Tropicalization of hyperbolic polynomials

Petter Brändén

Stockholm University

Banff, Feb 17, 2010

• A polynomial $P(\mathbf{z}) \in \mathbb{C}[z_1, \ldots, z_n]$ is stable if

$$\mathbf{z} \in \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}^n \Longrightarrow P(\mathbf{z}) \neq 0$$

- For P ∈ ℝ[z] of degree d, stability is equivalent to that the homogenization y^dP(z₁/y,..., z_n/y) is hyperbolic with hyperbolicity cone containing ℝⁿ₊₊ × {0}
- We are interested in combinatorial and geometric properties of the Taylor coefficients of stable polynomials
- Choe-Oxley-Sokal-Wagner (2004): Studied the support of homogeneous square-free stable polynomials
- Speyer (2005): Studied the tropicalization of homogeneous stable polynomials in three variables (Vinnikov polynomials). He obtained a new proof of Horn's conjecture on eigenvalues of sums of Hermitian matrices

Lemma

Let A_1, \ldots, A_m be positive semidefinite Hermitian $n \times n$ matrices and H Hermitian. Then

$$P(\mathbf{z}) = \det(z_1A_1 + \cdots + z_mA_m + H)$$

is stable

Proof. May assume A_j is PD for all j. Set $z_j = x_j + iy_j$, where $y_j > 0$. Then

$$P(\mathbf{z}) = \det\left(i(\sum_{j} y_{j}A_{j}) + \sum_{j} x_{j}A_{j} + H\right) =: \det(iA + B)$$
$$= \det(A)\det(iI + A^{-1/2}BA^{-1/2}) \neq 0$$

Conversely

Corollary to Lax Conjecture

If $P(x, y) \in \mathbb{R}[x, y]$ is stable of degree *d* then there are PSD matrices *A*, *B* of size $d \times d$ and Hermitian *C* such that

 $P(x, y) = \det(xA + yB + C).$

• The converse fails for more than 2 variables

Theorem (Choe-Oxley-Sokal-Wagner, 2004)

The support, \mathcal{B} , of a stable, homogeneous and square-free polynomial

$$\mathcal{P}(\mathbf{z}) = \sum_{S \in \binom{[n]}{r}} a(S) \prod_{j \in S} z_j$$

is the set of bases of a matroid

Bases exchange axiom:

 $S, T \in \mathcal{B}, i \in S \setminus T \Longrightarrow \exists j \in T \setminus S$ such that $S \setminus \{i\} \cup \{j\} \in \mathcal{B}$

Tropicalization

• Let \mathbb{R} {t} be the real closed field

$$\mathbb{R}\{t\} = \{x(t) = \sum_{lpha \in \mathcal{A}} a_{lpha} t^{-lpha} \mid \mathcal{A} \subset \mathbb{R} ext{ is well-ordered, and } a_{lpha} \in \mathbb{R}\}$$

• The valuation $\nu : \mathbb{R}\{t\} \to \mathbb{R} \cup \{-\infty\}$ is defined by

 $\nu(x(t)) =$ leading exponent of x(t)

Tarski's principle

If an elementary statement is true in one real closed field, then it is true in every real closed field

Example

Let $A_1(t), \ldots, A_m(t)$ be positive semidefinite hermitian $n \times n$ matrices and H(t) hermitian (over $\mathbb{C}\{t\}$). Then

$$P(\mathbf{z}) = \det \left(z_1 A_1(t) + \cdots + z_m A_m(t) + H(t) \right)$$

is stable

• Let $P(\mathbf{z}) = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha}(t) \mathbf{z}^{\alpha} \in \mathbb{R}\{t\}[\mathbf{z}]$. The tropicalization, trop(*P*), of *P* is the map

$$\mathbb{N}^n \ni \alpha \mapsto \nu(\boldsymbol{a}_{\alpha}(t)) \in \mathbb{R} \cup \{-\infty\}$$

 We are interested in convexity properties of the tropicalization of spaces of stable polynomials

Let
$$\Delta_d = \{(\alpha_1, \alpha_2, \alpha_3) \in \mathbb{N}^3 : \alpha_1 + \alpha_2 + \alpha_3 = d\}$$

A function $h : \Delta_d \to \mathbb{R}$ is a hive if all rhombus inequalities are satisfied:

			15		23			
		24		36		41		
	29		43		53		56	
31		45		56		65		67

Horn's problem

Characterize all triples of vectors $\alpha, \beta, \gamma \in \mathbb{R}^n$ such that there are two Hermitian $n \times n$ matrices A, B such that

- α are the eigenvalues of A
- β are the eigenvalues of *B*
- γ are the eigenvalues of A + B
- Call (α, β, γ) a Horn triple
- Solved by Klyachko and Knutson–Tao in the late 90's
- Knutson–Tao's characterization involves hives

Let $\alpha, \beta, \gamma \in \mathbb{R}^n$ be such that

 $\alpha_1 \geq \alpha_2 \geq \cdots, \quad \beta_1 \geq \beta_2 \geq \cdots, \quad \gamma_1 \geq \gamma_2 \geq \cdots, \quad |\alpha| + |\beta| = |\gamma|$

We want to determine if (α, β, γ) is a Horn triple. Mark the boundary of Δ_n as

Theorem (Knutson-Tao)

 (α, β, γ) is a Horn triple if and only if $\partial(\alpha, \beta, \gamma)$ can be completed to a hive

Example Is (2, 1, 0), (2, 1, 0), (3, 2, 1) a Horn triple?

