{n} / y\right)$ is hyperbolic with hyperbolicity cone containing $\mathbb{R}_{++}^{n} \times\{0\}$
- We are interested in combinatorial and geometric properties of the Taylor coefficients of stable polynomials
- Choe-Oxley-Sokal-Wagner (2004): Studied the support of homogeneous square-free stable polynomials
- Speyer (2005): Studied the tropicalization of homogeneous stable polynomials in three variables (Vinnikov polynomials). He obtained a new proof of Horn's conjecture on eigenvalues of sums of Hermitian matrices

Lemma

Let A_{1}, \ldots, A_{m} be positive semidefinite Hermitian $n \times n$ matrices and H Hermitian. Then

$$
P(\mathbf{z})=\operatorname{det}\left(z_{1} A_{1}+\cdots+z_{m} A_{m}+H\right)
$$

is stable
Proof. May assume A_{j} is PD for all j. Set $z_{j}=x_{j}+i y_{j}$, where $y_{j}>0$. Then

$$
\begin{aligned}
P(\mathbf{z}) & =\operatorname{det}\left(i\left(\sum_{j} y_{j} A_{j}\right)+\sum_{j} x_{j} A_{j}+H\right)=: \operatorname{det}(i A+B) \\
& =\operatorname{det}(A) \operatorname{det}\left(i I+A^{-1 / 2} B A^{-1 / 2}\right) \neq 0
\end{aligned}
$$

Conversely
Corollary to Lax Conjecture
If $P(x, y) \in \mathbb{R}[x, y]$ is stable of degree d then there are PSD matrices A, B of size $d \times d$ and Hermitian C such that

$$
P(x, y)=\operatorname{det}(x A+y B+C)
$$

- The converse fails for more than 2 variables

Theorem (Choe-Oxley-Sokal-Wagner, 2004)

The support, \mathcal{B}, of a stable, homogeneous and square-free polynomial
is the set of bases of a matroid
Bases exchange axiom:

$$
S, T \in \mathcal{B}, i \in S \backslash T \Longrightarrow \exists j \in T \backslash S \text { such that } S \backslash\{i\} \cup\{j\} \in \mathcal{B}
$$

Tropicalization

- Let $\mathbb{R}\{t\}$ be the real closed field

$$
\mathbb{R}\{t\}=\left\{x(t)=\sum_{\alpha \in A} a_{\alpha} t^{-\alpha} \mid A \subset \mathbb{R} \text { is well-ordered, and } a_{\alpha} \in \mathbb{R}\right\}
$$

- The valuation $\nu: \mathbb{R}\{t\} \rightarrow \mathbb{R} \cup\{-\infty\}$ is defined by

$$
\nu(x(t))=\text { leading exponent of } x(t)
$$

Tarski's principle

If an elementary statement is true in one real closed field, then it is true in every real closed field

Example

Let $A_{1}(t), \ldots, A_{m}(t)$ be positive semidefinite hermitian $n \times n$ matrices and $H(t)$ hermitian (over $\mathbb{C}\{t\}$). Then

$$
P(\mathbf{z})=\operatorname{det}\left(z_{1} A_{1}(t)+\cdots+z_{m} A_{m}(t)+H(t)\right)
$$

is stable

- Let $P(\mathbf{z})=\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha}(t) \mathbf{z}^{\alpha} \in \mathbb{R}\{t\}[\mathbf{z}]$. The tropicalization, trop (P), of P is the map

$$
\mathbb{N}^{n} \ni \alpha \mapsto \nu\left(a_{\alpha}(t)\right) \in \mathbb{R} \cup\{-\infty\}
$$

- We are interested in convexity properties of the tropicalization of spaces of stable polynomials

Let $\Delta_{d}=\left\{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{N}^{3}: \alpha_{1}+\alpha_{2}+\alpha_{3}=d\right\}$

A function $h: \Delta_{d} \rightarrow \mathbb{R}$ is a hive if all rhombus inequalities are satisfied:

