Strong dependence, weight, etc

Alex Usvyatsov

February 11, 2009

1 Preliminaries

• Preliminaries.

Basic notations

- We assume that the theory T is dependent and $T = T^{eq}$.
- We write $a \equiv_A b$ for $\operatorname{tp}(a/A) = \operatorname{tp}(b/A)$.
- We say that a and b are of Lascar distance 1 over a set A if there exists an A-indiscernible sequence containing both. This is not an equivalence relation, but its transitive closure $E_A^L(x, y)$ is. We say that a and b have the same Lascar type if they are E_A^L -equivalent.
- We write Lstp(a/A) = Lstp(b/A) or $a \equiv_{Lstp,A} b$.

Basic notations - II

- Let I be an indiscernible sequence over a set A. Then $a \models \operatorname{Av}(I, A \cup I)$ if and only if $I^{\frown}\{a\}$ is indiscernible over A.
- For I an indiscernible sequence over A, we often denote $\operatorname{Av}(I, A \cup I)$ by $\operatorname{Av}(I)$. So this is just the type of the "next element" of I over A.

Basic definitions - forking

• A formula $\varphi(x, a)$ divides over a set A if there exists an A-indiscernible sequence $I = \langle a_i : i < \omega \rangle$ containing a such that the set

$$\{\varphi(x,a_i)\colon i<\omega\}$$

is inconsistent.

- $\varphi(x, a)$ forks over A if it implies a finite disjunction of formulas that divide over A.
- Equivalently, $\varphi(x, a)$ forks over A if every global type p which contains $\varphi(x, a)$ divides over A.
- A type p divides/forks over a set A if it contains a dividing/forking formula.

Basic definitions (splitting)

- A type $p \in S(B)$ does not split over a set A if whenever $b, c \in B$ have the same type over A, we have $\varphi(x, b) \in p \iff \varphi(x, c) \in p$ for every formula $\varphi(x, y)$.
- A type $p \in S(B)$ does not split strongly over a set A if whenever $b, c \in B$ are of Lascar distance 1 over A, we have $\varphi(x, b) \in p \iff \varphi(x, c) \in p$ for every formula $\varphi(x, y)$.
- A type $p \in S(B)$ does not Lascar-split over a set A if whenever $b, c \in B$ have the same Lascar type over A, we have $\varphi(x, b) \in p \iff \varphi(x, c) \in p$ for every formula $\varphi(x, y)$.
- Note that a global type doesn't split over a set A if it is invariant under the action of the automorphism group of \mathfrak{C} over A.

Basic definitions (Morley sequences)

- Let O a linear order, A a set. We call a sequence $I = \langle a_i : i \in O \rangle$ a Morley sequence over A if it is an indiscernible sequence over A and $\operatorname{tp}(a_i/Aa_{\leq i})$ does not fork over A for all $i \in O$.
- If a sequence I is indiscernible over B and Morley over $A \subseteq B$, we sometimes say that I is based on A.
- Let $p \in S(B)$ be a type. We call a sequence I a Morley sequence in p if it is a Morley sequence over B of realizations of p.
- Let $I = \langle b_i : i < \omega \rangle$ be an indiscernible sequence in $p \in S(A)$. The following are equivalent:
 - \Diamond *I* is a Morley sequence in *p*.
 - \diamond Av(I) = Av $(I, I \cup A)$ is a nonforking extension of p.
 - \diamond There exists a global extension of Av(I) which does not fork over A.

Strong splitting and dividing

- (Shelah) Strong splitting implies dividing, hence forking
- Hence Lascar-splitting implies forking (follows since for global types strong splitting coincides with Lascar-splitting).

Important consequences:

- There are boundedly many global types which do not fork over a given set A.
- Let $I = \langle a_i : i < \lambda \rangle$ be such that
 - $\operatorname{tp}(a_i/Aa_{< i})$ does not fork over A
 - $\operatorname{Lstp}(a_i/Aa_{\leq i}) = \operatorname{Lstp}(a_j/Aa_{\leq i})$ for every $j \geq i$.

Then I is a Morley sequence over A (that is, it is indiscernible over A).

Forking - equivalences

The following are equivalent for a global type p and a set A:

- p forks over A
- p divides over A
- p splits strongly over A
- p Lascar splits over A
- p is not Lascar-invariant over A

Morley sequences in dependent theories:

- Observation. Let $I = \langle a_i : i < \lambda \rangle$ be such that
 - $-\operatorname{tp}(a_i/Aa_{< i})$ does not fork over A
 - $\operatorname{Lstp}(a_i/Aa_{< i}) = \operatorname{Lstp}(a_j/Aa_{< i})$ for every $j \ge i$.

