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1 Preliminaries

• Preliminaries.

Basic notations

• We assume that the theory T is dependent and T = T eq.

• We write a ≡A b for tp(a/A) = tp(b/A).

• We say that a and b are of Lascar distance 1 over a set A if there exists an A-indiscernible sequence
containing both. This is not an equivalence relation, but its transitive closure EL

A(x, y) is. We say
that a and b have the same Lascar type if they are EL

A-equivalent.

• We write Lstp(a/A) = Lstp(b/A) or a ≡Lstp,A b.

Basic notations - II

• Let I be an indiscernible sequence over a set A. Then a |= Av(I,A ∪ I) if and only if I_{a} is
indiscernible over A.

• For I an indiscernible sequence over A, we often denote Av(I,A ∪ I) by Av(I).

So this is just the type of the “next element” of I over A.

Basic definitions - forking

• A formula ϕ(x, a) divides over a set A if there exists an A-indiscernible sequence I = 〈ai : i < ω〉
containing a such that the set

{ϕ(x, ai) : i < ω}

is inconsistent.

• ϕ(x, a) forks over A if it implies a finite disjunction of formulas that divide over A.

• Equivalently, ϕ(x, a) forks over A if every global type p which contains ϕ(x, a) divides over A.

• A type p divides/forks over a set A if it contains a dividing/forking formula.
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Basic definitions (splitting)

• A type p ∈ S(B) does not split over a set A if whenever b, c ∈ B have the same type over A, we
have ϕ(x, b) ∈ p⇐⇒ ϕ(x, c) ∈ p for every formula ϕ(x, y).

• A type p ∈ S(B) does not split strongly over a set A if whenever b, c ∈ B are of Lascar distance 1
over A, we have ϕ(x, b) ∈ p⇐⇒ ϕ(x, c) ∈ p for every formula ϕ(x, y).

• A type p ∈ S(B) does not Lascar-split over a set A if whenever b, c ∈ B have the same Lascar type
over A, we have ϕ(x, b) ∈ p⇐⇒ ϕ(x, c) ∈ p for every formula ϕ(x, y).

• Note that a global type doesn’t split over a set A if it is invariant under the action of the auto-
morphism group of C over A.

Basic definitions (Morley sequences)

• Let O a linear order, A a set. We call a sequence I = 〈ai : i ∈ O〉 a Morley sequence over A if it is
an indiscernible sequence over A and tp(ai/Aa<i) does not fork over A for all i ∈ O.

• If a sequence I is indiscernible over B and Morley over A ⊆ B, we sometimes say that I is based
on A.

• Let p ∈ S(B) be a type. We call a sequence I a Morley sequence in p if it is a Morley sequence
over B of realizations of p.

• Let I = 〈bi : i < ω〉 be an indiscernible sequence in p ∈ S(A). The following are equivalent:

♦ I is a Morley sequence in p.

♦ Av(I) = Av(I, I ∪A) is a nonforking extension of p.

♦ There exists a global extension of Av(I) which does not fork over A.

Strong splitting and dividing

• (Shelah) Strong splitting implies dividing, hence forking

• Hence Lascar-splitting implies forking (follows since for global types strong splitting coincides with
Lascar-splitting).

Important consequences:

• There are boundedly many global types which do not fork over a given set A.

• Let I = 〈ai : i < λ〉 be such that

– tp(ai/Aa<i) does not fork over A

– Lstp(ai/Aa<i) = Lstp(aj/Aa<i) for every j ≥ i.

Then I is a Morley sequence over A (that is, it is indiscernible over A).
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Forking - equivalences
The following are equivalent for a global type p and a set A:

• p forks over A

• p divides over A

• p splits strongly over A

• p Lascar splits over A

• p is not Lascar-invariant over A

Morley sequences in dependent theories:

• Observation. Let I = 〈ai : i < λ〉 be such that

– tp(ai/Aa<i) does not fork over A

– Lstp(ai/Aa<i) = Lstp(aj/Aa<i) for every j ≥ i.

Then I is a Morley sequence over A (that is, it is indiscernible over A).

• Proposition. Let I be a Morley sequence over a set A. Then there exists a unique global types
extending Av(I) which does not fork over A. In other words, Av(I) is stationary over A.

• We call this global type the eventual type of I, Ev(I).

• One can provide an explicit construction of Ev(I) (similar to Poizat’s eventual type of “special
sequences”).

