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NIP Theories

Fact
A theory T is NIP iff for all I = (ai )i<ω indiscernible and all b, the
types tp(ai/b) converge to a type Lim(I/b).

Fact
(NIP) A global type p does not fork over A iff it is
Lstp(A)-invariant.

In particular : p does not fork over M ⇐⇒ p is M-invariant.
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Invariant Types

Let px , qy be global M-invariant types.

Let a |= p, b |= q|M̄a.

Define px o qy = tp(a, b/M̄).
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Invariant Types

Let p be M-invariant.

p(1) = p

p(n+1) = p(n) o p

p(ω) is the Morley sequence of p.

Proposition

The M-invariant type p is uniquely determined by p(ω)IM .

Proof.
Let b ∈ M̄, then pIMb = Ev(p(ω)IM/Mb).
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Invariant Types

Proposition

Let p ∈ S(M̄) be A-invariant, then p is Borel-definable over A.

Proof.

Let b ∈ M̄, φ(x ; y) ∈ L.

(An) : There is (a1, . . . , an) |= p(n) such that :

|= ¬(φ(ai ; b)↔ φ(ai+1; b)), for all i < n,

|= φ(an; b).

(Bn) : Same, with |= ¬φ(an; b).

Then p |= φ(x ; b) iff, for some n, (An) holds, but (Bn+1) does
not.
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Invariant Types

Proposition

Assume :

I For every A, no type over A forks over A,

I For every A, Lascar strong types on A coincide with strong
types.

Then, every type over A = acl(A) extends to an A-invariant type.

ex. o-minimal, C-minimal (ACVF).
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Generically Stable Types

Proposition

Let px ∈ S(M̄) be A-invariant. TFAE :

I p is definable and finitely satisfiable in any M ⊇ A,

I p(ω) is totally indiscernible,

I For any invariant qy ∈ S(M̄), px o qy = qy o px ,

I For any A ⊆ B, p|B has a unique global non-forking extension.

We say that p is generically stable.
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Keisler measures

Definition
A Keisler measure (of arity n) over A is a finitely additive function
µ : Ln(A)→ [0, 1].

µ(φ(x) ∧ ψ(x)) + µ(φ(x) ∨ ψ(x)) = µ(φ(x)) + µ(ψ(x)),

µ(>) = 1, µ(⊥) = 0

Let Mn(A) denote the space of Keisler measures on A in n
variables. It is a closed subspace of [0, 1]Ln(A), so it is compact.

Sn(A) ⊂Mn(A) is a closed subspace.
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Keisler measures

Keisler measure on A ←→ Regular Borel probability
measure on Sn(A).
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Keisler measures

For X , Y definable sets, write X ∼ Y if µ(X4Y ) = 0

Definition
Let µ ∈Mn(A), a type p is random for µ if

p ` φ(x) → µ(φ(x)) > 0.

Let S(µ) be the set of random types for µ.
It is a closed subset of Sn(A).

Proposition

I Def(A)/ ∼ is bounded.

I S(µ) is bounded.

P. Simon Measures in NIP Theories



Keisler measures

For X , Y definable sets, write X ∼ Y if µ(X4Y ) = 0

Definition
Let µ ∈Mn(A), a type p is random for µ if

p ` φ(x) → µ(φ(x)) > 0.

Let S(µ) be the set of random types for µ.
It is a closed subset of Sn(A).

Proposition

I Def(A)/ ∼ is bounded.

I S(µ) is bounded.

P. Simon Measures in NIP Theories



Keisler measures

For X , Y definable sets, write X ∼ Y if µ(X4Y ) = 0

Definition
Let µ ∈Mn(A), a type p is random for µ if

p ` φ(x) → µ(φ(x)) > 0.

Let S(µ) be the set of random types for µ.
It is a closed subset of Sn(A).

Proposition

I Def(A)/ ∼ is bounded.

I S(µ) is bounded.

P. Simon Measures in NIP Theories



Smooth Measures

Definition
A measure µ is smooth over M (or realized in M), if µ|M has a
unique extension to any M ≺ N.

Theorem (Keisler)

(NIP) Let µ ∈M(M) be a measure. Then there exists an
extension µ ⊂ ν to a global measure and M ≺ N such that ν is
smooth over N.
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Smooth Measures

Definition
A global measure is fim (over M) if :
for all φ(x ; y), and all ε > 0, there is a1, . . . , an ∈ M s.t.

For all b ∈ M̄, |µ(φ(x ; b))− Av(ai )(φ(x ; b))| ≤ ε.

Where Av(ai ) is the average measure of (a1, . . . , an) :
Av(ai ) = 1

n (tp(a1/M̄) + . . .+ tp(an/M̄)).

Example

A type is fim iff it is generically stable.
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Smooth Measures

Definition
A global measure µ is definable over M if it is M-invariant, and if
for all φ(x ; y), and all α ∈ [0, 1], the set
Fα = {b ∈ M̄ : µ(φ(x ; b)) ≤ α} is a closed set of S(M).

We say the measure is Borel-definable If the Fα are Borel subsets
of S(M).

Definition
A global measure µ is finitely satisfiable over M if all types in S(µ)
are finitely satisfiable in M.

Proposition

An fim measure is definable and finitely satisfiable.
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Smooth Measures

Proposition

If µ is smooth over M, then µ is fim.

Corollary

A smooth measure is definable and finitely satisfiable.
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Smooth Measures

Definition
Let µ(x ,y) be a measure in two variables.
The two variables x and y are separated if, for all φ(x) and ψ(y) :

µ(φ(x) ∧ ψ(y)) = µ(φ(x)).µ(ψ(y)).