Then I is a Morley sequence over A (that is, it is indiscernible over A).

- Proposition. Let I be a Morley sequence over a set A. Then there exists a unique global types extending Av(I) which does not fork over A. In other words, Av(I) is stationary over A.
- We call this global type the eventual type of I, Ev(I).
- One can provide an explicit construction of Ev(I) (similar to Poizat's eventual type of "special sequences").

Morley sequences in dependent theories II:

- "Weak Kim's Lemma" (Onshuus, U.). Let A be an extension base (e.g. a model) and $\varphi(x, a)$ a formula which divides over A. Then there exists a Morley sequence I in $\operatorname{tp}(a/A)$ which witnesses dividing, that is, $\varphi(x, I)$ is inconsistent.
- Theorem (Chernikov, Kaplan). Let M be a model, and $\varphi(x, a)$ a formula which forks over M. Then $\varphi(x, a)$ divides over M.

Weight

We recall the notion of *weight* in stable theories.

- Let p(x) be any type over some set A. We say that $a, \langle b_i \rangle_{i=1}^{\alpha}$ witnesses (*pre-weight of* p is at least α) if $a \models p(x), \langle b_i \rangle_{i=1}^{\alpha}$ is A-independent and $a \not \perp_A b_i$ for all i.
- The *pre-weight* of p is the supremum over all α such that such a witness exists.
- The *weight* of a type p is defined to be the supremum over the pre-weights of all nonforking extensions of p.

Rudimentarily finite weight

- A type p has rudimentarily finite pre-weight if there is no $\langle b_i \rangle_{i=1}^{\omega}$ witnessing that pre-weight of p is at least ω .
- Note that a priori this does not mean that the pre-weight of p is *finite* there can be witnesses $\langle b_i \rangle_{i=1}^n$ for arbitrary large $n < \omega$.
- Rudimentarily finite weight is defined similarly.
- (Hyttinnen, Pillay) In a stable theory, a type p which has rudimentarily finite weight, has finite weight. In fact, such p is domination equivalent to a free product of finitely many types of weight 1.

2 Stability in broader contexts

• Stability in unstable contexts.

Stable types

Recall: a (partial) type p is called *stable* if every extension of it is definable. The following are equivalent for a theory T:

- p is stable.
- For every $B \supseteq A$, p has at most $|B|^{\aleph_0}$ extensions in S(B).
- There is no formula $\varphi(\bar{x}, \bar{y})$ (with parameters from \mathfrak{C}) exemplifying the order property with respect to indiscernible sequences $I = \langle \bar{a}_i : i < \omega \rangle$ and $J = \langle \bar{b}_i : i < \omega \rangle$ with $\cup J \subseteq p^{\mathfrak{C}}$. We call this "p does not admit the order property".
- A "stable set" is often referred to as "stable and stably embedded".

Stable types in dependent theories

(Onshuus, Peterzil) Let $p \in S(A)$. The Following Are Equivalent for a type in a dependent theory:

- 1. p is stable.
- 2. For every $B \supseteq A$, p has at most $|B|^{\aleph_0}$ extensions in S(B).
- 3. Every indiscernible sequence in p is an indiscernible set.
- 4. There is no "order property" on p (with or without external parameters)
- 5. On the set of realizations of p there is no definable (with or without external parameters) partial order with infinite chains.

Example

• Let us consider the theory of \mathbb{Q} with a predicate P_n for every interval [n, n+1) $(n \in \mathbb{Z})$ and the natural order $<_n$ on P_n . It is easy to see that the "generic" type "at infinity" (that is, the type of an element not in any of the P_n 's) is stable.

Stable domination

(Hrushovski, Haskell and Macpherson)

• A type $p \in S(A)$ is called *stably dominated* if there exists a collection of stable sets $\overline{D} = \langle D_i : i < \alpha \rangle$ and definable functions $f_i : p^{\mathfrak{C}} \to D_i$ such that for every set $B \supseteq A$ and $\overline{a} \models p$, if $f_i(\overline{a}) \bigcup_A^{st} B$ for all i (which in this context just means that $\operatorname{tp}(f_i(a)/B)$ is definable over A), then (denoting $\overline{f} = \langle f_i : i < \alpha \rangle$) $\operatorname{tp}(f(\overline{a})/B) \vdash \operatorname{tp}(\overline{a}/B)$.

Example

• Let us consider the theory of a two-sorted structure (X, Y): on X there is an equivalence relation $E(x_1, x_2)$ with infinitely many infinite classes and each class densely linearly ordered, while Y is just an infinite set such that there is a definable function f from X onto Y with $f(a_1) = f(a_2) \iff E(a_1, a_2)$.

