Toda's theorem - real and complex

Saugata Basu

Purdue University

BIRS, Feb 15, 2010

Outline

(1) Motivation

(2)

(Discrete) Polynomial Hierarchy

Blum-Shub-Smale Models of ComputationAlgorithmic Algebraio'Semi-algebraic GeometryReal/Complex Analogue of Toda's Theoremnroof

- Outline
- The main topological ingredients in the complex case

Toda's theorem - real and complex

Outline

(1) Motivation

2 (Discrete) Polynomial HierarchyBlum-Shub-Smale Models of Computation
Algorithmic Algebraic/Semi-algebraic Geometry
Deal/Complex Analogue of Toda's Theorem
Proof

- Outline
- The main topological ingredients in the complex case

Outline

(1) Motivation
(2) (Discrete) Polynomial Hierarchy

3 Blum-Shub-Smale Models of ComputationAlgorithmic Algebraic/Semi-algebraic Geometry
Real/Complex Analogue of Toda's Theorem
Droof

- Outline
- The main topological ingredients in the complex case

Outline

(1) Motivation
(2) (Discrete) Polynomial Hierarchy
(3) Blum-Shub-Smale Models of Computation

4 Algorithmic Algebraic/Semi-algebraic Geometry
Real/Complex Analogue of Toda's Theorem
Proof

- Outline
- The main topological ingredients in the complex case

Outline

(1) Motivation
(2) (Discrete) Polynomial Hierarchy

3 Blum-Shub-Smale Models of Computation
4 Algorithmic Algebraic/Semi-algebraic Geometry
(5) Real/Complex Analogue of Toda's Theorem

Proof

- Outline
- The main topological ingredients in the complex case

Outline

(1) Motivation
(2) (Discrete) Polynomial Hierarchy
(3) Blum-Shub-Smale Models of Computation

4 Algorithmic Algebraic/Semi-algebraic Geometry
(5) Real/Complex Analogue of Toda's Theorem
(6) Proof

- Outline
- The main topological ingredients in the complex case

Some motivation

- The Blum-Shub-Smale model is a natural model to study complexity questions questions of algebraic problems over real as well as complex numbers.
- The role of convexity is mysterious. For instance, semi-definite programming is unlikely to be $\mathbf{N P}_{\mathbb{R}^{-}}$-complete but not known to be in $\mathbf{P}_{\mathbb{R}}$ either. (cf. the problem of deciding whether a real quartic polynomial has a zero in \mathbb{R}^{n} is already $\mathbf{N P}_{\mathbb{R}}$-complete.)
- However, there are various structural complexity results in the B-S-S model that mirrors those in the classical discrete complexity theory.
- In particular, this talk will be on the B-S-S analogue of "counting"

Some motivation

- The Blum-Shub-Smale model is a natural model to study complexity questions questions of algebraic problems over real as well as complex numbers.
- The role of convexity is mysterious. For instance, semi-definite programming is unlikely to be $\mathbf{N P}_{\mathbb{R}}$-complete but not known to be in $\mathbf{P}_{\mathbb{R}}$ either. (cf. the problem of deciding whether a real quartic polynomial has a zero in \mathbb{R}^{n} is already $\mathbf{N P}_{\mathbb{R}}$-complete.)
- However, there are various structural complexity results in the B-S-S model that mirrors those in the classical discrete complexity theory
- In particular, this talk will be on the B-S-S analogue of

Some motivation

- The Blum-Shub-Smale model is a natural model to study complexity questions questions of algebraic problems over real as well as complex numbers.
- The role of convexity is mysterious. For instance, semi-definite programming is unlikely to be $\mathbf{N P}_{\mathbb{R}}$-complete but not known to be in $\mathbf{P}_{\mathbb{R}}$ either. (cf. the problem of deciding whether a real quartic polynomial has a zero in \mathbb{R}^{n} is already $\mathbf{N P}_{\mathbb{R}^{R}}$-complete.)
- However, there are various structural complexity results in the B-S-S model that mirrors those in the classical discrete complexity theory.
- In particular, this talk will be on the B-S-S analogue of

Some motivation

- The Blum-Shub-Smale model is a natural model to study complexity questions questions of algebraic problems over real as well as complex numbers.
- The role of convexity is mysterious. For instance, semi-definite programming is unlikely to be $\mathbf{N P}_{\mathbb{R}}$-complete but not known to be in $\mathbf{P}_{\mathbb{R}}$ either. (cf. the problem of deciding whether a real quartic polynomial has a zero in \mathbb{R}^{n} is already $\mathbf{N P}_{\mathbb{R}^{2}}$-complete.)
- However, there are various structural complexity results in the B-S-S model that mirrors those in the classical discrete complexity theory.
- In particular, this talk will be on the B-S-S analogue of "counting".

A quick primer of basic definitions and notation

- Initially let $k=\mathbb{Z} / 2 \mathbb{Z}=\{\overline{0}, \overline{1}\}$.
- A language L is a set

(abusing notation a little we will identify L with the sequence $\left.\left(L_{n}\right)_{n>0}\right)$.
- A language
if there exists a Turing machine M that given $\mathbf{x} \in k^{n}$ decides whether $\mathbf{x} \in L_{n}$ or not in $n^{O(1)}$ time.

A quick primer of basic definitions and notation

- Initially let $k=\mathbb{Z} / 2 \mathbb{Z}=\{\overline{0}, \overline{1}\}$.
- A language L is a set

$$
\bigcup_{n>0} L_{n}, \quad L_{n} \subset k^{n}
$$

(abusing notation a little we will identify L with the sequence $\left.\left(L_{n}\right)_{n>0}\right)$.

- A language
if there exists a Turing machine M that given $\mathbf{x} \in k^{n}$
decides whether $\mathbf{x} \in L_{n}$ or not in $n^{O(1)}$ time.

A quick primer of basic definitions and notation

- Initially let $k=\mathbb{Z} / 2 \mathbb{Z}=\{\overline{0}, \overline{1}\}$.
- A language L is a set

$$
\bigcup_{n>0} L_{n}, \quad L_{n} \subset k^{n}
$$

(abusing notation a little we will identify L with the sequence $\left.\left(L_{n}\right)_{n>0}\right)$.

- A language

$$
L=\left(L_{n}\right)_{n>0} \in \mathbf{P}
$$

if there exists a Turing machine M that given $\mathbf{x} \in k^{n}$ decides whether $\mathbf{x} \in L_{n}$ or not in $n^{O(1)}$ time.

Primer (cont.)

- A language

$$
L=\left(L_{n}\right)_{n>0} \in \mathbf{N P}
$$

if there exists a polynomial $m(n)$, and a language $L^{\prime}=\left(L_{n}^{\prime}\right)_{n>0} \in \mathbf{P}$ such that

$$
\mathbf{x} \in L_{n} \Longleftrightarrow\left(\exists \mathbf{y} \in k^{m(n)}\right)(\mathbf{y}, \mathbf{x}) \in L_{m+n}^{\prime}
$$

- A language
$L=\left(L_{n}\right)_{n>0} \in \mathbf{c o N P}$
if there exists a polynomial $m(n)$, and a language $L^{\prime}=\left(L_{n}^{\prime}\right)_{n>0} \in \mathbf{P}$ such that

Primer (cont.)