Morley sequences in dependent theories II:

• “Weak Kim’s Lemma” (Onshuus, U.). Let A be an extension base (e.g. a model) and ϕ(x, a) a
formula which divides over A. Then there exists a Morley sequence I in tp(a/A) which witnesses
dividing, that is, ϕ(x, I) is inconsistent.

• Theorem (Chernikov, Kaplan). Let M be a model, and ϕ(x, a) a formula which forks over M .
Then ϕ(x, a) divides over M .

Weight
We recall the notion of weight in stable theories.

• Let p(x) be any type over some set A. We say that a, 〈bi〉αi=1 witnesses (pre-weight of p is at least
α) if a |= p(x), 〈bi〉αi=1 is A-independent and a 6 |̂

A
bi for all i.

• The pre-weight of p is the supremum over all α such that such a witness exists.

• The weight of a type p is defined to be the supremum over the pre-weights of all nonforking
extensions of p.
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Rudimentarily finite weight

• A type p has rudimentarily finite pre-weight if there is no 〈bi〉ωi=1 witnessing that pre-weight of p
is at least ω.

• Note that a priori this does not mean that the pre-weight of p is finite - there can be witnesses
〈bi〉ni=1 for arbitrary large n < ω.

• Rudimentarily finite weight is defined similarly.

• (Hyttinnen, Pillay) In a stable theory, a type p which has rudimentarily finite weight, has finite
weight. In fact, such p is domination equivalent to a free product of finitely many types of weight
1.

2 Stability in broader contexts

• Stability in unstable contexts.

Stable types
Recall: a (partial) type p is called stable if every extension of it is definable.
The following are equivalent for a theory T :

• p is stable.

• For every B ⊇ A, p has at most |B|ℵ0 extensions in S(B).

• There is no formula ϕ(x̄, ȳ) (with parameters from C) exemplifying the order property with respect
to indiscernible sequences I = 〈āi : i < ω〉 and J = 〈b̄i : i < ω〉 with ∪J ⊆ pC. We call this “p does
not admit the order property”.

A “stable set” is often referred to as “stable and stably embedded”.

Stable types in dependent theories
(Onshuus, Peterzil) Let p ∈ S(A). The Following Are Equivalent for a type in a dependent theory:

1. p is stable.

2. For every B ⊇ A, p has at most |B|ℵ0 extensions in S(B).

3. Every indiscernible sequence in p is an indiscernible set.

4. There is no “order property” on p (with or without external parameters)

5. On the set of realizations of p there is no definable (with or without external parameters) partial
order with infinite chains.

Example

• Let us consider the theory of Q with a predicate Pn for every interval [n, n + 1) (n ∈ Z) and the
natural order <n on Pn. It is easy to see that the “generic” type “at infinity” (that is, the type of
an element not in any of the Pn’s) is stable.
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Stable domination
(Hrushovski, Haskell and Macpherson)

• A type p ∈ S(A) is called stably dominated if there exists a collection of stable sets D̄ = 〈Di : i < α〉
and definable functions fi : pC → Di such that for every set B ⊇ A and ā |= p, if fi(ā) |̂ st

A
B for

all i (which in this context just means that tp(fi(a)/B) is definable over A), then (denoting
f̄ = 〈fi : i < α〉) tp(f(ā)/B) ` tp(ā/B).

Example

• Let us consider the theory of a two-sorted structure (X,Y ): on X there is an equivalence relation
E(x1, x2) with infinitely many infinite classes and each class densely linearly ordered, while Y is
just an infinite set such that there is a definable function f from X onto Y with f(a1) = f(a2) ⇐⇒
E(a1, a2).

In other words, Y is the sort of imaginary elements corresponding to the classes of E.

Let M a model and p the “generic” type in X over M , that is, a type of an element in a new
equivalence class. It is easy to see that p is stably dominated, but clearly not stable.

• Note that the first example shows a stable type which is not stably dominated (there are no stable
sets).

Generic stability
Let T be dependent.

• We call a type p ∈ S(A) generically stable if there exists a Morley sequence 〈bi : i < ω〉 in p (over
A) which is an indiscernible set.

• A generically stable type over A = acl(A) is definable and stationary. In particular, every two
Morley sequences in it have the same type.

• A type p is generically stable if and only if there is a Morley sequence I in p such that Av(I,C)
does not fork over the domain of p if and only if Av(I,C) = Ev(I) for some/every Morley sequence
in p.

