NTP1 theories

Byunghan Kim

BIRS workshop

Dept. Math. Yonsei University
Feb. 9-13, 2009

Outline

(1) The tree properties
(2) Type counting criteria
(3) Discussion/Suggestion

NTP1 theories

Byunghan Kim

BIRS workshop

Dept. Math. Yonsei University
Feb. 9-13, 2009

Definition

- Recall $\psi(x, y)$ has the k-tree property $(k-T P)$ if there is some set of tuples $\left\{c_{\beta} \mid \beta \in \omega^{<\omega}\right\}$ such that
- for each $\beta \in \omega^{\omega},\left\{\psi\left(x, c_{\beta\lceil n}\right) \mid n \in \omega\right\}$ is consistent, and
- for each $\beta \in \omega^{<\omega},\left\{\psi\left(x, c_{\beta n}\right) \mid n \in \omega\right\}$ is k-inconsistent.
- $\psi(x, y)$ has TP if it has k-TP for some k.
- T has TP if some formula has TP.

Fact

- T is simple iff T does not have TP.
- If $\psi(x, y)$ has $k-T P$ then $\psi\left(x, y_{1}\right) \wedge \ldots \wedge \psi\left(x, y_{n}\right)$ for some n has 2-TP.

Definition

- $\psi(x, y)$ has the k-tree property 1 (k-TP1) if there is some set of tuples $\left\{c_{\beta} \mid \beta \in \omega^{<\omega}\right\}$ such that
- for each $\beta \in \omega^{\omega},\left\{\psi\left(x, c_{\beta\lceil n}\right) \mid n \in \omega\right\}$ is consistent,
- for any pairwise incomparable $\left\{\beta_{1}, \ldots, \beta_{k}\right\} \subseteq \omega^{<\omega}$, $\left\{\psi\left(x, c_{\beta_{i}}\right) \mid 1 \leq i \leq k\right\}$ is inconsistent.
- T has TP1 if some formula has 2-TP1.
- T has k-TP1 if some formulas has $k-T P 1$.

Question

Are TP1 and k-TP1 equivalent?
In paticular, if φ has k-TP1, then does its some conjunction have 2-TP1?

Definition

- $\psi(x, y)$ has the k-tree property 1 (k-TP1) if there is some set of tuples $\left\{c_{\beta} \mid \beta \in \omega^{<\omega}\right\}$ such that
- for each $\beta \in \omega^{\omega},\left\{\psi\left(x, c_{\beta\lceil n}\right) \mid n \in \omega\right\}$ is consistent,
- for any pairwise incomparable $\left\{\beta_{1}, \ldots, \beta_{k}\right\} \subseteq \omega^{<\omega}$, $\left\{\psi\left(x, c_{\beta_{i}}\right) \mid 1 \leq i \leq k\right\}$ is inconsistent.
- T has TP1 if some formula has 2-TP1.
- T has k-TP1 if some formulas has $k-T P 1$.

Question

Are TP1 and k-TP1 equivalent?
In paticular, if φ has k-TP1, then does its some conjunction have 2-TP1?

Both yes.

Definition

T has the tree property 2 (TP2) if there is some set of tuples $\left\{c_{j}^{i} \mid i, j<\omega\right\}$ such that for some ψ,

- for any $f: \omega \rightarrow \omega,\left\{\psi\left(x, c_{f(i)}^{i}\right) \mid i \in \omega\right\}$ is consistent, and
- for each $i \in \omega,\left\{\psi\left(x, c_{j}^{i}\right) \mid j \in \omega\right\}$ is 2-inconsistent.

Fact

T has TP iff T has either TP1 or TP2.

Definition

$\psi(x, y)$ has the binary tree property $\left(B T P=S O P_{2}\right)$ if there is some set of tuples $\left\{c_{\beta} \mid \beta \in 2^{<\omega}\right\}$ such that

- for each $\beta \in 2^{\omega},\left\{\psi\left(x, c_{\beta\lceil n}\right) \mid n \in \omega\right\}$ is consistent,
- for any incomparable $\alpha, \beta \in \omega^{<\omega}, \psi\left(x, c_{\alpha}\right) \wedge \psi\left(x, c_{\beta}\right)$ is inconsistent.