- A language

$$
L=\left(L_{n}\right)_{n>0} \in \mathbf{N P}
$$

if there exists a polynomial $m(n)$, and a language $L^{\prime}=\left(L_{n}^{\prime}\right)_{n>0} \in \mathbf{P}$ such that

$$
\mathbf{x} \in L_{n} \Longleftrightarrow\left(\exists \mathbf{y} \in k^{m(n)}\right)(\mathbf{y}, \mathbf{x}) \in L_{m+n}^{\prime} .
$$

- A language

$$
L=\left(L_{n}\right)_{n>0} \in \mathbf{c o N P}
$$

if there exists a polynomial $m(n)$, and a language $L^{\prime}=\left(L_{n}^{\prime}\right)_{n>0} \in \mathbf{P}$ such that

$$
\mathbf{x} \in L_{n} \Longleftrightarrow\left(\forall \mathbf{y} \in k^{m(n)}\right) \quad(\mathbf{y}, \mathbf{x}) \in L_{m+n}^{\prime} .
$$

Discrete Polynomial Time Hierarchy- A Quick Reminder

A language

$$
L=\left(L_{n}\right)_{n>0} \in \Sigma_{\omega}
$$

if there exists a language $L^{\prime}=\left(L_{n}^{\prime}\right)_{n>0} \in \mathbf{P}$ such that

Discrete Polynomial Time Hierarchy- A Quick Reminder

A language

$$
L=\left(L_{n}\right)_{n>0} \in \Sigma_{\omega}
$$

if there exists a language $L^{\prime}=\left(L_{n}^{\prime}\right)_{n>0} \in \mathbf{P}$ such that

Discrete Polynomial Time Hierarchy- A Quick Reminder

A language

$$
L=\left(L_{n}\right)_{n>0} \in \Sigma_{\omega}
$$

if there exists a language $L^{\prime}=\left(L_{n}^{\prime}\right)_{n>0} \in \mathbf{P}$ such that

$$
\begin{gathered}
\mathbf{x} \in L_{n} \\
\Uparrow \Uparrow \\
\left(Q_{1} \mathbf{y}^{1} \in k^{m_{1}}\right)\left(Q_{2} \mathbf{y}^{2} \in k^{m_{2}}\right) \ldots\left(Q_{\omega} \mathbf{y}^{\omega} \in k^{m_{\omega}}\right) \\
\left(\mathbf{y}^{1}, \ldots, \mathbf{y}^{\omega}, \mathbf{x}\right) \in L_{m+n}^{\prime}
\end{gathered}
$$

where $m(n)=m_{1}(n)+\cdots+m_{\omega}(n)=n^{O(1)}$ and for $1 \leq i \leq \omega$, $Q_{i} \in\{\exists, \forall\}, Q_{1}=\exists$.

Reminder (cont.)

Similarly a language

Reminder (cont.)

Similarly a language

$$
L=\left(L_{n}\right)_{n>0} \in \Pi_{\omega}
$$

if there exists a language $L^{\prime}=\left(L_{n}^{\prime}\right)_{n>0} \in \mathbf{P}$ such that
where $m(n)=m_{1}(n)+\cdots+m_{\omega}(n)=n^{O(1)}$ and for 1
$Q_{i} \in\{\exists, \forall\}, Q_{i}=\forall$. Notice that

Reminder (cont.)

Similarly a language

$$
L=\left(L_{n}\right)_{n>0} \in \Pi_{\omega}
$$

if there exists a language $L^{\prime}=\left(L_{n}^{\prime}\right)_{n>0} \in \mathbf{P}$ such that

$$
\mathbf{x} \in L_{n}
$$

$$
\Uparrow
$$

$$
\left(Q_{1} \mathbf{y}^{1} \in k^{m_{1}}\right)\left(Q_{2} \mathbf{y}^{2} \in k^{m_{2}}\right) \cdots\left(Q_{\omega} \mathbf{y}^{\omega} \in k^{m_{\omega}}\right)
$$

$$
\left(\mathbf{y}^{1}, \ldots, \mathbf{y}^{\omega}, \mathbf{x}\right) \in L_{m+n}^{\prime}
$$

where $m(n)=m_{1}(n)+\cdots+m_{\omega}(n)=n^{O(1)}$ and for $1 \leq i \leq \omega$, $Q_{i} \in\{\exists, \forall\}, Q_{1}=\forall$. Notice that

Reminder (cont.)

Similarly a language

$$
L=\left(L_{n}\right)_{n>0} \in \Pi_{\omega}
$$

if there exists a language $L^{\prime}=\left(L_{n}^{\prime}\right)_{n>0} \in \mathbf{P}$ such that

$$
\begin{gathered}
\mathbf{x} \in L_{n} \\
\hat{\Downarrow} \\
\left(Q_{1} \mathbf{y}^{1} \in k^{m_{1}}\right)\left(Q_{2} \mathbf{y}^{2} \in k^{m_{2}}\right) \cdots\left(Q_{\omega} \mathbf{y}^{\omega} \in k^{m_{\omega}}\right) \\
\left(\mathbf{y}^{1}, \ldots, \mathbf{y}^{\omega}, \mathbf{x}\right) \in L_{m+n}^{\prime}
\end{gathered}
$$

where $m(n)=m_{1}(n)+\cdots+m_{\omega}(n)=n^{O(1)}$ and for $1 \leq i \leq \omega$,
$Q_{i} \in\{\exists, \forall\}, Q_{1}=\forall$. Notice that

$$
\mathbf{P}=\Sigma_{0}=\Pi_{0}
$$

$\mathbf{N P}=\Sigma_{1}, \quad$ coNP $=\Pi_{1}$.

The polynomial time hierarchy

- Also, notice the inclusions

$$
\begin{aligned}
& \Sigma_{i} \subset \Pi_{i+1}, \Sigma_{i} \subset \Sigma_{i+1} \\
& \Pi_{i} \subset \Sigma_{i+1}, \Pi_{i} \subset \Pi_{i+1}
\end{aligned}
$$

- The polynomial time hierarchy is defined to be
- Central problem of CS is to prove that PH is a proper hierarchy (as is widely believed), and in particular to prove

The polynomial time hierarchy

- Also, notice the inclusions

$$
\begin{aligned}
& \Sigma_{i} \subset \Pi_{i+1}, \Sigma_{i} \subset \Sigma_{i+1} \\
& \Pi_{i} \subset \Sigma_{i+1}, \Pi_{i} \subset \Pi_{i+1}
\end{aligned}
$$

- The polynomial time hierarchy is defined to be

$$
\mathbf{P H} \stackrel{\text { def }}{=} \bigcup_{\omega \geq 0}\left(\Sigma_{\omega} \cup \Pi_{\omega}\right)=\bigcup_{\omega \geq 0} \Sigma_{\omega}=\bigcup_{\omega \geq 0} \Pi_{\omega} \text {. }
$$

- Central problem of CS is to prove that PH is a proper hierarchy (as is widely believed), and in particular to prove
\square

The polynomial time hierarchy

- Also, notice the inclusions

$$
\begin{aligned}
& \Sigma_{i} \subset \Pi_{i+1}, \Sigma_{i} \subset \Sigma_{i+1} \\
& \Pi_{i} \subset \Sigma_{i+1}, \Pi_{i} \subset \Pi_{i+1}
\end{aligned}
$$

- The polynomial time hierarchy is defined to be

$$
\mathbf{P H} \stackrel{\text { def }}{=} \bigcup_{\omega \geq 0}\left(\Sigma_{\omega} \cup \Pi_{\omega}\right)=\bigcup_{\omega \geq 0} \Sigma_{\omega}=\bigcup_{\omega \geq 0} \Pi_{\omega} .
$$

- Central problem of CS is to prove that $\mathbf{P H}$ is a proper hierarchy (as is widely believed), and in particular to prove $\mathbf{P} \neq \mathbf{N P}$.