Proposition

Let µx ∈M(M) be smooth over M, and let νy ∈M(M) be any
measure.
Then there is a unique λ(x ,y) ∈M(M) extending µx and νy and
such that the variables x and y are separated.
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Borel definability

Proposition

Let µ ∈M(M), and take φ(x ; y) and ε > 0. There is
p1, . . . , pn ∈ S(M) such that :

For all b ∈ M, |µ(φ(x ; b))− Av(pi )(φ(x ; b))| ≤ ε.

Proof.

Let µ ⊂ ν a smooth extension of µ to some M ≺ N.
Take x1, . . . , xn ∈ N given by the previous theorem for ν.
Let pi = tp(xi/M).

Corollary

Any M-invariant measure is Borel-definable over M.
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Product of Measures

Let µx , νy be global M-invariant measures. Then we can define
(µo ν)(x ,y) by :

µo ν(φ(x , y)) =

∫
p∈Sx (M)

ν(φ(p, y))dµ.

Where ν(φ(p, y)) = ν(φ(a, y)), for any a ∈ M̄, a |= p.

If µ is M-invariant, define :

µ(1) = µ

µ(n+1) = µ(n) o µ
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Indiscernible sequences

Let µ(x1,x2,... ) be a measure in ω variables.

Definition
µ is an indiscernible sequence (over A) if, for all i1 < i2 < · · · < in,
j1 < j2 < · · · < jn, all formula φ ∈ L(A), we have :

µ(φ(xi1 , . . . , xin)) = µ(φ(xj1 , . . . , xjn)).
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Indiscernible sequences

Let µ(x1,x2,...,y) be a measure in ω + 1 variables over a set A.

Proposition

Assume that µ, restricted to the variables (x1, x2, . . . ), is an
indiscernible sequence. Assume that (xi )i<ω and y are separated.
Then, for all formula φ(x ; y), the sequence µ(φ(xi , y)) converges.
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Indiscernible sequences

If µ is a global M-invariant measure, then µ(ω) is an indiscernible
sequence.

The analogues of results for types hold :

I An M-invariant measure µ is uniquely determined by µ(ω)|M ,

I For any b ∈ M̄, µ|Mb = Ev(µ(ω)/Mb).

P. Simon Measures in NIP Theories



Indiscernible sequences

If µ is a global M-invariant measure, then µ(ω) is an indiscernible
sequence.

The analogues of results for types hold :

I An M-invariant measure µ is uniquely determined by µ(ω)|M ,

I For any b ∈ M̄, µ|Mb = Ev(µ(ω)/Mb).

P. Simon Measures in NIP Theories



Indiscernible sequences

If µ is a global M-invariant measure, then µ(ω) is an indiscernible
sequence.

The analogues of results for types hold :

I An M-invariant measure µ is uniquely determined by µ(ω)|M ,

I For any b ∈ M̄, µ|Mb = Ev(µ(ω)/Mb).

P. Simon Measures in NIP Theories



Generically stable measures

Proposition

Let µx be an M-invariant global measure. TFAE :

I µ is definable and finitely satisfiable,

I µ(ω) is totally indiscernible,

I µx o νy = νy o µx for all invariant measures νy ,

I µ is fim,

I For all M ⊂ N, µ|N has a unique global non-forking extension.
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Example

Proposition

Let p ∈ S(A) be a type, non forking over A.
Then, there exists a global A-invariant Keisler measure µ extending
p.

Definition
A type p ∈ S(A) is fsg if it has a global extension p′ ∈ S(M̄) s.t.
for any |A|+-saturated model N containing A, and every formula
φ(x ; b) such that p′ |= φ(x ; b), there is a ∈ p(N) s.t. |= φ(a; b).

Proposition

For p ∈ S(A), non-forking over A, the following are equivalent :

I p is fsg

I The invariant measure µ is generically stable.
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G-invariant measures

Let G be a definable group.

Definition
The group G is definably amenable if G admits a global
G -invariant Keisler measure.

Examples :

I G abelian

I G stable and connected
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G-invariant measures

Proposition

Assume µ ∈M(M) is G-invariant. Then, µ extends to a global
generically stable G (M)-invariant measure µ′.

In particular, Stab(µ′) = {g ∈ G : g .µ′ = µ′} is a type definable
subgroup of G .

Proposition

Assume µ is a generically stable G-invariant measure, then µ is the
unique G-invariant measure on G.

Application

Let G be an abelian group, assume G has no non trivial
type-definable subgroup. Then G has an invariant generically
stable type.
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unique G-invariant measure on G.

Application

Let G be an abelian group, assume G has no non trivial
type-definable subgroup. Then G has an invariant generically
stable type.
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G-invariant measures

Definition
A group G it f.s.g. if there is a global type p and a small model
M0 such that every translate of p is finitely satisfiable in M0.

Proposition

An f.s.g. group admits a G-invariant generically stable Keisler
measure.
In particular, it is the unique G-invariant measure on G.
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The o-minimal case

Let T be an o-minimal theory.

Fact
In dimension 1, any atomless measure is smooth.

Proposition

Any generically stable measure is smooth.
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The o-minimal case

Theorem
Let G be a definable, definably compact group, then G is f.s.g.
In particular, it has a unique G-invariant Keisler measure, which is
moreover smooth.

P. Simon Measures in NIP Theories



σ-additive measures

Proposition

Let T be an o-minimal expansion of a real closed field, R a model
of T , expansion of the standard model.
Take any Borel measure on Rn. Then the Keisler measure defined
by it is smooth.
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Thank you.

P. Simon Measures in NIP Theories