In other words, Y is the sort of imaginary elements corresponding to the classes of E.

Let M a model and p the "generic" type in X over M, that is, a type of an element in a new equivalence class. It is easy to see that p is stably dominated, but clearly not stable.

• Note that the first example shows a stable type which is not stably dominated (there are no stable sets).

Generic stability

Let T be dependent.

- We call a type $p \in S(A)$ generically stable if there exists a Morley sequence $\langle b_i : i < \omega \rangle$ in p (over A) which is an indiscernible set.
- A generically stable type over A = acl(A) is definable and stationary. In particular, every two Morley sequences in it have the same type.
- A type p is generically stable if and only if there is a Morley sequence I in p such that $\operatorname{Av}(I, \mathfrak{C})$ does not fork over the domain of p if and only if $\operatorname{Av}(I, \mathfrak{C}) = \operatorname{Ev}(I)$ for some/every Morley sequence in p.

More characterizations

The following are equivalent for an extensible type $p \in S(A)$:

- There exists a Morley sequence $\langle b_i : i < \omega \rangle$ in p (over A) which is an indiscernible set.
- Every Morley sequence $\langle b_i : i < \omega \rangle$ in p (over A) is an indiscernible set.
- Nonforking is symmetric on the set of realizations of p.
- For every b such that tp(b/A) is extensible, we have $a \, {\textstyle \bigcup}_A b \iff b \, {\textstyle \bigcup}_A a$.
- Nonforking is a stable independence relation on the set of realizations of p.
- p has a global nonforking extension which is both definable over and finitely satisfiable in a countable Morley sequence I.

Examples

- Every stable type is generically stable.
- Every stably dominated type is generically stable.

More interesting Examples

Generically stable types which are not stable or stably dominated:

- Similar to Example I: $(Q, P_0, <_0, +)$, p the "infinity" type. Then it is generically stable, but there is a definable order on it, so it is unstable.
- *Caution:* unlike stable types, we don't know anything about forking extensions of generically stable types. This is why it is not generally the case that there is a bound of the length of a forking chain of generically stable types. Similarly, generically stable types are not closed under concatenation.

3 Strong dependence

• Strong dependence.

Definitions

• A theory T is not strongly dependent if there exists an array $\langle \bar{a}_i^{\alpha} : i < \omega, \alpha < \omega \rangle$ and formulas $\langle \varphi_{\alpha}(\bar{x}, \bar{y}_{\alpha}) : \alpha < \omega \rangle$ (note that \bar{x} does not depend on α) such that for every $\eta \in {}^{\omega}\omega$ the set

$$\left\{ \left[\varphi_{\alpha}(\bar{x}, \bar{a}_{i}^{\alpha}) \right]^{(\eta(\alpha)=i)} : \alpha < \omega, i < \omega \right\}$$

is consistent.

• One can add in addition that $I^{\alpha} = \langle \bar{a}_i^{\alpha} : i < \omega \rangle$ is indiscernible over $\cup \{ I^{\beta} : \beta \neq \alpha \}$ for every $\alpha < \omega$. Then there is no need to demand "for all η ", it is enough to say, for example:

$$\{ [\varphi_{\alpha}(\bar{x}, \bar{a}_{0}^{\alpha}) \land \neg \varphi_{\alpha}(\bar{x}, \bar{a}_{1}^{\alpha})] \colon \alpha < \omega \}$$

is consistent.

Connections to dependence

Exercises:

• A theory T is independent if and only of there exists an array $\langle \bar{a}_i^{\alpha} : i < \omega, \alpha < \omega \rangle$ and a formula $\varphi(\bar{x}, \bar{y})$ (so it does not depend on α) such that for every $\eta \in {}^{\omega}\omega$ the set

$$\left\{ \left[\varphi(\bar{x}, \bar{a}_i^{\alpha}) \right]^{(\eta(\alpha)=i)} : \alpha < \omega, i < \omega \right\}$$

is consistent.

• A theory T is independent if and only of there exists an array $\langle \bar{a}_i^{\alpha} : i < \omega, \alpha < |T|^+ \rangle$ and formulas $\langle \varphi_{\alpha}(\bar{x}, \bar{y}_{\alpha}) : \alpha < |T|^+ \rangle$ such that for every $\eta \in {}^{\omega}\omega$ the set

$$\left\{ \left[\varphi_{\alpha}(\bar{x}, \bar{a}_{i}^{\alpha}) \right]^{(\eta(\alpha)=i)} : \alpha < |T|^{+}, i < \omega \right\}$$

is consistent.