The Class \#P

- In order to develop an "algebraic" version of complexity theory Valiant introduced certain complexity classes of functions;
- A sequence of functions
is said to be in the class \#P

The Class \#P

- In order to develop an "algebraic" version of complexity theory Valiant introduced certain complexity classes of functions;
- A sequence of functions

$$
\left(f_{n}: k^{n} \rightarrow \mathbb{N}\right)_{n>0}
$$

is said to be in the class $\# \mathbf{P}$ if there exists $L=\left(L_{n}\right)_{n>0} \in \mathbf{P}$
such that for $x \in k^{n}$

The Class \#P

- In order to develop an "algebraic" version of complexity theory Valiant introduced certain complexity classes of functions;
- A sequence of functions

$$
\left(f_{n}: k^{n} \rightarrow \mathbb{N}\right)_{n>0}
$$

is said to be in the class $\# \mathbf{P}$ if there exists $L=\left(L_{n}\right)_{n>0} \in \mathbf{P}$
such that for $x \in k^{n}$

The Class \#P

- In order to develop an "algebraic" version of complexity theory Valiant introduced certain complexity classes of functions;
- A sequence of functions

$$
\left(f_{n}: k^{n} \rightarrow \mathbb{N}\right)_{n>0}
$$

is said to be in the class $\# \mathbf{P}$ if there exists $L=\left(L_{n}\right)_{n>0} \in \mathbf{P}$
such that for $x \in k^{n}$

The Class \#P

- In order to develop an "algebraic" version of complexity theory Valiant introduced certain complexity classes of functions;
- A sequence of functions

$$
\left(f_{n}: k^{n} \rightarrow \mathbb{N}\right)_{n>0}
$$

is said to be in the class $\# \mathbf{P}$ if there exists $L=\left(L_{n}\right)_{n>0} \in \mathbf{P}$ such that for $\mathbf{x} \in k^{n}$

$$
f_{n}(\mathbf{x})=\operatorname{card}\left(L_{m+n, \mathbf{x}}\right), \quad m=n^{O(1)}
$$

where $L_{m+n, \mathbf{x}}$ is the fibre $\pi^{-1}(\mathbf{x}) \cap L_{m+n}$, and $\pi: k^{m+n} \rightarrow k^{n}$ the projection map on the last n co-ordinates.

Toda's Theorem

Toda's theorem is a seminal result in discrete complexity theory and gives the following inclusion.

Toda's Theorem

Toda's theorem is a seminal result in discrete complexity theory and gives the following inclusion.

Theorem (Toda (1989))

$$
\mathbf{P H} \subset \mathbf{P}^{\# \mathbf{P}}
$$

Toda's Theorem

Toda's theorem is a seminal result in discrete complexity theory and gives the following inclusion.

Theorem (Toda (1989))

$$
\mathbf{P H} \subset \mathbf{P}^{\# \mathbf{P}}
$$

Toda's Theorem

Toda's theorem is a seminal result in discrete complexity theory and gives the following inclusion.

Theorem (Toda (1989))

$$
\mathbf{P H} \subset \mathbf{P}^{\# \mathbf{P}}
$$

"illustrates the power of counting"

Blum-Shub-Smale model

- Generalized TM where k is allowed to be any ring (we restrict ourselves to the cases $k=\mathbb{C}$ or \mathbb{R}).
- Setting $k=\mathbb{Z} / 2 \mathbb{Z}$ (or any finite field) recovers the classical
complexity classes.
- Informally, such a TM should be thought of as a program that accepts as input $x \in k^{n}$, and at each step
- A B-S-S machine accepts for every n a subset $S_{n} \subset k^{n}$.

Blum-Shub-Smale model

- Generalized TM where k is allowed to be any ring (we restrict ourselves to the cases $k=\mathbb{C}$ or \mathbb{R}).
- Setting $k=\mathbb{Z} / 2 \mathbb{Z}$ (or any finite field) recovers the classical complexity classes.
- Informally, such a TM should be thought of as a program that accepts as input $\mathbf{x} \in k^{n}$, and at each step
- A B-S-S machine accepts for every n a subset $S_{n} \subset k^{n}$.

Blum-Shub-Smale model

- Generalized TM where k is allowed to be any ring (we restrict ourselves to the cases $k=\mathbb{C}$ or \mathbb{R}).
- Setting $k=\mathbb{Z} / 2 \mathbb{Z}$ (or any finite field) recovers the classical complexity classes.
- Informally, such a TM should be thought of as a program that accepts as input $\mathbf{x} \in k^{n}$, and at each step

Blum-Shub-Smale model

- Generalized TM where k is allowed to be any ring (we restrict ourselves to the cases $k=\mathbb{C}$ or \mathbb{R}).
- Setting $k=\mathbb{Z} / 2 \mathbb{Z}$ (or any finite field) recovers the classical complexity classes.
- Informally, such a TM should be thought of as a program that accepts as input $\mathbf{x} \in k^{n}$, and at each step
(1) either makes a ring computation $z_{i} \leftarrow z_{j} * z_{\ell}$;
or branches according to a test $z_{j}\{=, \neq\} 0$ in case $k=\mathbb{C}$, or
the test $z_{j}\{>,<,=\} 0$ in case $k=\mathbb{R}$;
(3) or accepts/rejects.
- A B-S-S machine accepts for every n a subset $S_{n} \subset k^{n}$.

Blum-Shub-Smale model

- Generalized TM where k is allowed to be any ring (we restrict ourselves to the cases $k=\mathbb{C}$ or \mathbb{R}).
- Setting $k=\mathbb{Z} / 2 \mathbb{Z}$ (or any finite field) recovers the classical complexity classes.
- Informally, such a TM should be thought of as a program that accepts as input $\mathbf{x} \in k^{n}$, and at each step
(1) either makes a ring computation $z_{i} \leftarrow z_{j} * z_{\ell}$;
(2) or branches according to a test $z_{j}\{=, \neq\} 0$ in case $k=\mathbb{C}$, or the test $z_{j}\{>,<,=\} 0$ in case $k=\mathbb{R}$;
- A B-S-S machine accepts for every n a subset $S_{n} \subset k^{n}$.

Blum-Shub-Smale model

- Generalized TM where k is allowed to be any ring (we restrict ourselves to the cases $k=\mathbb{C}$ or \mathbb{R}).
- Setting $k=\mathbb{Z} / 2 \mathbb{Z}$ (or any finite field) recovers the classical complexity classes.
- Informally, such a TM should be thought of as a program that accepts as input $\mathbf{x} \in k^{n}$, and at each step
(1) either makes a ring computation $z_{i} \leftarrow z_{j} * z_{\ell}$;
(2) or branches according to a test $z_{j}\{=, \neq\} 0$ in case $k=\mathbb{C}$, or the test $z_{j}\{>,<,=\} 0$ in case $k=\mathbb{R}$;
(3) or accepts/rejects.
- A B-S-S machine accepts for every n a subset $S_{n} \subset k^{n}$.