Similarly we define k-BTP.

Fact

Strict Order Property \Rightarrow.. SOP $4 \Rightarrow S O P_{3} \Rightarrow S O P_{2}=B T P \Rightarrow$ $S O P_{1} \Rightarrow T P=$ nonsimple.

Observation

T has TP1 iff T has BTP.

examples

The prototypical example of NTP1
The prototypical example with NTP1: The model companion of the theory with sorts P, E and a ternary $x \sim_{z} y$ on $P^{2} \times E$ saying that for each $e \in E, x \sim_{e} y$ forms an equivalence relation on P. It is complete, ω-categorical having QE .

examples

The prototypical example of NTP1
The prototypical example with NTP1: The model companion of the theory with sorts P, E and a ternary $x \sim_{z} y$ on $P^{2} \times E$ saying that for each $e \in E, x \sim_{e} y$ forms an equivalence relation on P. It is complete, ω-categorical having QE .

Stable
Simple
NTP1

examples

The prototypical example of NTP1

The prototypical example with NTP1: The model companion of the theory with sorts P, E and a ternary $x \sim_{z} y$ on $P^{2} \times E$ saying that for each $e \in E, x \sim_{e} y$ forms an equivalence relation on P. It is complete, ω-categorical having QE .

Stable

Infinite set

Simple
The random graph

NTP1

The random equi. rel.s

examples

The prototypical example of NTP1
The prototypical example with NTP1: The model companion of the theory with sorts P, E and a ternary $x \sim_{z} y$ on $P^{2} \times E$ saying that for each $e \in E, x \sim_{e} y$ forms an equivalence relation on P. It is complete, ω-categorical having QE.

Stable

Infinite set
ACF

Simple
The random graph
Bounded PAC fields

NTP1

The random equi. rel.s ω-free PAC fields

examples

The prototypical example of NTP1
The prototypical example with NTP1: The model companion of the theory with sorts P, E and a ternary $x \sim_{z} y$ on $P^{2} \times E$ saying that for each $e \in E, x \sim_{e} y$ forms an equivalence relation on P. It is complete, ω-categorical having QE .

Stable

Infinite set

$V=$ vector sapce

Simple
The random graph
Bounded PAC fields $(V,\langle\rangle$,$) / a finite F$

NTP1

The random equi. rel.s ω-free PAC fields
$(V,\langle\rangle$,$) / an infinite F$

Theorem

(Shelah) TFAE.

(1) T has $T P$.
(2) Some formula has 2-TP.
(3) There are a cardinal κ and a family \mathcal{F} of types over A such that

- $|\mathcal{F}|>|A|^{|T|}+2^{|T|+\kappa,}$
- $|p| \leq \kappa$ for each $p \in \mathcal{F}$,
- whenever $\mathcal{G} \subseteq F$ and $|\mathcal{G}|>\kappa$, then $\bigcup \mathcal{G}$ is inconsistent.

Proof. $(1) \Rightarrow(3) \Rightarrow(2) \Rightarrow(1)$.

Theorem

TFAE.

(1) T has k-TP1 for some k.
(2) Some formula has BTP.
(3) Some formula has 2-TP1.
(9) There are a regular cardinal κ and a family \mathcal{F} of types over A such that

- $|p|=\kappa$ for each $p \in \mathcal{F}$,
- $|\mathcal{F}|=\lambda^{+}$where $\lambda=|A|^{|T|}+|T|^{\kappa}$, and
- given any subfamily $\mathcal{G}=\left\{q_{i} \mid i<\lambda^{+}\right\}$of \mathcal{F}, there are disjoint subsets τ_{1}, τ_{2} of λ^{+}with $\left|\tau_{j}\right|=\lambda^{+}(j=0,1)$, and $q_{i}^{\prime} \subseteq q_{i}$ with $\left|q_{i}-q_{i}^{\prime}\right|<\kappa\left(i<\lambda^{+}\right)$, such that ${ }^{\vee} \mathcal{G}_{0} \cap^{\vee} \mathcal{G}_{1}=\emptyset$, where $\mathcal{G}_{j}=\left\{q_{i}^{\prime} \mid i \in \tau_{j}\right\}$, and ${ }^{\vee} \mathcal{G}_{j}=\bigcup\left\{\varphi(\mathcal{M}) \mid \varphi \in \bigcup \mathcal{G}_{j}\right\}$.