Cutting indiscernibles - dependence

Theorem (Shelah) The following are equivalent for a theory T:

- T is dependent.
- For every set A, an infinite A-indiscernible sequence I, a finite tuple \bar{b} and a finite set of formulas Δ , there is an infinite convex subset of I which is an indiscernible sequence over $A\bar{b}$ with respect to formulas in Δ .
- For every set A, an A-indiscernible sequence I of order type $|T|^+$ and a set B of cardinality |T|, I is eventually indiscernible over $A \cup B$.

Cutting indiscernibles - strong dependence

Strong dependence is in a sense a "global" version of dependence, namely, *Theorem (Shelah)* The following are equivalent for a theory T:

- T is strongly dependent.
- For every set A, an infinite A-indiscernible sequence $I = \langle \bar{a}_i : i < \omega \rangle$ (maybe the length of \bar{a} is ω !) and a finite tuple \bar{b} , there is an infinite convex subset J of I such that all elements of J have the same type over $A\bar{b}$.
- For every set A, an infinite A-indiscernible sequence $I = \langle \bar{a}_i : i < \omega \rangle$ (maybe the length of \bar{a} is ω !) and a finite tuple \bar{b} , there is an infinite convex subset J of I which is an indiscernible sequence over $A\bar{b}$.

Extracting indiscernibles - strong dependence

• *Theorem* (Shelah): Any long enough sequence in a model of a strongly dependent theory has an indiscernible subsequence.

Dp-minimality

• A theory T is not dp-minimal if there exist $I = \langle \bar{a}_i : i < \omega \rangle$, $J = \langle \bar{b}_i : i < \omega \rangle$ and formulas $\varphi(x, \bar{y}), \psi(x, \bar{z})$ (x is a singleton!) such that for every $n, m < \omega$ the set

$$\left\{ \left[\varphi(x,\bar{a}_i) \right]^{(n=i)}, \left[\psi(x,\bar{b}_i) \right]^{(m=i)} : i < \omega \right\}$$

is consistent.

• Again, one can add in addition that I, J are mutually indiscernible and demand only

$$\varphi(x, \bar{a}_0) \land \neg \varphi(x, \bar{a}_1) \land \psi(x, \bar{b}_0) \land \neg \psi(x, \bar{b}_1)$$

is consistent.

Strong dependence and stability?

- o-minimal, weakly o-minimal, C-minimal, stable U-rank 1 theories are dp-minimal.
- A natural question is: what are stable strongly dependent theories? It is easy to see that a superstable theory is strongly dependent. Are there others?
- In fact, there are: for example, the theory of infinitely many nested equivalence relations $(E_{n+1}$ refines each class of E_n into infinitely many infinite classes) is strongly dependent, and even dp-minimal.
- In order to understand things better, let us look at strong dependence in a slightly different way.

Indiscernible arrays

- We will call an array $\mathfrak{a} = \langle \bar{a}_i^{\alpha} : \alpha < \kappa, i < \lambda \rangle$ indiscernible over a set A if for a fixed $\alpha < \kappa$, the sequence $\bar{a}_{<\lambda}^{\alpha}$ is indiscernible over $A \cup \bar{a}_{<\lambda}^{\neq \alpha}$. That is, \mathfrak{a} is a collection of sequences which are indiscernible over each other (and over A).
- We will call an array $\mathbf{a} = \langle \bar{a}_i^{\alpha} : \alpha < \kappa, i < \lambda \rangle$ Morley over a set A if for a fixed $\alpha < \kappa$, the sequence $\bar{a}_{<\lambda}^{\alpha}$ is based on $(A, A \cup \bar{a}_{<\lambda}^{\neq \alpha})$. That is, \mathbf{a} is a collection of sequences which are Morley over each other (based on A).
- Let \mathfrak{a} be indiscernible over a set A. Then there exists $B \supseteq A$ such that \mathfrak{a} is Morley over B.

Dividing systems

- A dividing system \mathfrak{Y} for a type $p(\bar{x}) \in S(A)$ consists of
 - an array $\mathfrak{a} = \langle \bar{a}_i^{\alpha} : \alpha < \kappa, i < \omega \rangle$
 - a sequence of formulae $\Phi = \langle \varphi_{\alpha}(\bar{x}, \bar{y}) : \alpha < \kappa \rangle$

such that

- 1. \mathfrak{a} is indiscernible over A.
- 2. $p \cup \{\varphi(\bar{x}, \bar{a}_0^{\alpha}) : \alpha < \kappa\}$ is consistent
- 3. For every $\alpha < \kappa$, the set

$$\Sigma_{\mathfrak{Y},\alpha} = \{\varphi_{\alpha}(\bar{x}, \bar{a}_{i}^{\alpha}) \colon i < \lambda\}$$

is inconsistent.