Blum-Shub-Smale model

- Generalized TM where k is allowed to be any ring (we restrict ourselves to the cases $k=\mathbb{C}$ or \mathbb{R}).
- Setting $k=\mathbb{Z} / 2 \mathbb{Z}$ (or any finite field) recovers the classical complexity classes.
- Informally, such a TM should be thought of as a program that accepts as input $\mathbf{x} \in k^{n}$, and at each step
(1) either makes a ring computation $z_{i} \leftarrow z_{j} * z_{\ell}$;
(2) or branches according to a test $z_{j}\{=, \neq\} 0$ in case $k=\mathbb{C}$, or the test $z_{j}\{>,<,=\} 0$ in case $k=\mathbb{R}$;
(3) or accepts/rejects.
- A B-S-S machine accepts for every n a subset $S_{n} \subset k^{n}$.

Blum-Shub-Smale model

- Generalized TM where k is allowed to be any ring (we restrict ourselves to the cases $k=\mathbb{C}$ or \mathbb{R}).
- Setting $k=\mathbb{Z} / 2 \mathbb{Z}$ (or any finite field) recovers the classical complexity classes.
- Informally, such a TM should be thought of as a program that accepts as input $\mathbf{x} \in k^{n}$, and at each step
(1) either makes a ring computation $z_{i} \leftarrow z_{j} * z_{\ell}$;
(2) or branches according to a test $z_{j}\{=, \neq\} 0$ in case $k=\mathbb{C}$, or the test $z_{j}\{>,<,=\} 0$ in case $k=\mathbb{R}$;
(3) or accepts/rejects.
- A B-S-S machine accepts for every n a subset $S_{n} \subset k^{n}$.

Blum-Shub-Smale model

- Generalized TM where k is allowed to be any ring (we restrict ourselves to the cases $k=\mathbb{C}$ or \mathbb{R}).
- Setting $k=\mathbb{Z} / 2 \mathbb{Z}$ (or any finite field) recovers the classical complexity classes.
- Informally, such a TM should be thought of as a program that accepts as input $\mathbf{x} \in k^{n}$, and at each step
(1) either makes a ring computation $z_{i} \leftarrow z_{j} * z_{\ell}$;
(2) or branches according to a test $z_{j}\{=, \neq\} 0$ in case $k=\mathbb{C}$, or the test $z_{j}\{>,<,=\} 0$ in case $k=\mathbb{R}$;
(3) or accepts/rejects.
- A B-S-S machine accepts for every n a subset $S_{n} \subset k^{n}$.
(1) In case $k=\mathbb{C}$, each S_{n} is a constructible subset of \mathbb{C}^{n},

Blum-Shub-Smale model

- Generalized TM where k is allowed to be any ring (we restrict ourselves to the cases $k=\mathbb{C}$ or \mathbb{R}).
- Setting $k=\mathbb{Z} / 2 \mathbb{Z}$ (or any finite field) recovers the classical complexity classes.
- Informally, such a TM should be thought of as a program that accepts as input $\mathbf{x} \in k^{n}$, and at each step
(1) either makes a ring computation $z_{i} \leftarrow z_{j} * z_{\ell}$;
(2) or branches according to a test $z_{j}\{=, \neq\} 0$ in case $k=\mathbb{C}$, or the test $z_{j}\{>,<,=\} 0$ in case $k=\mathbb{R}$;
(3) or accepts/rejects.
- A B-S-S machine accepts for every n a subset $S_{n} \subset k^{n}$.
(1) In case $k=\mathbb{C}$, each S_{n} is a constructible subset of \mathbb{C}^{n},
(2) in case $k=\mathbb{R}$, each S_{n} is a semi-algebraic subset of \mathbb{R}^{n}.

Complexity Classes

- Complexity classes $\mathbf{P}_{k}, \mathbf{N P}_{k}, \mathbf{c o N P}_{k}$ and more generally PH_{k} are defined as before (for $k=\mathbb{C}, \mathbb{R}$).
- B-S-S developed a theory of NP-completeness.
- In case, $k=\mathbb{C}$ the problem of determining if a system of $n+1$ polynomial equations in n variables has a common zero in \mathbb{C}^{n} is $\mathrm{NP}_{\mathbb{C}}$-complete.
- In case, $k=\mathbb{R}$ the problem of determining if a quartic polynomial in n variables has a common zero in \mathbb{R}^{n} is $N P_{\mathbb{R}^{-c o m p l e t e}}$.
- It is unknown if $\mathbf{P}_{\mathbb{C}}=\mathbf{N} \mathbb{P}_{\mathbb{C}}$ (respectively, $\mathbf{P}_{\mathbb{R}}=\mathbf{N} \mathbf{P}_{\mathbb{R}}$) just as in the discrete case.

Complexity Classes

- Complexity classes $\mathbf{P}_{k}, \mathbf{N P}_{k}, \mathbf{c o N P}_{k}$ and more generally PH_{k} are defined as before (for $k=\mathbb{C}, \mathbb{R}$).
- B-S-S developed a theory of NP-completeness.
- In case, $k=\mathbb{C}$ the problem of determining if a system of $n+1$ polynomial equations in n variables has a common zero in \mathbb{C}^{n} is $\mathbf{N P}_{\mathbb{C}^{-}}$-complete.
- In case, $k=\mathbb{R}$ the problem of determining if a quartic polynomial in n variables has a common zero in \mathbb{R}^{n} is $N \mathbf{P}_{\mathbb{R}^{-c o m p l e t e}}$.
- It is unknown if $\mathbf{P}_{\mathbb{C}}=\mathbf{N P}_{\mathbb{C}}$ (respectively, $\mathbf{P}_{\mathbb{R}}=\mathbf{N} \boldsymbol{P}_{\mathbb{R}}$) just as in the discrete case.

Complexity Classes

- Complexity classes $\mathbf{P}_{k}, \mathbf{N P}_{k}, \operatorname{coN} \mathbf{P}_{k}$ and more generally PH_{k} are defined as before (for $k=\mathbb{C}, \mathbb{R}$).
- B-S-S developed a theory of NP-completeness.
- In case, $k=\mathbb{C}$ the problem of determining if a system of $n+1$ polynomial equations in n variables has a common zero in \mathbb{C}^{n} is $\mathbf{N P}_{\mathbb{C}}$-complete.
- In case, $k=\mathbb{R}$ the problem of determining if a quartic polynomial in n variables has a common zero in \mathbb{R}^{n} is $N \mathbf{P}_{\mathbb{R}^{2}}$-complete.
- It is unknown if $\mathbf{P}_{\mathbb{C}}=\mathbf{N} \mathbf{P}_{\mathbb{C}}$ (respectively, $\mathrm{P}_{\mathbb{R}}=\mathbf{N} \boldsymbol{P}_{\mathbb{R}}$) just as in the discrete case.