More characterizations
The following are equivalent for an extensible type p ∈ S(A):

• There exists a Morley sequence 〈bi : i < ω〉 in p (over A) which is an indiscernible set.

• Every Morley sequence 〈bi : i < ω〉 in p (over A) is an indiscernible set.

• Nonforking is symmetric on the set of realizations of p.

• For every b such that tp(b/A) is extensible, we have a |̂
A
b⇐⇒ b |̂

A
a.

• Nonforking is a stable independence relation on the set of realizations of p.

• p has a global nonforking extension which is both definable over and finitely satisfiable in a count-
able Morley sequence I.
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Examples

• Every stable type is generically stable.

• Every stably dominated type is generically stable.

More interesting Examples
Generically stable types which are not stable or stably dominated:

• Similar to Example I: (Q,P0, <0,+), p the “infinity” type. Then it is generically stable, but there
is a definable order on it, so it is unstable.

• Caution: unlike stable types, we don’t know anything about forking extensions of generically stable
types. This is why it is not generally the case that there is a bound of the length of a forking chain
of generically stable types. Similarly, generically stable types are not closed under concatenation.

3 Strong dependence

• Strong dependence.

Definitions

• A theory T is not strongly dependent if there exists an array 〈āα
i : i < ω, α < ω〉 and formulas

〈ϕα(x̄, ȳα) : α < ω〉 (note that x̄ does not depend on α) such that for every η ∈ ωω the set{
[ϕα(x̄, āα

i )](η(α)=i) : α < ω, i < ω
}

is consistent.

• One can add in addition that Iα = 〈āα
i : i < ω〉 is indiscernible over ∪{Iβ : β 6= α} for every α < ω.

Then there is no need to demand “for all η”, it is enough to say, for example:

{[ϕα(x̄, āα
0 ) ∧ ¬ϕα(x̄, āα

1 )] : α < ω}

is consistent.

Connections to dependence
Exercises:

• A theory T is independent if and only of there exists an array 〈āα
i : i < ω, α < ω〉 and a formula

ϕ(x̄, ȳ) (so it does not depend on α) such that for every η ∈ ωω the set{
[ϕ(x̄, āα

i )](η(α)=i) : α < ω, i < ω
}

is consistent.

• A theory T is independent if and only of there exists an array 〈āα
i : i < ω, α < |T |+〉 and formulas

〈ϕα(x̄, ȳα) : α < |T |+〉 such that for every η ∈ ωω the set{
[ϕα(x̄, āα

i )](η(α)=i) : α < |T |+, i < ω
}

is consistent.
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Cutting indiscernibles - dependence
Theorem (Shelah) The following are equivalent for a theory T :

• T is dependent.

• For every set A, an infinite A-indiscernible sequence I, a finite tuple b̄ and a finite set of formulas
∆, there is an infinite convex subset of I which is an indiscernible sequence over Ab̄ with respect
to formulas in ∆.

• For every set A, an A-indiscernible sequence I of order type |T |+ and a set B of cardinality |T |, I
is eventually indiscernible over A ∪B.

Cutting indiscernibles - strong dependence
Strong dependence is in a sense a “global” version of dependence, namely,
Theorem (Shelah) The following are equivalent for a theory T :

• T is strongly dependent.

• For every set A, an infinite A-indiscernible sequence I = 〈āi : i < ω〉 (maybe the length of ā is ω!)
and a finite tuple b̄, there is an infinite convex subset J of I such that all elements of J have the
same type over Ab̄.

• For every set A, an infinite A-indiscernible sequence I = 〈āi : i < ω〉 (maybe the length of ā is ω!)
and a finite tuple b̄, there is an infinite convex subset J of I which is an indiscernible sequence
over Ab̄.

Extracting indiscernibles - strong dependence

• Theorem (Shelah): Any long enough sequence in a model of a strongly dependent theory has an
indiscernible subsequence.

Dp-minimality

• A theory T is not dp-minimal if there exist I = 〈āi : i < ω〉, J = 〈b̄i : i < ω〉 and formulas
ϕ(x, ȳ), ψ(x, z̄) (x is a singleton!) such that for every n,m < ω the set{

[ϕ(x, āi)]
(n=i)

,
[
ψ(x, b̄i)

](m=i) : i < ω
}

is consistent.