- We call κ in the definition above the *depth* of \mathfrak{Y} .
- A dividing system $\mathfrak{Y} = (\mathfrak{a}, \Phi)$ for p is called *Morley* if \mathfrak{a} is Morley.

Dividing weight

- We say that the (dividing) *pre-weight* of a type p is at least μ (where μ is an ordinal) if for every $\kappa < \mu$ there exists a Morley dividing system \mathfrak{Y} for p of depth κ . The pre-weight of a type p, pwt(p) is the supremum (if exists) of the depths of Morley dividing systems for p. If the supremum does not exist, we say that p has *unbounded* pre-weight.
- The weight of a type p, wt(p) is the supremum over all nonforking extensions q of p of pwt(q) (could be unbounded).
- We say that a type p has rudimentarily finite pre-weight if there is no Morley dividing system for p of depth ω . We say that a type p has rudimentarily finite weight if every nonforking extension of it has rudimentarily finite pre-weight.

Dividing weight = weight

- In a stable theory, the notions defined above agree with the classical ones:
- Dividing = forking in a stable (and even simple) theory.
- "Kim's Lemma": if $\varphi(x, a)$ divides over a set A, then every Morley sequence in $\operatorname{tp}(a/A)$ exemplifies this.

Strong theories

- Note that theories with bounded dividing weight are precisely NTP_2 and theories with rudimentarily finite weight are precisely "strong" theories.
- This is because, although burden ≠ weight, the difference is not significant. More precisely, a dividing system can be easily turned into a Morley deciding system over a bigger set of parameters.
- So where does strong dependence come in?

Randomness/independence systems

- A randomness (independence) system \mathfrak{X} for a type $p(\bar{x}) \in S(A)$ consists of
 - an array $\mathfrak{a} = \langle \bar{a}_i^{\alpha} : \alpha < \kappa, i < \lambda \rangle$ (where λ, κ are ordinals, λ is infinite)
 - a sequence of formulae $\Phi = \langle \varphi_{\alpha}(\bar{x}, \bar{y}) : \alpha < \kappa \rangle$

such that

- 1. \mathfrak{a} is indiscernible over A.
- 2. For every $\eta \in {}^{\kappa}\lambda$, the set

$$\Sigma_{\mathfrak{a},\eta} = \{\varphi_{\alpha}(\bar{x}, \bar{a}^{\alpha}_{\eta(\alpha)}) \colon \alpha < \kappa\} \cup \{\neg \varphi_{\alpha}(\bar{x}, \bar{a}^{\alpha}_{i}) \colon \alpha < \kappa, i \neq \eta(\alpha)\}$$

is consistent with $p(\bar{x})$.

- We call κ in the definition above the *depth* of \mathfrak{Y} .
- A randomness pattern $\mathfrak{X} = (\mathfrak{a}, \Phi)$ for p is called *Morley* if \mathfrak{a} is Morley.

From dividing to independence

• *Exercise*. Let p(x) be a type over a set A, $n < \omega$ and let $\langle b_i^{\alpha} : \alpha < n, i < \omega \rangle$, $\{\varphi_{\alpha}(x, y_{\alpha}) : \alpha < n\}$ be a dividing pattern for p over A of depth n. Then there exists a randomness pattern for p over A of depth n; in fact, the randomness pattern is given by the same array and collection of formulae.

From independence to dividing

- Observation. Let T be dependent. If there exists a (Morley) randomness system $\mathfrak{X} = (\mathfrak{a}, \Phi)$ for a type p, then there exists a (Morley) dividing system $\mathfrak{X}' = (\mathfrak{a}', \Phi')$ for p.
- Proof. Take $\Phi' = \langle \varphi'_{\alpha}(\bar{x}, \bar{y}_1^{\alpha} \frown \bar{y}_2^{\alpha}) \colon \alpha < \kappa \rangle$ where $\varphi'_{\alpha}(\bar{x}, \bar{y}_1^{\alpha} \frown \bar{y}_2^{\alpha}) = \varphi_{\alpha}(\bar{x}, \bar{y}_1^{\alpha}) \land \neg \varphi_{\alpha}(\bar{x}, \bar{y}_2^{\alpha})$ and let $\mathfrak{a}' = \{\bar{a}_{2i}^{\alpha} \bar{a}_{2i+1}^{\alpha} \colon \alpha < \kappa, i < \lambda\}$. It is easy to check that this is still a randomness pattern. It is dividing since T is dependent, and therefore the set

$$\{\varphi(\bar{x}, \bar{a}_i^{\alpha})^{\text{parity}(i)} : i < \lambda\}$$

can not be consistent for any α . Clearly, if the original pattern was Morley, so is the new one.