0

$15 \quad 23$

		24		36		41		
	29		43		53		56	
31		45		56		65		67

Horn's problem

Characterize all triples of vectors $\alpha, \beta, \gamma \in \mathbb{R}^{n}$ such that there are two Hermitian $n \times n$ matrices A, B such that

- α are the eigenvalues of A
- β are the eigenvalues of B
- γ are the eigenvalues of $A+B$
- Call (α, β, γ) a Horn triple
- Solved by Klyachko and Knutson-Tao in the late 90's
- Knutson-Tao's characterization involves hives

Let $\alpha, \beta, \gamma \in \mathbb{R}^{n}$ be such that

$$
\alpha_{1} \geq \alpha_{2} \geq \cdots, \quad \beta_{1} \geq \beta_{2} \geq \cdots, \quad \gamma_{1} \geq \gamma_{2} \geq \cdots, \quad|\alpha|+|\beta|=|\gamma|
$$

We want to determine if (α, β, γ) is a Horn triple. Mark the boundary of Δ_{n} as

$$
\partial(\alpha, \beta, \gamma):=
$$

$$
|\alpha|+|\beta|<\frac{|\alpha|+\beta_{1}+\beta_{2}}{|\alpha|+\beta_{1}}|\alpha|=\alpha_{1}+\cdots+\alpha_{n}
$$

Theorem (Knutson-Tao)

(α, β, γ) is a Horn triple if and only if $\partial(\alpha, \beta, \gamma)$ can be completed to a hive

Example

Is $(2,1,0),(2,1,0),(3,2,1)$ a Horn triple?

Yes, let $4 \leq x \leq 5$

- Let \mathcal{H}_{3}^{d} be the space of all stable polynomials $P \in \mathbb{R}\{t\}[x, y, z]$ with support Δ_{d}
- By the now resolved Lax Conjecture

$$
P(x, y, z)=\operatorname{det}(x A(t)+y B(t)+z C(t))
$$

where $A(t), B(t), C(t)$ are positive definite

- Let Hive ${ }_{d}$ be the space of all hives on Δ_{d}

Theorem (Speyer)

$$
\operatorname{trop}\left(\mathcal{H}_{3}^{d}\right)=\text { Hive }_{d}
$$

What about other spaces of stable polynomials?

M-concave functions (Murota)

- Let $\alpha, \beta \in \mathbb{Z}^{n}$ and $|\alpha|:=\sum_{i=1}^{n}\left|\alpha_{i}\right|$
- A step from α to β is an $s \in \mathbb{Z}^{n}$ such that $|s|=1$ and $|\alpha+s-\beta|=|\alpha-\beta|-1$. Indicate this by $\alpha \xrightarrow{s} \beta$

A function $f: \mathbb{Z}^{n} \rightarrow \mathbb{R} \cup\{-\infty\}$ is M-concave if it satisfies
$\alpha, \beta \in \mathbb{Z}^{n}$ and $\alpha \xrightarrow{s} \beta$

\exists step $t, \alpha+\boldsymbol{s} \xrightarrow{t} \beta$, such that
$f(\alpha)+f(\beta) \leq$
$f(\alpha+s+t)+f(\beta-s-t)$

Properties of M-concave f

- Global maximum \Longleftrightarrow local maximum $(|\cdot| \leq 2)$
- The naive algorithm for finding maximum converges after $O\left(n^{2} D\right)$ evaluations of f, where

$$
D=\max \{|\alpha-\beta|: \alpha, \beta \in \operatorname{supp}(f)\}
$$

A polynomial $P=\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} \mathbf{z}^{\alpha}$ has constant parity if

$$
a_{\alpha} a_{\beta} \neq 0 \Longrightarrow|\alpha| \equiv|\beta| \bmod 2
$$

Theorem (B.)
Suppose $P(\mathbf{z}) \in \mathbb{R}\{t\}[\mathbf{z}]$ is stable and has constant parity. Then $\operatorname{trop}(P)$ is M-concave