• Again, one can add in addition that I, J are mutually indiscernible and demand only

ϕ(x, ā0) ∧ ¬ϕ(x, ā1) ∧ ψ(x, b̄0) ∧ ¬ψ(x, b̄1)

is consistent.
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Strong dependence and stability?

• o-minimal, weakly o-minimal, C-minimal, stable U -rank 1 theories are dp-minimal.

• A natural question is: what are stable strongly dependent theories? It is easy to see that a
superstable theory is strongly dependent. Are there others?

• In fact, there are: for example, the theory of infinitely many nested equivalence relations (En+1

refines each class of En into infinitely many infinite classes) is strongly dependent, and even dp-
minimal.

• In order to understand things better, let us look at strong dependence in a slightly different way.

Indiscernible arrays

• We will call an array a = 〈āα
i : α < κ, i < λ〉 indiscernible over a set A if for a fixed α < κ,

the sequence āα
<λ is indiscernible over A ∪ ā6=α

<λ . That is, a is a collection of sequences which are
indiscernible over each other (and over A).

• We will call an array a = 〈āα
i : α < κ, i < λ〉 Morley over a set A if for a fixed α < κ, the sequence

āα
<λ is based on (A,A ∪ ā6=α

<λ). That is, a is a collection of sequences which are Morley over each
other (based on A).

• Let a be indiscernible over a set A. Then there exists B ⊇ A such that a is Morley over B.

Dividing systems

• A dividing system Y for a type p(x̄) ∈ S(A) consists of

– an array a = 〈āα
i : α < κ, i < ω〉

– a sequence of formulae Φ = 〈ϕα(x̄, ȳ) : α < κ〉

such that

1. a is indiscernible over A.

2. p ∪ {ϕ(x̄, āα
0 ) : α < κ} is consistent

3. For every α < κ, the set
ΣY,α = {ϕα(x̄, āα

i ) : i < λ}

is inconsistent.

• We call κ in the definition above the depth of Y.

• A dividing system Y = (a,Φ) for p is called Morley if a is Morley.
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Dividing weight

• We say that the (dividing) pre-weight of a type p is at least µ (where µ is an ordinal) if for every
κ < µ there exists a Morley dividing system Y for p of depth κ. The pre-weight of a type p,
pwt(p) is the supremum (if exists) of the depths of Morley dividing systems for p. If the supremum
does not exist, we say that p has unbounded pre-weight.

• The weight of a type p, wt(p) is the supremum over all nonforking extensions q of p of pwt(q)
(could be unbounded).

• We say that a type p has rudimentarily finite pre-weight if there is no Morley dividing system for
p of depth ω. We say that a type p has rudimentarily finite weight if every nonforking extension
of it has rudimentarily finite pre-weight.

Dividing weight = weight

• In a stable theory, the notions defined above agree with the classical ones:

• Dividing = forking in a stable (and even simple) theory.

• “Kim’s Lemma”: if ϕ(x, a) divides over a set A, then every Morley sequence in tp(a/A) exemplifies
this.

Strong theories

• Note that theories with bounded dividing weight are precisely NTP2 and theories with rudimen-
tarily finite weight are precisely “strong” theories.

• This is because, although burden 6= weight, the difference is not significant. More precisely, a
dividing system can be easily turned into a Morley deciding system over a bigger set of parameters.

• So where does strong dependence come in?

Randomness/independence systems

• A randomness (independence) system X for a type p(x̄) ∈ S(A) consists of

– an array a = 〈āα
i : α < κ, i < λ〉 (where λ,κ are ordinals, λ is infinite)

– a sequence of formulae Φ = 〈ϕα(x̄, ȳ) : α < κ〉

such that

1. a is indiscernible over A.

2. For every η ∈ κλ, the set

Σa,η = {ϕα(x̄, āα
η(α)) : α < κ} ∪ {¬ϕα(x̄, āα

i ) : α < κ, i 6= η(α)}

is consistent with p(x̄).

• We call κ in the definition above the depth of Y.

• A randomness pattern X = (a,Φ) for p is called Morley if a is Morley.

9



From dividing to independence

• Exercise. Let p(x) be a type over a set A, n < ω and let 〈bαi : α < n, i < ω〉, {ϕα(x, yα) : α < n} be
a dividing pattern for p over A of depth n. Then there exists a randomness pattern for p over A
of depth n; in fact, the randomness pattern is given by the same array and collection of formulae.