Proof. $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(1)$ (Džamonja, Shelah, Usvyatsov) ${ }^{1}$. $(3) \Rightarrow(4) \Rightarrow(2)$.

[^0]Hence T has TP1 iff so does $T^{\text {eq }}$. (Expansive way of proving. Cheap way: Consider preimages in the home-sort.)

Hence T has TP1 iff so does $T^{\text {eq }}$. (Expansive way of proving.
Cheap way: Consider preimages in the home-sort.)

Key idea of Džamonja, Shelah, Usvyatsov
If $\mathcal{C}=\left\{c_{\beta} \mid \beta \in 2^{<\omega}\right\}$ witnesses k-BTP of φ, then one can additionally assume that \mathcal{C} is tree-indiscernible. Namely,

$$
c_{\alpha_{1}} \ldots c_{\alpha_{n}} \equiv c_{\beta_{1}} \ldots c_{\beta_{n}}
$$

whenever both $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\},\left\{\beta_{1}, \ldots, \beta_{n}\right\}\left(\subseteq 2^{\omega}\right)$ are

- closed under \cap, and \triangleleft-order isomorphic.

Then it follows that some conjunction of φ has 2-BTP.

The rest are all tentative with possible naivety.

Definition

- $\psi(x, a)$ strongly divides over A if for any $A_{0}(\subseteq A)$, and any Morley I of $\operatorname{tp}(a / A),\left\{\psi\left(x, a^{\prime}\right) \mid a^{\prime} \in I\right\}$ is inconsistent.
- Write $\downarrow^{s}=$ non-strong dividing.
- T is subtle if \downarrow^{s} satisfies local character.

The rest are all tentative with possible naivety.

Definition

- $\psi(x, a)$ strongly divides over A if for any $A_{0}(\subseteq A)$, and any Morley I of $\operatorname{tp}(a / A),\left\{\psi\left(x, a^{\prime}\right) \mid a^{\prime} \in I\right\}$ is inconsistent.
- Write $\downarrow^{s}=$ non-strong dividing.
- T is subtle if \downarrow^{s} satisfies local character.

Stable \subseteq Simple (there $\downarrow=\downarrow^{s}$) \subseteq Subtle

The rest are all tentative with possible naivety.

Definition

- $\psi(x, a)$ strongly divides over A if for any $A_{0}(\subseteq A)$, and any Morley I of $\operatorname{tp}(a / A),\left\{\psi\left(x, a^{\prime}\right) \mid a^{\prime} \in I\right\}$ is inconsistent.
- Write $\downarrow^{s}=$ non-strong dividing.
- T is subtle if \downarrow^{s} satisfies local character.

Stable \subseteq Simple (there $\downarrow=\downarrow^{s}$) \subseteq Subtle

Question

- (We may additionally assume forking=dividing) NTP1 \Rightarrow Subtle (even are both equivalent)?
- Does symmetry over \emptyset hold?
- Note that different from simple case, $A \downarrow_{B}^{s} C$ is not equivalent to $A \downarrow^{s} C$ in $\mathcal{L}(B)$!! Indeed in the examples of NTP1, possibly independence notions are not invariant under naming elements, so we may end up need quarternary relation rather than ternary \downarrow ?

[^0]: ${ }^{1}$ M. Džamonja, S. Shelah, 'On \triangleleft^{*}-maximality' APAL 2004; S. Shelah, A. Usvyatsov, 'More on SOP_{1} and SOP_{2} ', APAL