\mathbf{So}

- T is strongly dependent if and only if every type in finitely many variables has rudimentarily finite (dividing) pre-weight if and only if every type in finitely many variables has rudimentarily finite (dividing) weight.
- If T is dependent, then every type has bounded pre-weight (and weight).
- Similarly, a theory is dp-minimal if and only if every 1-type has weight 1.

Strongly stable theories

- T is strongly dependent and stable (called *strongly stable*) if and only if every type in finitely many variables has rudimentarily finite weight.
- Hence in a strongly stable theory every type is domination equivalent to a free product of types of weight 1 (not necessarily regular).
- Lachlan's Theorem is true for strongly stable theories, namely: a countable strongly stable theory has either 1 or infinitely many countable models.
- Similarly, a stable theory is dp-minimal if and only if every 1-type has weight 1.

4 Motivations

Motivations for further questions.

• It makes sense to replace an element with a Morley sequence in a dependent theory. Still, one wonders whether this can be avoided. Clearly, this relates to always being able to construct "nice" mutually indiscernible sequences starting with b_i , which in turn relates to notions of "orthogonality".

- Possibly this has to do with the set $\{b_i\}$ being independent in some strong sense. For example, recall:
- In a stable theory, $a \perp b$ if and only if for every I, J starting with a, b respectively, there are I', J' such that

1. $I' \equiv_a I, J' \equiv_b J$

2. I', J' are mutually indiscernible.

• For the purpose of this talk, we will call a, b satisfying (1), (2) above strictly independent.

Motivation I - thorn-weight

(joint with Alf Onshuus). Let T be rosy and strongly dependent (or even strong).

- Every type has rudimentarily finite thorn-weight.
- Hyttinnen's Lemma is true for thorn-forking, hence every type has *finite* thorn-weight, and is, in fact, thorn-domination equivalent to a product of finitely many weight-1 types.

Rudimentarily finite thorn-weight

How does one show that every type has rudimentarily finite thorn weight?

- Lemma: Let $\{a_i\}_{i < \alpha}$ be thorn-independent. Then there are mutually indiscernible sequences I_i starting with a_i . That is, there are I_i such that
 - $-I_i$ starts with a_i
 - $-I_i$ is indiscernible over $I_{\neq i}$
- Work with *strong dividing* and remember that
 - If $\varphi(x, a)$ strongly divides (over \emptyset , say) then *every* infinite indiscernible sequence in tp(a) witnesses dividing of $\varphi(x, a)$.

Motivation II - generically stable weight

• We define *generically stable weight* of a type p as follows:

Let p(x) be any type over some model M. We say that $a, \langle b_i \rangle_{i=1}^{\alpha}$ witnesses (*pre-weight of* p is at least α) if $a \models p(x), \langle b_i \rangle_{i=1}^{\alpha}$ is an M-independent set, $\operatorname{tp}(b_i/M)$ is generically stable, and $a \not \perp_M b_i$ for all i.

- One defines pre-weight, weight, rudimentarily finite (generically stable) weight as usual.
- This is a natural attempt to "isolate" and understand the "stable" part of a type.

Rudimentarily finite generically stable weight

• Lemma. Let $\langle b_i \rangle_{i=1}^{\alpha}$ be an *M*-independent set of generically stable elements, and I_i is an *M*-indiscernible sequence starting with b_i . Then there are I'_i starting with b_i such that

 $-I'_i \equiv_M I_i$

 $-I'_i$ is $MI'_{\neq i}$ -indiscernible

• *Corollary.* Every type in a strongly dependent theory has rudimentarily finite generically stable weight.

From rudimentarily finite to finite?

- *Question.* Is it true that any type in a strongly dependent theory has *finite* generically stable weight?
- *Theorem.* Every generically stable type in a strongly dependent theory has rudimentarily finite generically stable weight (which equals to its dividing weight).
- The proof requires some new techniques, because it is not true that a forking increasing chain of gen. stab. types needs to be bounded.

Question

- What can be shown in general (that is, without assuming that b_i are generically stable)?
- For example, what can be said about "strict independence"?
- What if we only require that given I, J starting with a, b there are J', I' of the same type (and starting with the same elements) such that e.g. I is indiscernible over J, and J is indiscernible over a?
- What if we only require I indisc. over b and J over a?
- Note that all of the above are equivalent to $a \perp b$ in a stable theory.