Yes, let $4 \le x \le 5$

- Let \mathcal{H}_3^d be the space of all stable polynomials $P \in \mathbb{R}\{t\}[x, y, z]$ with support Δ_d
- By the now resolved Lax Conjecture

$$P(x, y, z) = \det(xA(t) + yB(t) + zC(t))$$

where A(t), B(t), C(t) are positive definite

Let Hive_d be the space of all hives on ∆_d

Theorem (Speyer)

 $\operatorname{trop}(\mathcal{H}_3^d) = \operatorname{Hive}_d$

What about other spaces of stable polynomials?

M-concave functions (Murota)

• Let $\alpha, \beta \in \mathbb{Z}^n$ and $|\alpha| := \sum_{i=1}^n |\alpha_i|$

• A step from α to β is an $s \in \mathbb{Z}^n$ such that |s| = 1 and $|\alpha + s - \beta| = |\alpha - \beta| - 1$. Indicate this by $\alpha \stackrel{s}{\rightarrow} \beta$

A function $f : \mathbb{Z}^n \to \mathbb{R} \cup \{-\infty\}$ is *M*-concave if it satisfies

$$\alpha, \beta \in \mathbb{Z}^n \text{ and } \alpha \xrightarrow{s} \beta$$

\Rightarrow

$$\exists \text{ step } t, \alpha + s \xrightarrow{t} \beta, \\ \text{such that} \\ f(\alpha) + f(\beta) \leq \\ f(\alpha + s + t) + f(\beta - s - t) \end{cases}$$

Properties of *M*-concave *f*

- Global maximum \iff local maximum ($|\cdot| \le 2$)
- The naive algorithm for finding maximum converges after $O(n^2D)$ evaluations of *f*, where

$$D = \max\{|\alpha - \beta| : \alpha, \beta \in \operatorname{supp}(f)\}$$

A polynomial $P = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} \mathbf{z}^{\alpha}$ has constant parity if

$$a_{\alpha}a_{\beta} \neq 0 \Longrightarrow |\alpha| \equiv |\beta| \mod 2$$

Theorem (B.)

Suppose $P(\mathbf{z}) \in \mathbb{R}\{t\}[\mathbf{z}]$ is stable and has constant parity. Then trop(*P*) is *M*-concave

• The support of
$$f : \mathbb{N}^n \to \mathbb{R} \cup \{-\infty\}$$
 is

$$\operatorname{supp}(f) = \{ \alpha \in \mathbb{N}^n : f(\alpha) \neq -\infty \}$$

Suppose supp(f) = Δ_d. Then f is M-concave if and only if f is a hive.

 The tropical Grassmannian, Gr(r, n), can be defined via Plücker coordinates as the space of all mappings f_A

$$egin{pmatrix} [n] \ r \end{pmatrix}
i oldsymbol{S} \mapsto
u(oldsymbol{A}(oldsymbol{S})) \in \mathbb{R} \cup \{-\infty\}$$

where A runs over all $r \times n$ matrices over $\mathbb{C}\{t\}$, and A(S) is the $r \times r$ minor of A with rows indexed by S

- The Dressian, Dr(r, n), can be defined as the space of *M*-concave functions on \mathbb{N}^n with support contained in $\binom{[n]}{r}$. Also called valuated matroids
- Let $\mathcal{H}_{r,n}^{SF}$ be the space of all stable polynomials (over $\mathbb{R}\{t\}$) with support contained in $\binom{[n]}{r}$. Then

$$\operatorname{Gr}(r, n) \subsetneq \operatorname{trop}(\mathcal{H}_{r,n}^{SF}) \subsetneq \operatorname{Dr}(r, n)$$

 $Gr(r, n) \subset trop(\mathcal{H}_{r,n}^{SF})$:

• Let $Z = \text{diag}(z_1, \ldots, z_n)$. Then, if $A = [\mathbf{a}_1, \ldots, \mathbf{a}_n] \in \mathbb{C}\{t\}^{r \times n}$ $P_A(\mathbf{z}) := \det(AZA^*) =$ by Cauchy-Binet $= \sum A(S)\overline{A(S)} \prod z_j$ $S \in \binom{[n]}{2}$ $j \in S$ / \

$$P_A(\mathbf{z}) = \det\left(\sum_{j=1}^n z_j \mathbf{a}_j \overline{\mathbf{a}_j}^T\right)$$