Complexity Classes

- Complexity classes $\mathbf{P}_{k}, \mathbf{N P}_{k}, \operatorname{coN} \mathbf{P}_{k}$ and more generally PH_{k} are defined as before (for $k=\mathbb{C}, \mathbb{R}$).
- B-S-S developed a theory of NP-completeness.
- In case, $k=\mathbb{C}$ the problem of determining if a system of $n+1$ polynomial equations in n variables has a common zero in \mathbb{C}^{n} is $\mathbf{N P}_{\mathbb{C}}$-complete.
- In case, $k=\mathbb{R}$ the problem of determining if a quartic polynomial in n variables has a common zero in \mathbb{R}^{n} is $\mathbf{N P}_{\mathbb{R}^{2}}$-complete.

Complexity Classes

- Complexity classes $\mathbf{P}_{k}, \mathbf{N P}_{k}, \operatorname{coN} \mathbf{P}_{k}$ and more generally PH_{k} are defined as before (for $k=\mathbb{C}, \mathbb{R}$).
- B-S-S developed a theory of NP-completeness.
- In case, $k=\mathbb{C}$ the problem of determining if a system of $n+1$ polynomial equations in n variables has a common zero in \mathbb{C}^{n} is $\mathbf{N P}_{\mathbb{C}}$-complete.
- In case, $k=\mathbb{R}$ the problem of determining if a quartic polynomial in n variables has a common zero in \mathbb{R}^{n} is $\mathrm{NP}_{\mathbb{R}^{-c o m p l e t e . ~}}$
- It is unknown if $\mathbf{P}_{\mathbb{C}}=\mathbf{N} \mathbf{P}_{\mathbb{C}}$ (respectively, $\mathbf{P}_{\mathbb{R}}=\mathbf{N} \mathbf{P}_{\mathbb{R}}$) just as in the discrete case.

Two classes of problems

The most important algorithmic problems studied in this area fall into two broad sub-classes:

Two classes of problems

The most important algorithmic problems studied in this area fall into two broad sub-classes:
(1) the problem of quantifier elimination, and its special cases such as deciding a sentence in the first order theory of reals/complex numbers, or deciding emptiness of semi-algebraic/constructible sets.
the problem of computing topological invariants of semi-algebraic/constructible sets, such as the number of connected components, Euler-Poincaré characteristic, and more generally all the Betti numbers of semi-algebraic/constructible sets.

Two classes of problems

The most important algorithmic problems studied in this area fall into two broad sub-classes:
(1) the problem of quantifier elimination, and its special cases such as deciding a sentence in the first order theory of reals/complex numbers, or deciding emptiness of semi-algebraic/constructible sets.
(2) the problem of computing topological invariants of semi-algebraic/constructible sets, such as the number of connected components, Euler-Poincaré characteristic, and more generally all the Betti numbers of semi-algebraic/constructible sets.

Analogy with Toda's Theorem

- The classes $\mathbf{P H}$ and \#P appearing in the two sides of the inclusion in Toda's Theorem can be identified with the two broad classes of problems in algorithmic algebraic/semi-algebraic geometry;
- the class PH with the problem of deciding sentences with a fixed number of quantifier alternations;
- the class HP with the problem of computing topological invariants of semi-algebraic/constructible sets, namely their Betti numbers, which generalizes the notion of cardinality for finite sets;
- it is thus quite natural to seek a real as well as complex analogue of Toda's theorem.

Analogy with Toda's Theorem

- The classes $\mathbf{P H}$ and \#P appearing in the two sides of the inclusion in Toda's Theorem can be identified with the two broad classes of problems in algorithmic algebraic/semi-algebraic geometry;
- the class PH with the problem of deciding sentences with a fixed number of quantifier alternations;
- the class \#P with the problem of computing topological invariants of semi-algebraic/constructible sets, namely their Betti numbers, which generalizes the notion of cardinality for finite sets;
- it is thus quite natural to seek a real as well as complex analogue of Toda's theorem.

Analogy with Toda's Theorem

- The classes $\mathbf{P H}$ and \#P appearing in the two sides of the inclusion in Toda's Theorem can be identified with the two broad classes of problems in algorithmic algebraic/semi-algebraic geometry;
- the class PH with the problem of deciding sentences with a fixed number of quantifier alternations;
- the class $\# \mathbf{P}$ with the problem of computing topological invariants of semi-algebraic/constructible sets, namely their Betti numbers, which generalizes the notion of cardinality for finite sets;
- it is thus quite natural to seek a real as well as complex analogue of Toda's theorem.

Analogy with Toda's Theorem

- The classes $\mathbf{P H}$ and \#P appearing in the two sides of the inclusion in Toda's Theorem can be identified with the two broad classes of problems in algorithmic algebraic/semi-algebraic geometry;
- the class PH with the problem of deciding sentences with a fixed number of quantifier alternations;
- the class $\# \mathbf{P}$ with the problem of computing topological invariants of semi-algebraic/constructible sets, namely their Betti numbers, which generalizes the notion of cardinality for finite sets;
- it is thus quite natural to seek a real as well as complex analogue of Toda's theorem.

Real/complex analogue of \#P

- In order to define real analogues of counting complexity classes of discrete complexity theory, it is necessary to identify the proper notion of "counting" in the context of algebraic/semi-algebraic geometry.

Counting complexity classes over the reals/complex numbers have been defined previously by Meer (2000) and studied extensivelv by other authors Buraisser, Cucker et al (2006). These authors used a straightforward generalization to semi-algebraic/constructible sets of counting in the case of finite sets; namely

Real/complex analogue of \#P

- In order to define real analogues of counting complexity classes of discrete complexity theory, it is necessary to identify the proper notion of "counting" in the context of algebraic/semi-algebraic geometry.
- Counting complexity classes over the reals/complex numbers have been defined previously by Meer (2000) and studied extensively by other authors Burgisser, Cucker et al (2006). These authors used a straightforward generalization to semi-algebraic/constructible sets of counting in the case of finite sets; namely

$$
\begin{aligned}
f(S) & =\operatorname{card}(S), \text { if } \operatorname{card}(S)<\infty \\
& =\infty \text { otherwise }
\end{aligned}
$$

An alternative definition

- In our view this is not fully satisfactory, since the count gives no information when the set is infinite, and most interesting semi-algebraic/constructible sets are infinite.
- If one thinks of "counting" a semi-algebraic/constructible set $S \subset \mathbb{R}^{k}$ or \mathbb{C}^{k} as computing certain discrete invariants, then a natural mathematical candidate is its sequence of Betti numbers, $b_{0}(S), \ldots, b_{k-1}(S)$, or more succinctly - the Poincaré polynomial of S, namely
- In case $\operatorname{card}(S)<\infty$, we have that

An alternative definition

- In our view this is not fully satisfactory, since the count gives no information when the set is infinite, and most interesting semi-algebraic/constructible sets are infinite.
- If one thinks of "counting" a semi-algebraic/constructible set $S \subset \mathbb{R}^{k}$ or \mathbb{C}^{k} as computing certain discrete invariants, then a natural mathematical candidate is its sequence of Betti numbers, $b_{0}(S), \ldots, b_{k-1}(S)$, or more succinctly
- the Poincaré polynomial of S, namely
- In case $\operatorname{card}(S)<\infty$, we have that