Some unsatisfactory answers

- Lemma1 (Onshuus, U.) If $\{a_{\alpha}: \alpha < \lambda\}$ is a nonforking sequence, then there are mutually indiscernible J_{α} starting with a_{α} (but one can not control their type!).
- Lemma2. If $\{a_{\alpha} : \alpha < \lambda\}$ is a nonforking set, then whenever there are indiscernible sequences J_{α} starting with a_{α} there are indiscernible sequences J'_{α} starting with the same a_{α} such that J'_{α} is indiscernible over $a_{\neq\alpha}$ and $J'_{\alpha} \equiv J_{\alpha}$.
- In fact, if we work over a model, this is an equivalence (because forking implies dividing).
- All these (and other similar results) use boundedness of nonforking.

5 Strict nonforking

• Strict nonforking.

Strict nondividing

- Let $A \subseteq B$. We say that a type $p \in S(B)$ is a strictly nondividing extension of $p \upharpoonright A$ if for every $a \models p$
 - $-\operatorname{tp}(a/B)$ does not divide over A
 - $-\operatorname{tp}(B/Aa)$ does not divide over A.
- We will say that a type $p \in S(B)$ co-divides over a set A if there is $a \models p$ such that tp(B/Aa) divides over A. In other words, p co-divides over A if there exist $a \models p$ and a formula $\varphi(x, b) \in p$, such that $\varphi(a, y)$ divides over A.
- So $p \in S(B)$ is a strictly non-dividing extension over A if and only if it does not divide and does not co-divide over A.

Strict nonforking

- Let $A \subseteq B$. We say that a type $p \in S(B)$ is a *strictly nonforking* (or strictly free) extension of $p \upharpoonright A$ if there exists a global type q extending p which is a strictly nondividing extension of $p \upharpoonright A$.
- We also say that p is strictly nonforking over A. If $a \models p$, we write $a \downarrow_A^{st} B$.

Strictly nonforking extensions

Let N be saturated enough over A. Then

• A type $p \in \mathcal{S}(N)$ is strictly nonforking over A if and only if for every $a \models p$

- $\operatorname{tp}(N/Aa)$ does not divide over A.
- If $p \in S(N)$ is a heir of $p \upharpoonright A$ and does not fork over A, it is strictly nonforking over A. In particular this is the case if p is both a heir and a co-heir of $p \upharpoonright A$.

Strict Morley sequences

- Let O a linear order, A a set. We call a sequence $I = \langle a_i : i \in O \rangle$ a strict Morley sequence over B based on A if it is an indiscernible sequence over B and $tp(a_i/Ba_{\langle i \rangle})$ is strictly free over A for all $i \in O$.
- In the previous definition, we omit "based on A" if A = B.
- Let $p \in S(B)$ be a type. We call a sequence I a strict Morley sequence in p if it is a strict Morley sequence over B of realizations of p.

 $⁻ a \bigsqcup_A N$

Strict Morley sequences and dividing

"Kim's Lemma" for dependent theories.

• Assume A is an extension base.

Let $\varphi(x, a)$ be a formula which divides over a set A. Then every strict Morley sequence I in tp(a/A) witnesses dividing; that is, the set $\varphi(x, I) = \{\varphi(x, a') : a' \in I\}$ is inconsistent.

• Existence of strict Morley sequences (e.g. over models) follows from the work of Kaplan and Chernikov. In fact, using their results one can show that every type over a model has a global nonforking heir.

Properties of strong nonforking

(with Itay Kaplan)

Let M be a model.

- Strong nonforking over M is symmetric.
- The following are equivalent for $p \in S(M)$
 - Strong nonforking satisfies transitivity on the set of realizations of p.
 - Strong nonforking coincides with nonforking for realizations of p.
 - -p is generically stable.

Proof of symmetry

Lemma. Assume $b
ightharpoondown a the for any c, there is some <math>c_0 \equiv_{Mb} c$ such that $a
ightharpoondown b c_0
ightharpoondown a.$ Proof. Let $p(x) = \operatorname{tp}(c/Mb)$. We want the following set to be consistent with p(x):

 $\{\neg\varphi(x,b,a)\colon\varphi(x,b,a)\text{ forks over }M\}\cup \\ \cup\{\neg\varphi(a,b,x)\colon\varphi(y,b,c)\text{ forks over }M\}$

Suppose not. By forking = dividing over models, we have that

$$p(x) \vdash \varphi_1(x, b, a) \bigwedge \varphi_2(a, b, x)$$

where $\varphi_1(x, y, a)$ divides over M, and $\varphi_2(y, b, c)$ divides over M.