• Thus P_A is stable and $trop(P_A) = 2f_A$

- Let Hive_{*r*,*n*} be the space of all *M*-concave functions with support $\Delta_{r,n} = \{ \alpha \in \mathbb{N}^n : |\alpha| = r \}$
- Let $\mathcal{H}_{r,n}$ be the space of stable polynomial with support $\Delta_{r,n}$
- Hence $\operatorname{trop}(\mathcal{H}_{r,n}) \subseteq \operatorname{Hive}_{r,n}$
- We have $trop(\mathcal{H}_{r,n}) = Hive_{r,n}$ for n = 1, 2, 3
- However $trop(\mathcal{H}_{3,7}) \subsetneq Hive_{3,7}$

Regress to n = 2

A homogeneous polynomial P(x, y) is stable if and only if all zeros of

$$P(x,1) := \sum_{j=0}^{r} a_j x^j$$

are real and non-positive

- Newton inequalities: $a_j^2 \ge a_{j-1}a_{j+1}$ for all j
- Hence $\nu(a_k) \ge (\nu(a_{k-1}) + \nu(a_{k+1}))/2$. Converse:

Lemma (Hardy, Hutchinson)

If a_0, \ldots, a_r are positive and $a_k^2 \ge 4a_{k-1}a_{k+1}$ for all k then all zeros of

$$a_0 + a_1 x + \cdots + a_r x^r$$

are real and non-positive

Thus if h(k) is concave, then $\sum_{k=0}^{r} 4^{-\binom{k}{2}} t^{h(k)} x^k y^{r-k}$ is stable. Hence $\operatorname{trop}(\mathcal{H}_{2,n})$ is the space of concave sequences

Proof of Speyer's theorem

If $\nu(a_0(t)), \dots, \nu(a_r(t))$ satisfy $2\nu(a_k(t)) > \nu(a_{k-1}(t)) + \nu(a_{k+1}(t))$, then

$$P(x,y) = \sum_{k=0}^{r} a_k(t) x^k y^{r-k}$$

is stable

Lemma (B.)

Let

$${\it P}(x,y,z) = \sum_{lpha \in \Delta_n} a_lpha x^{lpha_1} y^{lpha_2} z^{lpha_3}, \quad ext{where } a_lpha > 0$$

Then *P* is stable if and only if the following polynomials have only real zeros

•
$$x \mapsto P(x, 1, \lambda)$$
, for all $\lambda > 0$

•
$$y \mapsto P(1, y, \lambda)$$
, for all $\lambda > 0$

• $z \mapsto P(1, \lambda, z)$, for all $\lambda > 0$

- We need to prove that all hives are tropicalizations of stable polynomials
- It is enough to prove it for strict hives, that is, hives for which the rhombus inequalities are strict
- By Tarski's principle and the previous Lemma, it is enough to prove that if trop(*P*) is a strict hive then

$$P(1,\lambda,z) =: \sum_{k=0}^{n} a_k(t) z^k$$

has only real zeros

In view of the Hardy–Hutchinson lemma it suffices to prove that

$$2
u(a_k(t)) >
u(a_{k-1}(t)) +
u(a_{k+1}(t)), \quad \text{ for all } k \quad (*)$$

• Let $h = \operatorname{trop}(P)$ and $C = \nu(\lambda)$, then $\nu(a_k(t)) = \max\{h(\alpha) + \alpha_2 C : \alpha \in \Delta_n \text{ and } \alpha_3 = k\}$

α → h(α) + α₂C is also a strict hive. Thus (*) follows from concavity

Maximal matching problem

- Let G = (V, E) be a graph
- A subset F ⊆ E is a matching if each vertex is contained in at most one edge in F

- Let $\mu: E \to \mathbb{R}$ be a weight function
- We want to maximize the quantity

$$\mu(F) = \sum_{e \in F} \mu(e), \quad F ext{ is a matching}$$

Let $\lambda : \boldsymbol{E} \to \mathbb{R}^+$ and define

$$F_{\lambda}(z_1,\ldots,z_n) = \sum_{F ext{matching}} (-1)^{|F|} \prod_{oldsymbol{e}=ij \in F} \lambda(oldsymbol{e}) z_i z_j$$

Heilmann-Lieb Theorem $F_{\lambda}(z_1, \ldots, z_n)$ is stable

Let $\lambda(e) = t^{\mu(e)}$ and apply Tarski's principle. Let $\nu : \{0, 1\}^V \to \mathbb{R} \cup \{-\infty\}$ be defined by

$$u(S) = \max\{\mu(F) = \sum_{e \in F} \mu(e) : \bigcup F = S\}$$

Then

$$\operatorname{trop}\left(\sum_{F_{\text{matching}}} (-1)^{|F|} t^{\mu(F)} \prod_{e=ij \in F} z_i z_j\right) = \nu$$

Hence

$$\nu(S) = \max\{\mu(F) = \sum_{e \in F} \mu(e) : \bigcup F = S\}$$

is M-concave.