From independence to dividing

• Observation. Let T be dependent. If there exists a (Morley) randomness system X = (a,Φ) for a
type p, then there exists a (Morley) dividing system X′ = (a′,Φ′) for p.

• Proof. Take Φ′ = 〈ϕ′
α(x̄, ȳα_

1 ȳα
2 ) : α < κ〉 where ϕ′

α(x̄, ȳα_
1 ȳα

2 ) = ϕα(x̄, ȳα
1 ) ∧ ¬ϕα(x̄, ȳα

2 ) and let
a′ = {āα

2iā
α
2i+1 : α < κ, i < λ}. It is easy to check that this is still a randomness pattern. It is

dividing since T is dependent, and therefore the set

{ϕ(x̄, āα
i )parity(i) : i < λ}

can not be consistent for any α. Clearly, if the original pattern was Morley, so is the new one.

So

• T is strongly dependent if and only if every type in finitely many variables has rudimentarily finite
(dividing) pre-weight if and only if every type in finitely many variables has rudimentarily finite
(dividing) weight.

• If T is dependent, then every type has bounded pre-weight (and weight).

• Similarly, a theory is dp-minimal if and only if every 1-type has weight 1.

Strongly stable theories

• T is strongly dependent and stable (called strongly stable) if and only if every type in finitely many
variables has rudimentarily finite weight.

• Hence in a strongly stable theory every type is domination equivalent to a free product of types of
weight 1 (not necessarily regular).

• Lachlan’s Theorem is true for strongly stable theories, namely: a countable strongly stable theory
has either 1 or infinitely many countable models.

• Similarly, a stable theory is dp-minimal if and only if every 1-type has weight 1.

4 Motivations

Motivations for further questions.

• It makes sense to replace an element with a Morley sequence in a dependent theory. Still, one
wonders whether this can be avoided. Clearly, this relates to always being able to construct “nice”
mutually indiscernible sequences starting with bi, which in turn relates to notions of “orthogonal-
ity”.
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• Possibly this has to do with the set {bi} being independent in some strong sense. For example,
recall:

• In a stable theory, a |̂ b if and only if for every I, J starting with a, b respectively, there are I ′, J ′

such that

1. I ′ ≡a I, J
′ ≡b J

2. I ′, J ′ are mutually indiscernible.

• For the purpose of this talk, we will call a, b satisfying (1) ,(2) above strictly independent.

Motivation I - thorn-weight
(joint with Alf Onshuus).
Let T be rosy and strongly dependent (or even strong).

• Every type has rudimentarily finite thorn-weight.

• Hyttinnen’s Lemma is true for thorn-forking, hence every type has finite thorn-weight, and is, in
fact, thorn-domination equivalent to a product of finitely many weight-1 types.

Rudimentarily finite thorn-weight
How does one show that every type has rudimentarily finite thorn weight?

• Lemma: Let {ai}i<α be thorn-independent. Then there are mutually indiscernible sequences Ii
starting with ai. That is, there are Ii such that

– Ii starts with ai

– Ii is indiscernible over I6=i

• Work with strong dividing and remember that

– If ϕ(x, a) strongly divides (over ∅, say) then every infinite indiscernible sequence in tp(a)
witnesses dividing of ϕ(x, a).

Motivation II - generically stable weight

• We define generically stable weight of a type p as follows:

Let p(x) be any type over some model M . We say that a, 〈bi〉αi=1 witnesses (pre-weight of p is at
least α) if a |= p(x), 〈bi〉αi=1 is an M -independent set, tp(bi/M) is generically stable, and a 6 |̂

M
bi

for all i.

• One defines pre-weight, weight, rudimentarily finite (generically stable) weight as usual.

• This is a natural attempt to “isolate” and understand the “stable” part of a type.
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Rudimentarily finite generically stable weight

• Lemma. Let 〈bi〉αi=1 be an M -independent set of generically stable elements, and Ii is an M -
indiscernible sequence starting with bi. Then there are I ′i starting with bi such that

– I ′i ≡M Ii

– I ′i is MI ′6=i-indiscernible

• Corollary. Every type in a strongly dependent theory has rudimentarily finite generically stable
weight.

From rudimentarily finite to finite?

• Question. Is it true that any type in a strongly dependent theory has finite generically stable
weight?

• Theorem. Every generically stable type in a strongly dependent theory has rudimentarily finite
generically stable weight (which equals to its dividing weight).