Proof of Symmetry II

Let I be an indiscernible sequence witnessing $\varphi_1(x, y, a)$ divides, wlog $b \bigcup_M^{st} I$. So I is indiscernible over Mb. Hence for some $m < \omega$,

$$p(x) \vdash \bigvee_{i < m} \varphi_2(a_i, b, x)$$

Recall that also $I \, \bigcup_M b$, so $\bar{a} \, \bigcup_M b$. Now let $c_0 \equiv_{Mb} c$ such that $\bar{a} \, \bigcup_M bc_0$, so for some $i, \varphi_2(a_i, b, c_0)$, which is a contradiction $(\varphi_2(y, b, c))$ divides, hence forks).

Characterization of strict independence

Theorem (Kaplan, U.) The following are equivalent for a model M and elements a, b

- 1. $a
 ightharpoonup^{st}_M b$
- 2. $b
 ightharpoonup^{st}_M a$
- 3. a and b are strictly independent over M, that is, for every I, J starting with a, b respectively, there are I', J' starting with a, b of the same type (over M) as I, J, such that I', J' are mutually indiscernible over M.
- 4. For every I, J starting with a, b respectively, there are I', J' starting with a, b of the same type (over M) as I, J, such that I' is indiscernible over J' and J' is indiscernible over a.
- 5. There are $a \in N_a, b \in N_b$ containing M, saturated in $|M|^+$ such that $N_a \downarrow_M N_b$ and $N_b \downarrow_M N_a$

Characterization of strict nondividing

Recall: The following are equivalent for a model M and elements a, b

- 1. tp(a/Mb) is strictly nondividing over M
- 2. tp(b/Ma) is strictly nondividing over M
- 3. $a \bigsqcup_M b$ and $b \bigsqcup_M a$
- 4. For every I, J starting with a, b respectively, there are I', J' starting with a, b of the same type (over M) as I, J, such that I' is indiscernible over b and J' is indiscernible over a.

Question: is this equivalent to strict independence?

Weak "Local character" for dependent theories

- Let M be a model. Let $\langle a_{\alpha} : \alpha < \lambda \rangle$ be a strongly nonforking sequence (that is, $a_{\alpha} \bigcup_{M} a_{<\alpha}$), b an element. Then for almost all (except |T|-many) α we have $b \bigcup_{M}^{st} a_{\alpha}$, and even $b \bigcup_{M}^{st} a_{\alpha}$.
- Finally, we can define weight based on strict nonforking. Then we obtain the following quite desirable properties:
- In every dependent theory, a type over a model has bounded pre-weight. A dependent theory is strongly dependent if and only if every type over a model has almost finite pre-weight.

Weight - more precisely

- Let p(x) be any type over a model M. We say that $a, \langle b_i \rangle_{i=1}^{\alpha}$ witnesses strict pre-weight of p is at least α if $a \models p(x), b_i \bigcup_M^{st} b_{\leq i}$ for all $i < \alpha$, and $a \not \perp_M b_i$ for all i.
- The strict pre-weight of p is the supremum over all α such that such a witness exists.
- Note: in the definition above, one can replace $a \not\perp_M b_i$ with $a \not\perp_M^{st} b_i$. Gives rise to a different notion, but the properties below stay true.
- In every dependent theory, a type over a model has bounded strict pre-weight. A dependent theory is strongly dependent if and only if every type over a model has almost finite strict pre-weight.

Different notions of orthogonality

- (Shelah) We call two types $p, q \in S(A)$ weakly orthogonal or if $p(x) \cup q(y)$ is a complete type over A. We write $p \perp_w q$. If a, b realize p, q respectively, then we write $a/A \perp_w b/A$ or $a \perp_w b$ when A is fixed and clear from the context.
- We call $\operatorname{tp}(a/A)$, $\operatorname{tp}(b/A)$ weakly orthogonal¹ if whenever I, J are A-indiscernible sequences starting with a, b respectively, there are I', J' mutually A-indiscernible such that $I \equiv_{Aa} I'$ and $J \equiv_{Ab} J'$. We write $a/A \perp_w^1 b/A$
- Let A be an extension base(e.g. a model), $p, q \in S(A)$. If $p \perp_w q$, then $p \perp_w^1 q$.

Different notions of orthogonality

• Let $(\mathbb{Q}, <, P)$ be the theory of $(\mathbb{Q}, <)$ with a dense co-dense predicate P. Let $p, q \in S(\mathbb{Q})$ be the types over the prime model \mathbb{Q} such that if a, b realize p, q respectively, then $a, b > \mathbb{Q}, P(a), \neg P(b)$.

Clearly $p \not\perp_w q$ since p, q do not determine whether a < b or b < a. On the other hand, it is easy to see that $p \perp_w^1 q$. It is also the case that $p \perp_w^{st} q$.

• So we have two different reasonable notions of orthogonality. Of course, in stable theories they coincide.