An alternative definition

- In our view this is not fully satisfactory, since the count gives no information when the set is infinite, and most interesting semi-algebraic/constructible sets are infinite.
- If one thinks of "counting" a semi-algebraic/constructible set $S \subset \mathbb{R}^{k}$ or \mathbb{C}^{k} as computing certain discrete invariants, then a natural mathematical candidate is its sequence of Betti numbers, $b_{0}(S), \ldots, b_{k-1}(S)$, or more succinctly
- the Poincaré polynomial of S, namely

$$
P_{S}(T) \stackrel{\text { def }}{=} \sum_{i \geq 0} b_{i}(S) T^{i}
$$

- In case card $(S)<\infty$, we have that
\square

An alternative definition

- In our view this is not fully satisfactory, since the count gives no information when the set is infinite, and most interesting semi-algebraic/constructible sets are infinite.
- If one thinks of "counting" a semi-algebraic/constructible set $S \subset \mathbb{R}^{k}$ or \mathbb{C}^{k} as computing certain discrete invariants, then a natural mathematical candidate is its sequence of Betti numbers, $b_{0}(S), \ldots, b_{k-1}(S)$, or more succinctly
- the Poincaré polynomial of S, namely

$$
P_{S}(T) \stackrel{\text { def }}{=} \sum_{i \geq 0} b_{i}(S) T^{i}
$$

- In case $\operatorname{card}(S)<\infty$, we have that $b_{0}(S)=P_{S}(0)=\operatorname{card}(S)$.

Definition of $\# \mathbf{P}_{\mathbb{R}}^{\dagger}$

We call a sequence of functions

$$
\left(f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{Z}[T]\right)_{n>0}
$$

to be in class $\# \mathbf{P}_{\mathbb{R}}^{\dagger}$ if there exists $\left(S_{n} \subset \mathbb{R}^{n}\right)_{n>0} \in P_{R}$ such that
for $\mathrm{x} \in \mathbb{R}^{n}$

where $S_{m+n, \mathbf{x}}=S_{m+n} \cap \pi^{-1}(\mathbf{x})$ and $\pi: \mathbb{R}^{m+n} \rightarrow \mathbb{R}^{n}$ is the
projection on the last n coordinates.
Similar definition over \mathbb{C} as well.

Definition of \# $\mathbf{P}_{\mathbb{R}}^{\dagger}$

We call a sequence of functions

$$
\left(f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{Z}[T]\right)_{n>0}
$$

to be in class $\# \mathbf{P}_{\mathbb{R}}^{\dagger}$ if there exists $\left(S_{n} \subset \mathbb{R}^{n}\right)_{n>0} \in \mathbf{P}_{\mathbb{R}}$ such that for $\mathbf{x} \in \mathbb{R}^{n}$

$$
f_{n}(\mathbf{x})=P_{S_{m+n, \mathbf{x}}}, \quad m=n^{O(1)},
$$

where $S_{m+n, \mathbf{x}}=S_{m+n} \cap \pi^{-1}(\mathbf{x})$ and $\pi: \mathbb{R}^{m+n} \rightarrow \mathbb{R}^{n}$ is the projection on the last n coordinates.
Similar definition over \mathbb{C} as well.

Counting and Betti numbers

- The connection between counting points of varieties and their Betti numbers is more direct over fields of positive characteristic via the zeta function.
- The zeta function of a variety defined over \mathbb{F}_{p} is the exponential generating function of the sequence whose n-th term is the number of points in the variety over $\mathbb{F}_{p^{n}}$. The zeta function depends on the Betti numbers of the variety with respect to a certain (ℓ-adic) co-homology theory.
Thus, the problems of "counting" varieties and computing their Betti numbers, are connected at a deeper level, and thus our definition of $\# \mathbf{P}_{\mathbb{T}}^{l}$ is not entirely ad hoc.

Counting and Betti numbers

- The connection between counting points of varieties and their Betti numbers is more direct over fields of positive characteristic via the zeta function.
- The zeta function of a variety defined over \mathbb{F}_{p} is the exponential generating function of the sequence whose n-th term is the number of points in the variety over $\mathbb{F}_{p^{n}}$.

Counting and Betti numbers

- The connection between counting points of varieties and their Betti numbers is more direct over fields of positive characteristic via the zeta function.
- The zeta function of a variety defined over \mathbb{F}_{p} is the exponential generating function of the sequence whose n-th term is the number of points in the variety over $\mathbb{F}_{p^{n}}$.
- The zeta function depends on the Betti numbers of the variety with respect to a certain (ℓ-adic) co-homology theory.
- Thus, the problems of "counting" varieties and computing their Betti numbers, are connected at a deeper level, and thus our definition of $\# \mathbf{P}_{\mathbb{1}}^{l}$ is not entirely ad hoc.

Counting and Betti numbers

- The connection between counting points of varieties and their Betti numbers is more direct over fields of positive characteristic via the zeta function.
- The zeta function of a variety defined over \mathbb{F}_{p} is the exponential generating function of the sequence whose n-th term is the number of points in the variety over $\mathbb{F}_{p^{n}}$.
- The zeta function depends on the Betti numbers of the variety with respect to a certain (ℓ-adic) co-homology theory.
- Thus, the problems of "counting" varieties and computing their Betti numbers, are connected at a deeper level, and thus our definition of $\# \mathbf{P}_{\mathbb{R}}^{\dagger}$ is not entirely ad hoc.

Real/Complex analogue of Toda's theorem

It is now natural to formulate the following conjectures.

Conjecture

$$
\mathbf{P H}_{\mathbb{R}} \subset \mathbf{P}^{\# \mathbf{P}_{\mathbb{R}}^{t}}
$$

Conjecture

For technical reasons we are unable to prove this without a
further compactness hypothesis on the left hand-side

Real/Complex analogue of Toda's theorem

It is now natural to formulate the following conjectures.

Conjecture

$$
\mathbf{P H}_{\mathbb{R}} \subset \mathbf{P}^{\# \mathbf{P}_{\mathbb{R}}^{\dagger}}
$$

Conjecture

$$
\mathbf{P H}_{\mathbb{C}} \subset \mathbf{P}^{\# \mathbf{P}_{\mathbb{C}}^{\dagger}}
$$

For technical reasons we are unable to prove this without a
further compactness hypothesis on the left hand-side

Real/Complex analogue of Toda's theorem

It is now natural to formulate the following conjectures.

Conjecture

$$
\mathbf{P H}_{\mathbb{R}} \subset \mathbf{P}^{\# \mathbf{P}_{\mathbb{R}}^{\dagger}}
$$

Conjecture

$$
\mathbf{P H}_{\mathbb{C}} \subset \mathbf{P}^{\# \mathbf{P}_{\mathbb{C}}^{\dagger}}
$$

For technical reasons we are unable to prove this without a
further compactness hypothesis on the left hand-side

Real/Complex analogue of Toda's theorem

It is now natural to formulate the following conjectures.

Conjecture

$$
\mathbf{P H}_{\mathbb{R}} \subset \mathbf{P}^{\# \mathbf{P}_{\mathbb{R}}^{\dagger}}
$$

Conjecture

$$
\mathbf{P H}_{\mathbb{C}} \subset \mathbf{P}^{\# \mathbf{P}_{\mathbb{C}}^{\dagger}}
$$

For technical reasons we are unable to prove this without a further compactness hypothesis on the left hand-side.