- The support of $f: \mathbb{N}^{n} \rightarrow \mathbb{R} \cup\{-\infty\}$ is

$$
\operatorname{supp}(f)=\left\{\alpha \in \mathbb{N}^{n}: f(\alpha) \neq-\infty\right\}
$$

- Suppose $\operatorname{supp}(f)=\Delta_{d}$. Then f is M-concave if and only if f is a hive.
- The tropical Grassmannian, $\operatorname{Gr}(r, n)$, can be defined via Plücker coordinates as the space of all mappings f_{A}

$$
\binom{[n]}{r} \ni S \mapsto \nu(A(S)) \in \mathbb{R} \cup\{-\infty\}
$$

where A runs over all $r \times n$ matrices over $\mathbb{C}\{t\}$, and $A(S)$ is the $r \times r$ minor of A with rows indexed by S

- The Dressian, $\operatorname{Dr}(r, n)$, can be defined as the space of M-concave functions on \mathbb{N}^{n} with support contained in $\binom{[n]}{r}$. Also called valuated matroids
- Let $\mathcal{H}_{r, n}^{S F}$ be the space of all stable polynomials (over $\mathbb{R}\{t\}$) with support contained in $\binom{[n]}{r}$. Then

$$
\operatorname{Gr}(r, n) \subsetneq \operatorname{trop}\left(\mathcal{H}_{r, n}^{S F}\right) \subsetneq \operatorname{Dr}(r, n)
$$

$\operatorname{Gr}(r, n) \subset \operatorname{trop}\left(\mathcal{H}_{r, n}^{S F}\right):$

- Let $Z=\operatorname{diag}\left(z_{1}, \ldots, z_{n}\right)$. Then, if $A=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right] \in \mathbb{C}\{t\}^{r \times n}$

$$
\begin{aligned}
& P_{A}(\mathbf{z}):=\operatorname{det}\left(A Z A^{*}\right)=\text { by Cauchy-Binet }=\sum_{S \in\binom{[n]}{r}} A(S) \overline{A(S)} \prod_{j \in S} z_{j} \\
& P_{A}(\mathbf{z})=\operatorname{det}\left(\sum_{j=1}^{n} z_{j} \mathbf{a}_{j} \overline{\mathbf{a}}_{j}^{T}\right)
\end{aligned}
$$

- Thus P_{A} is stable and $\operatorname{trop}\left(P_{A}\right)=2 f_{A}$
- Let Hive ${ }_{r, n}$ be the space of all M-concave functions with support $\Delta_{r, n}=\left\{\alpha \in \mathbb{N}^{n}:|\alpha|=r\right\}$
- Let $\mathcal{H}_{r, n}$ be the space of stable polynomial with support $\Delta_{r, n}$
- Hence $\operatorname{trop}\left(\mathcal{H}_{r, n}\right) \subseteq$ Hive $_{r, n}$
- We have $\operatorname{trop}\left(\mathcal{H}_{r, n}\right)=$ Hive $_{r, n}$ for $n=1,2,3$
- However $\operatorname{trop}\left(\mathcal{H}_{3,7}\right) \subsetneq \operatorname{Hive}_{3,7}$

Regress to $n=2$

- A homogeneous polynomial $P(x, y)$ is stable if and only if all zeros of

$$
P(x, 1):=\sum_{j=0}^{r} a_{j} x^{j}
$$

are real and non-positive

- Newton inequalities: $a_{j}^{2} \geq a_{j-1} a_{j+1}$ for all j Hence $\nu\left(a_{k}\right) \geq\left(\nu\left(a_{k-1}\right)+\nu\left(a_{k+1}\right)\right) / 2$. Converse:

Lemma (Hardy, Hutchinson)