• The proof requires some new techniques, because it is not true that a forking increasing chain of
gen. stab. types needs to be bounded.

Question

• What can be shown in general (that is, without assuming that bi are generically stable)?

• For example, what can be said about “strict independence”?

• What if we only require that given I, J starting with a, b there are J ′, I ′ of the same type (and
starting with the same elements) such that e.g. I is indiscernible over J , and J is indiscernible
over a?

• What if we only require I indisc. over b and J - over a?

• Note that all of the above are equivalent to a |̂ b in a stable theory.

Some unsatisfactory answers

• Lemma1 (Onshuus, U.) If {aα : α < λ} is a nonforking sequence, then there are mutually indis-
cernible Jα starting with aα (but one can not control their type!).

• Lemma2. If {aα : α < λ} is a nonforking set, then whenever there are indiscernible sequences Jα

starting with aα there are indiscernible sequences J ′
α starting with the same aα such that J ′

α is
indiscernible over a6=α and J ′

α ≡ Jα.

• In fact, if we work over a model, this is an equivalence (because forking implies dividing).

• All these (and other similar results) use boundedness of nonforking.
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5 Strict nonforking

• Strict nonforking.

Strict nondividing

• Let A ⊆ B. We say that a type p ∈ S(B) is a strictly nondividing extension of p�A if for every
a |= p

– tp(a/B) does not divide over A

– tp(B/Aa) does not divide over A.

• We will say that a type p ∈ S(B) co-divides over a set A if there is a |= p such that tp(B/Aa)
divides over A. In other words, p co-divides over A if there exist a |= p and a formula ϕ(x, b) ∈ p,
such that ϕ(a, y) divides over A.

• So p ∈ S(B) is a strictly non-dividing extension over A if and only if it does not divide and does
not co-divide over A.

Strict nonforking

• Let A ⊆ B. We say that a type p ∈ S(B) is a strictly nonforking (or strictly free) extension of p�A
if there exists a global type q extending p which is a strictly nondividing extension of p�A.

• We also say that p is strictly nonforking over A. If a |= p, we write a |̂ st

A
B.

Strictly nonforking extensions
Let N be saturated enough over A. Then

• A type p ∈ S(N) is strictly nonforking over A if and only if for every a |= p

– a |̂
A
N

– tp(N/Aa) does not divide over A.

• If p ∈ S(N) is a heir of p�A and does not fork over A, it is strictly nonforking over A. In particular
this is the case if p is both a heir and a co-heir of p�A.

Strict Morley sequences

• Let O a linear order, A a set. We call a sequence I = 〈ai : i ∈ O〉 a strict Morley sequence over B
based on A if it is an indiscernible sequence over B and tp(ai/Ba<i) is strictly free over A for all
i ∈ O.

• In the previous definition, we omit “based on A” if A = B.

• Let p ∈ S(B) be a type. We call a sequence I a strict Morley sequence in p if it is a strict Morley
sequence over B of realizations of p.
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Strict Morley sequences and dividing
“Kim’s Lemma” for dependent theories.

• Assume A is an extension base.

Let ϕ(x, a) be a formula which divides over a set A. Then every strict Morley sequence I in tp(a/A)
witnesses dividing; that is, the set ϕ(x, I) = {ϕ(x, a′) : a′ ∈ I} is inconsistent.

• Existence of strict Morley sequences (e.g. over models) follows from the work of Kaplan and
Chernikov. In fact, using their results one can show that every type over a model has a global
nonforking heir.

Properties of strong nonforking
(with Itay Kaplan)
Let M be a model.

• Strong nonforking over M is symmetric.

• The following are equivalent for p ∈ S(M)

– Strong nonforking satisfies transitivity on the set of realizations of p.

– Strong nonforking coincides with nonforking for realizations of p.

– p is generically stable.

Proof of symmetry
Lemma. Assume b |̂ st

M
a, then for any c, there is some c0 ≡Mb c such that a |̂

M
bc0 and bc0 |̂

M
a.

Proof. Let p(x) = tp(c/Mb). We want the following set to be consistent with p(x):

{¬ϕ(x, b, a) : ϕ(x, b, a) forks overM}∪

∪{¬ϕ(a, b, x) : ϕ(y, b, c) forks overM}

Suppose not. By forking = dividing over models, we have that

p(x) ` ϕ1(x, b, a)
∧
ϕ2(a, b, x)

where ϕ1(x, y, a) divides over M, and ϕ2(y, b, c) divides over M.