The compact fragment of real polynomial hierarchy

We say that a sequence of semi-algebraic sets

$$
\left(S_{n} \subset \mathbf{S}^{n}\right)_{n>0} \in \Sigma_{\mathbb{R}, \omega}^{C}
$$

if there exists another sequence $\left(S_{n}^{\prime}\right)_{n>0} \in \mathbb{P}_{\mathbb{R}}$ such that each S_{n}^{\prime} is compact and

The compact fragment of real polynomial hierarchy

We say that a sequence of semi-algebraic sets

$$
\left(S_{n} \subset \mathbf{S}^{n}\right)_{n>0} \in \Sigma_{\mathbb{R}, \omega}^{c}
$$

if there exists another sequence $\left(S_{n}^{\prime}\right)_{n>0} \in \mathbf{P}_{\mathbb{R}}$ such that each
S_{n}^{\prime} is compact and

The compact fragment of real polynomial hierarchy

We say that a sequence of semi-algebraic sets

$$
\left(S_{n} \subset \mathbf{S}^{n}\right)_{n>0} \in \Sigma_{\mathbb{R}, \omega}^{c}
$$

if there exists another sequence $\left(S_{n}^{\prime}\right)_{n>0} \in \mathbf{P}_{\mathbb{R}}$ such that each S_{n}^{\prime} is compact and

$$
x \in S_{n}
$$

if and only if

$$
\begin{gathered}
\left(Q_{1} y^{1} \in \mathbf{S}^{m_{1}}\right)\left(Q_{2} y^{2} \in \mathbf{S}^{m_{2}}\right) \ldots\left(Q_{\omega} y^{\omega} \in \mathbf{S}^{m_{\omega}}\right) \\
\left(y^{1}, \ldots, y^{\omega}, x\right) \in S_{m+n}^{\prime}
\end{gathered}
$$

where $m(n)=m_{1}(n)+\cdots+m_{\omega}(n)=n^{O(1)}$ and for $1 \leq i \leq \omega$, $Q_{i} \in\{\exists, \forall\}$, and $Q_{j} \neq Q_{j+1}, 1 \leq j<\omega, Q_{1}=\exists$.

The compact fragment of real polynomial hierarchy

We say that a sequence of semi-algebraic sets

$$
\left(S_{n} \subset \mathbf{S}^{n}\right)_{n>0} \in \Sigma_{\mathbb{R}, \omega}^{c}
$$

if there exists another sequence $\left(S_{n}^{\prime}\right)_{n>0} \in \mathbf{P}_{\mathbb{R}}$ such that each S_{n}^{\prime} is compact and

$$
x \in S_{n}
$$

if and only if

$$
\begin{gathered}
\left(Q_{1} y^{1} \in \mathbf{S}^{m_{1}}\right)\left(Q_{2} y^{2} \in \mathbf{S}^{m_{2}}\right) \ldots\left(Q_{\omega} y^{\omega} \in \mathbf{S}^{m_{\omega}}\right) \\
\left(y^{1}, \ldots, y^{\omega}, x\right) \in S_{m+n}^{\prime}
\end{gathered}
$$

where $m(n)=m_{1}(n)+\cdots+m_{\omega}(n)=n^{O(1)}$ and for $1 \leq i \leq \omega$, $Q_{i} \in\{\exists, \forall\}$, and $Q_{j} \neq Q_{j+1}, 1 \leq j<\omega, Q_{1}=\exists$. The compact class $\Pi_{\mathbb{R}, \omega}^{C}$ is defined analogously.

The compact real polynomial hierarchy (cont.)

We define

$$
\mathbf{P H}_{\mathbb{R}}^{c} \stackrel{\text { def }}{=} \bigcup_{\omega \geq 0}\left(\sum_{\mathbb{R}, \omega}^{c} \cup \Pi_{\mathbb{R}, \omega}^{c}\right)=\bigcup_{\omega \geq 0} \Sigma_{\mathbb{R}, \omega}^{c}=\bigcup_{\omega \geq 0} \underset{\mathbb{R}, \omega}{c}
$$

Notice that the semi-algebraic sets belonging to any language in $\mathbf{P H}_{\mathbb{R}}^{C}$ are all semi-algebraic compact (in fact closed semi-algebraic subsets of spheres). Also, notice the inclusion

The compact real polynomial hierarchy (cont.)

We define

$$
\mathbf{P H}_{\mathbb{R}}^{c} \stackrel{\text { def }}{=} \bigcup_{\omega \geq 0}\left(\Sigma_{\mathbb{R}, \omega}^{c} \cup \Pi_{\mathbb{R}, \omega}^{c}\right)=\bigcup_{\omega \geq 0} \Sigma_{\mathbb{R}, \omega}^{c}=\bigcup_{\omega \geq 0} \stackrel{c}{\mathbb{R}, \omega}
$$

Notice that the semi-algebraic sets belonging to any language in $\mathbf{P H}_{\mathbb{R}}^{C}$ are all semi-algebraic compact (in fact closed semi-algebraic subsets of spheres). Also, notice the inclusion

$$
\mathbf{P H}_{\mathbb{R}}^{c} \subset \mathbf{P H}_{\mathbb{R}} .
$$

Main theorem

Theorem (B-Zell,2008)

$$
\mathbf{P H}_{\mathbb{R}}^{c} \subset \mathbf{P}_{\mathbb{R}}^{\# \mathbf{P}_{\mathbb{R}}^{\dagger}} .
$$

Theorem (B.,2009)

Main theorem

Theorem (B-Zell,2008)

$$
\mathbf{P H}_{\mathbb{R}}^{c} \subset \mathbf{P}_{\mathbb{R}}^{\# \mathbf{P}_{\mathbb{R}}^{\dagger}} .
$$

Theorem (B.,2009)

$$
\mathbf{P H}_{\mathbb{C}}^{c} \subset \mathbf{P}_{\mathbb{C}}^{\# \mathbf{P}_{\mathbb{C}}^{t}} .
$$

Blum-Shub-Smale Models of Computation
Algorithmic Algebraic/Semi-algebraic Geometry
Real/Complex Analogue of Toda's Theorem
Proof

Outline

The main topological ingredients in the complex case

Outline

Motivation

(Discrete) Polynomial HierarchyBlum-Shub-Smale Models of ComputationAlgorithmic Algebraic/Semi-algebraic GeometryReal/Complex Analogue of Toda's Theorem(6) Proof

- Outline
- The main topological ingredients in the complex case

Motivation
(Discrete) Polynomial Hierarchy
Blum-Shub-Smale Models of Computation
Algorithmic Algebraic/Semi-algebraic Geometry
Real/Complex Analogue of Toda's Theorem
Proof

Summary of the Main Idea

- Our main tool is a topological construction which given a semi-algebraic set $S \subset \mathbb{R}^{m+n}, p \geq 0$, and $\pi_{\mathbf{Y}}: \mathbb{R}^{m+n} \rightarrow \mathbb{R}^{n}$ denoting the projection along (say) the \mathbf{Y}-co-ordinates, constructs efficiently a semi-algebraic set, $D_{\mathbf{Y}}^{p}(S)$, such that

$$
b_{i}\left(\pi_{\mathbf{Y}}(S)\right)=b_{i}\left(D_{\mathbf{Y}}^{p}(S)\right), 0 \leq i<p .
$$