If a_{0}, \ldots, a_{r} are positive and $a_{k}^{2} \geq 4 a_{k-1} a_{k+1}$ for all k then all zeros of

$$
a_{0}+a_{1} x+\cdots+a_{r} x^{r}
$$

are real and non-positive
Thus if $h(k)$ is concave, then $\sum_{k=0}^{r} 4^{-\binom{k}{2}} t^{h(k)} x^{k} y^{r-k}$ is stable. Hence $\operatorname{trop}\left(\mathcal{H}_{2, n}\right)$ is the space of concave sequences

Proof of Speyer's theorem

If $\nu\left(a_{0}(t)\right), \ldots, \nu\left(a_{r}(t)\right)$ satisfy $2 \nu\left(a_{k}(t)\right)>\nu\left(a_{k-1}(t)\right)+\nu\left(a_{k+1}(t)\right)$, then

$$
P(x, y)=\sum_{k=0}^{r} a_{k}(t) x^{k} y^{r-k}
$$

is stable
Lemma (B.)
Let

$$
P(x, y, z)=\sum_{\alpha \in \Delta_{n}} a_{\alpha} x^{\alpha_{1}} y^{\alpha_{2}} z^{\alpha_{3}}, \quad \text { where } a_{\alpha}>0
$$

Then P is stable if and only if the following polynomials have only real zeros

- $x \mapsto P(x, 1, \lambda)$, for all $\lambda>0$
- $y \mapsto P(1, y, \lambda)$, for all $\lambda>0$
- $z \mapsto P(1, \lambda, z)$, for all $\lambda>0$
- We need to prove that all hives are tropicalizations of stable polynomials
- It is enough to prove it for strict hives, that is, hives for which the rhombus inequalities are strict
- By Tarski's principle and the previous Lemma, it is enough to prove that if trop (P) is a strict hive then

$$
P(1, \lambda, z)=: \sum_{k=0}^{n} a_{k}(t) z^{k}
$$

has only real zeros

- In view of the Hardy-Hutchinson lemma it suffices to prove that

$$
2 \nu\left(a_{k}(t)\right)>\nu\left(a_{k-1}(t)\right)+\nu\left(a_{k+1}(t)\right), \quad \text { for all } k \quad(*)
$$

- Let $h=\operatorname{trop}(P)$ and $C=\nu(\lambda)$, then

$$
\nu\left(a_{k}(t)\right)=\max \left\{h(\alpha)+\alpha_{2} C: \alpha \in \Delta_{n} \text { and } \alpha_{3}=k\right\}
$$

- $\alpha \mapsto h(\alpha)+\alpha_{2} C$ is also a strict hive. Thus (*) follows from concavity

Maximal matching problem

- Let $G=(V, E)$ be a graph
- A subset $F \subseteq E$ is a matching if each vertex is contained in at most one edge in F

- Let $\mu: E \rightarrow \mathbb{R}$ be a weight function
- We want to maximize the quantity

$$
\mu(F)=\sum_{e \in F} \mu(e), \quad F \text { is a matching }
$$

Let $\lambda: E \rightarrow \mathbb{R}^{+}$and define

$$
F_{\lambda}\left(z_{1}, \ldots, z_{n}\right)=\sum_{F_{\text {matching }}}(-1)^{|F|} \prod_{e=i j \in F} \lambda(e) z_{i} z_{j}
$$

Heilmann-Lieb Theorem

$F_{\lambda}\left(z_{1}, \ldots, z_{n}\right)$ is stable
Let $\lambda(e)=t^{\mu(e)}$ and apply Tarski's principle. Let $\nu:\{0,1\}^{V} \rightarrow \mathbb{R} \cup\{-\infty\}$ be defined by

$$
\nu(S)=\max \left\{\mu(F)=\sum_{e \in F} \mu(e): \bigcup F=S\right\}
$$

Then

$$
\operatorname{trop}\left(\sum_{F_{\text {matching }}}(-1)^{|F|} t^{\mu(F)} \prod_{e=i j \in F} z_{i} z_{j}\right)=\nu
$$

Hence

$$
\nu(S)=\max \left\{\mu(F)=\sum_{e \in F} \mu(e): \bigcup F=S\right\}
$$

is M-concave.