Proof of Symmetry II
Let I be an indiscernible sequence witnessing ϕ1(x, y, a) divides, wlog b |̂ st

M
I. So I is indiscernible

over Mb. Hence for some m < ω,
p(x) `

∨
i<m

ϕ2(ai, b, x)

.
Recall that also I |̂

M
b, so ā |̂

M
b. Now let c0 ≡Mb c such that ā |̂

M
bc0, so for some i, ϕ2(ai, b, c0),

which is a contradiction (ϕ2(y, b, c) divides, hence forks).
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Characterization of strict independence
Theorem (Kaplan, U.) The following are equivalent for a model M and elements a, b

1. a |̂ st

M
b

2. b |̂ st

M
a

3. a and b are strictly independent over M , that is, for every I, J starting with a, b respectively,
there are I ′, J ′ starting with a, b of the same type (over M) as I, J , such that I ′, J ′ are mutually
indiscernible over M .

4. For every I, J starting with a, b respectively, there are I ′, J ′ starting with a, b of the same type
(over M) as I, J , such that I ′ is indiscernible over J ′ and J ′ is indiscernible over a.

5. There are a ∈ Na, b ∈ Nb containing M , saturated in |M |+ such that Na |̂
M
Nb and Nb |̂

M
Na

Characterization of strict nondividing
Recall: The following are equivalent for a model M and elements a, b

1. tp(a/Mb) is strictly nondividing over M

2. tp(b/Ma) is strictly nondividing over M

3. a |̂
M
b and b |̂

M
a

4. For every I, J starting with a, b respectively, there are I ′, J ′ starting with a, b of the same type
(over M) as I, J , such that I ′ is indiscernible over b and J ′ is indiscernible over a.

Question: is this equivalent to strict independence?

Weak “Local character” for dependent theories

• Let M be a model. Let 〈aα : α < λ〉 be a strongly nonforking sequence (that is, aα |̂
M
a<α), b

an element. Then for almost all (except |T |-many) α we have b |̂ st

M
aα, and even b |̂ st

M
aα.

• Finally, we can define weight based on strict nonforking. Then we obtain the following quite
desirable properties:

• In every dependent theory, a type over a model has bounded pre-weight. A dependent theory is
strongly dependent if and only if every type over a model has almost finite pre-weight.

Weight - more precisely

• Let p(x) be any type over a model M . We say that a, 〈bi〉αi=1 witnesses strict pre-weight of p is at
least α if a |= p(x), bi |̂ st

M
b<i for all i < α, and a 6 |̂

M
bi for all i.

• The strict pre-weight of p is the supremum over all α such that such a witness exists.

• Note: in the definition above, one can replace a 6 |̂
M
bi with a 6 |̂ st

M
bi. Gives rise to a different

notion,but the properties below stay true.

• In every dependent theory, a type over a model has bounded strict pre-weight. A dependent theory
is strongly dependent if and only if every type over a model has almost finite strict pre-weight.
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Different notions of orthogonality

• (Shelah) We call two types p, q ∈ S(A) weakly orthogonal or if p(x) ∪ q(y) is a complete type over
A. We write p ⊥w q. If a, b realize p, q respectively, then we write a/A ⊥w b/A or a ⊥w b when A
is fixed and clear from the context.

• We call tp(a/A), tp(b/A) weakly orthogonal1 if whenever I, J are A-indiscernible sequences starting
with a, b respectively, there are I ′, J ′ mutually A-indiscernible such that I ≡Aa I

′ and J ≡Ab J
′.

We write a/A ⊥1
w b/A

• Let A be an extension base(e.g. a model), p, q ∈ S(A). If p ⊥w q, then p ⊥1
w q.

Different notions of orthogonality

• Let (Q, <, P ) be the theory of (Q, <) with a dense co-dense predicate P . Let p, q ∈ S(Q) be the
types over the prime model Q such that if a, b realize p, q respectively, then a, b > Q, P (a),¬P (b).

Clearly p 6⊥w q since p, q do not determine whether a < b or b < a. On the other hand, it is easy
to see that p ⊥1

w q. It is also the case that p ⊥st
w q.

• So we have two different reasonable notions of orthogonality. Of course, in stable theories they
coincide.
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