- Notice that even if there exists an efficient (i.e. polynomial time) algorithm for checking membership in S, the same need not be true for the image $\pi_{\mathrm{y}}(S)$.
- A second topological ingredient is Alexander-Lefschetz duality which relates the Betti numbers of a compact

Summary of the Main Idea

- Our main tool is a topological construction which given a semi-algebraic set $S \subset \mathbb{R}^{m+n}, p \geq 0$, and $\pi_{\mathbf{Y}}: \mathbb{R}^{m+n} \rightarrow \mathbb{R}^{n}$ denoting the projection along (say) the \mathbf{Y}-co-ordinates, constructs efficiently a semi-algebraic set, $D_{\mathbf{Y}}^{p}(S)$, such that

$$
b_{i}\left(\pi_{\mathbf{Y}}(S)\right)=b_{i}\left(D_{\mathbf{Y}}^{p}(S)\right), 0 \leq i<p
$$

- Notice that even if there exists an efficient (i.e. polynomial time) algorithm for checking membership in S, the same need not be true for the image $\pi_{\mathrm{Y}}(S)$.
- A second topological ingredient is Alexander-Lefschetz duality which relates the Betti numbers of a compact

Summary of the Main Idea

- Our main tool is a topological construction which given a semi-algebraic set $S \subset \mathbb{R}^{m+n}, p \geq 0$, and $\pi_{\mathbf{Y}}: \mathbb{R}^{m+n} \rightarrow \mathbb{R}^{n}$ denoting the projection along (say) the \mathbf{Y}-co-ordinates, constructs efficiently a semi-algebraic set, $D_{\mathbf{Y}}^{p}(S)$, such that

$$
b_{i}\left(\pi_{\mathbf{Y}}(S)\right)=b_{i}\left(D_{\mathbf{Y}}^{p}(S)\right), 0 \leq i<p
$$

- Notice that even if there exists an efficient (i.e. polynomial time) algorithm for checking membership in S, the same need not be true for the image $\pi_{\mathrm{Y}}(S)$.
- A second topological ingredient is Alexander-Lefschetz duality which relates the Betti numbers of a compact subset K of the sphere \mathbf{S}^{n} with those of $\mathbf{S}^{n} K$.

Outline
The main topological ingredients in the complex case

Outline

Motivation

(Discrete) Polynomial HierarchyBlum-Shub-Smale Models of ComputationAlgorithmic Algebraic/Semi-algebraic GeometryReal/Complex Analogue of Toda's Theorem(6) Proof

- Outline
- The main topological ingredients in the complex case

Outline

The main topological ingredients in the complex case

Complex join fibered over a map

Let $A \subset \mathbb{P}_{\mathbb{C}}^{k} \times \mathbb{P}_{\mathbb{C}}^{\ell}$ be a constructible set defined by a first-order multi-homogeneous formula,

$$
\phi\left(X_{0}, \ldots, X_{k} ; Y_{0}, \ldots, Y_{\ell}\right)
$$

and let $\pi_{\mathbf{Y}}: \mathbb{P}_{\mathbb{C}}^{k} \times \mathbb{P}_{\mathbb{C}}^{\ell} \rightarrow \mathbb{P}_{\mathbb{C}}^{k}$ be the projection along the Y -co-ordinates.

Complex join fibered over a map (cont.)

For $p>0$, the p-fold complex join of A fibered over the map $\pi_{\mathbf{Y}}$,
$J_{\mathbb{C}, \mathfrak{Y}}^{p}(A) \subset \mathbb{P}_{\mathbb{C}}^{k} \times \mathbb{P}_{\mathbb{C}}^{(\ell+1)(p+1)-1}$, is defined by the formula

$$
\begin{gathered}
J_{\mathbb{C}, \mathbf{Y}}^{p}(\phi)\left(X_{0}, \ldots, X_{k} ; Y_{0}^{0}, \ldots, Y_{\ell}^{0}, \ldots, Y_{0}^{p}, \ldots, Y_{\ell}^{p}\right) \\
\stackrel{\text { def }}{=} \bigwedge_{i=0}^{p} \phi\left(X_{0}, \ldots, X_{k} ; Y_{0}^{i}, \ldots, Y_{l}^{i}\right) .
\end{gathered}
$$

Outline
The main topological ingredients in the complex case

Main topological theorem

Theorem

Assume that A is closed. Then, for every $p \geq 0$, we have that

$$
P_{\pi_{Y}(A)}=\left(1-T^{2}\right) P_{J_{\mathbb{C}, \mathbf{Y}}^{p}(A)} \quad \bmod T^{p}
$$

Outline

The main topological ingredients in the complex case

Proof

The pseudo-Poincaré polynomial

We denote for any constructible $S \subset \mathbb{P}_{\mathbb{C}}^{n}$,

$$
Q_{S}(T) \stackrel{\text { def }}{=} \sum_{j \geq 0}\left(b_{2 j}(S)-b_{2 j-1}(S)\right) T^{j} .
$$

In other words:

$$
Q_{S}=P_{S}^{\text {even }}-T P_{S}^{\text {odd }}
$$

Outline

The main topological ingredients in the complex case

Alexander-Lefschtez duality

Let $A \subset \mathbb{P}_{\mathbb{C}}^{n}$ be any constructible subset. Then,

$$
Q_{A}(T)=-\operatorname{Rec}_{n}\left(Q_{\mathbb{P}_{C}^{n}} \backslash A\right)+\sum_{i=0}^{n} T^{i},
$$

where for any polynomial $P(T)$,

$$
\operatorname{Rec}_{n}(P):=T^{n} P(1 / T) .
$$

Outline
The main topological ingredients in the complex case

Future work and open problems

- Remove compactness hypothesis.
- Obtain the classical Toda's theorem via algebro-geometric means.
- Develop a "Valiant type" theory over \mathbb{R} and \mathbb{C} or even more general structures. The "counting functions" considered should not be polynomials (such as the determinant, permanent etc.) as is done over finite fields, but rather constructible functions. We have a formulation of a
$\mathrm{VP}_{k}^{\dagger} \neq \mathrm{VNP}{ }_{k}^{\dagger}$ problem for $k=\mathbb{R}$ or \mathbb{C}.

Future work and open problems

- Remove compactness hypothesis.
- Obtain the classical Toda's theorem via algebro-geometric means.
- Develop a "Valiant type" theory over \mathbb{R} and \mathbb{C} or even more general structures. The "counting functions" considered should not be polynomials (such as the determinant, permanent etc.) as is done over finite fields, but rather constructible functions. We have a formulation of a $\mathbf{V P}_{k}^{\dagger} \neq \mathbf{V N P}_{k}^{\dagger}$ problem for $k=\mathbb{R}$ or \mathbb{C}.

Outline

The main topological ingredients in the complex case

Future work and open problems

- Remove compactness hypothesis.
- Obtain the classical Toda's theorem via algebro-geometric means.
- Develop a "Valiant type" theory over \mathbb{R} and \mathbb{C} or even more general structures. The "counting functions" considered should not be polynomials (such as the determinant, permanent etc.) as is done over finite fields, but rather constructible functions. We have a formulation of a $\mathbf{V P}_{k}^{\dagger} \neq \mathbf{V N P}_{k}^{\dagger}$ problem for $k=\mathbb{R}$ or \mathbb{C}.

