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Introduction

We will give some peculiar examples of dependent theories, in which things
that once thought to be impossible happen.

o First we discuss existence of indiscernibles (as in [Sheb]) and prove
(sorry) that not much can be said of general dependent theories.
@ Then we say a few words on directionality of a theory.

@ In the end, we show that a Generic pair may not be dependent even if
the theory is stable.
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Existence of indiscernibles

Definition

A — (1)1, means: for every sequence (an [a € A) €* (€"), there is a
subset u C X of size u such that (a, |« € u) is an indiscernible sequence.

Some history: Morley, in [Mor65], proved that for w-stable T, and for A
regular big enough, A — ()\)T71. In fact, for stable theories, and for

A= MNTL Xt — (), forall n < w (or even n < |T|) (for example by
local character of non—fbrking and Fodor's lemma - see [She90, Il1]). In the
dependent context we have the following theorem (from [Sheb]):

If T is strongly dependent then 3,7+ (A) — (M), foralln <w.
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Existence of indiscernibles

However,

There exists a dependent T, such that A\ - (u)yy for any A > i such that
in [, \] there are no strongly inaccessible cardinals.

For each | C Z, a finite subset, let
Ly ={Pn,<n,Foln€1}YU{H} H2|n,n+ 1€ 1}. Let T| be the following
theory:

e P, are disjoint unary predicates.

@ <, is a partial order on P,, and (P,, <,) is a tree (i.e. {b|b<,a}is
linearly ordered).

o H} H2 are two unary functions from P, to P, 1.

e F, is a binary function taking a,b € P, to a A b= max (c|c < a, b).
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Existence of indiscernibles

@ T/ is universal, it has JEP and AP.

@ If A# 0 is a finite subset of a model of T/, then |(A)| < f (n) for
some polynomial f ((A) is the generated substructure).

Hence T/ has a model completion T; which eliminate quantifiers (and is w
categorical).
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Existence of indiscernibles

T, is dependent.

Proof.

By e.g. [She90], it is enough to show that given a finite set A, there is a
polynomial f such that |S; (A)| < £ (|A]). It is enough to check that
S"={p e Si(A)|Pn(x) € p} is such.

Consider Tr = the model completion of the theory of trees. For all finite
BC M Tr,and n < w, |S,(B)| < f,(|B|) for some polynomial £,
(because it is dependent).

By QE, a type is determined by atomic formulas. Hence

ST <A(ANPL) - HL(JANPpya]) ... - fo1r—1 (A N P|/|_1). L]
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Existence of indiscernibles

Definition

Let L = Uz ij<c0 L1» and let T = Uz <0 Ti-

o Note that for J C | C Z finite, T;|;, = T}, so this definition makes
sense.
e T is strongly dependent. However T is not.

The main theorem is:

For all n € Z, and R < p < X such that in [u, \] there is no strongly
inaccessible, there is a set U C P, that witnesses \ - (N)T,r
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Existence of Indiscernibles

The proof is by induction on y and then on A.

The theorem is true when |1 = X\ = Xg

Proof

Find a sequence of different elements (& |i,j < w ) such that
i <w C Piynand HE (7)< a7 for i > jand ahT

otherwise. So if (af |i € U) is indiscernible, then let iy < i, be the first
elements in U. For large enough J,

Hi ,o0...oH, (af) = H}\ o...0Hy(af), but this is not true for i € U
larger than J- O

V.
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Existence of indiscernibles

The theorem is true when p = X is singular.

Proof.

A= U<, Ai where k = cf (A\) < A\; < A. Find some sequence of different
elements (b; |i < k) C Pn11. Now find some sequence (aq | < \) C P,
of different elements such that H} (a,) = b; where i is the unique ordinal
such that (J;; Aj < a < Aj. If there was some U C A, [U| = A, such that
(an | € U) is indiscernible, then there is some o < 8 € U such that

H} (an) = HL (ag), H} is constant on U. But that is a contradiction to the
fact that |U| = . O

v
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Existence of indiscernibles

If X = ()11 (and there is a witness for this in Pp11) then 22 - ()74

)

(and there is a witness in Pp).

Proof.

There is a witness (b; |[i < A\) C P,41 for our assumption. Let

{an, ‘a < 2’\> enumerate 25, Find (an |17 € 23’\> C Py such that:

ay <p an iff v, Fo(ay,a,) = agn, Hi (ay) = big()-

Suppose U C 2* of size y, such that (a,, |o € U) is indiscernible. For
convenience assume that « € U = o+ 1 € U. Then Ig (n,) is constant.
Given a < B <y € U, na Ang =na A1y and 1o Ang =15 A1y
(otherwise, by indiscernibility, we'll have an increasing sequence of length
p)- Let 6 := lg (o A mg).

So 1y (6) # na () # ng (0) and 1g (§) # 1y (6) - contradiction. O
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Existence of indiscernibles

The theorem is true when j < \ is singular, and in [u, \] there is no
strongly inaccessible.

Proof.
A =< Ai where p <k < Aj < A. By the induction hypothesis, for every

suitable i < k, there is a sequence /; = <aa ‘Uj<i)‘f <a< )\,-> C Phia
that witnesses \; -+ (1)1 1, and a sequence (b; |/ < ) witnessing

Kk = (1)1 1- Now find (cq | < A) C Pj such that H! (c,) = aq and

H3 (ca) = bj for the unique i such that |J;_; \j < < A If U C A,

|U| = p, {ca | € U} is indiscernible, then H2 (U) is constant, so

HL (U) C I; - a contradiction. O

|. Kaplan and S. Shelah (HUJI) Examples in Dependent theories Banff, Feb. 2009 11 /23



Existence of indiscernibles

The theorem is true. \

Take the first A that this is not true for it. So A is regular, so, as A is not
strongly limit, there is some k < A such that A < 2", But by the induction
hypothesis, kK - (M)T’1 so by a claim above also 2% - (,u)T’l, hence also

A= (1) N
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Existence of indiscernibles

© The case of the inaccessible is currently under construction and will
most probably appear in the paper, proving that unless there are some
good set theoretical reasons for it, A = (u)1 for all u, A.

@ For strongly dependent theories, there is a similar result for w-tuples.

© Another example which is currently work in progress, will show the
same for o-minimal theories.

Q@ Not all is lost: wait for the end!
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Directionality

Definition

For a type p € S (A), let uf (p) ={g€ S(€)|gisfs. on Aand g D p}.
For a type p(x) € S (A), and A a set of formulas of the form ¢ (x,¥),
ufa (p) ={qg € Sa(€)|guUpisfs. on A}

Definition
© T is said to be of bounded directionality (or just, T is bounded) if for
p € S%(M), [uf (p)| < 2Tt
@ T is said to be of medium directionality (or just, T is medium) if for
p e S (M), |uf (p)] < |M|'T*1®l and T is not bounded.

© T is said to be of large directionality (or just, T is large) T is not
bounded nor medium.
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Directionality

T is bounded iff for all finite A, and p € S (M), ufa (p) is finite.

Claim

T is medium iff for every cardinality A\ > |T|,
A = sup (Jufa (p)||p € S (M), A finite, M| = X).

Claim

| A\

T is large iff for every cardinality A > |T|,
ded* (X\) = sup (|ufa (p)||p € S (M), A finite,|M| = X).
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Directionality

It has been known for a long time that not all dependent theories are
bounded (see e.g. [Del84]).

The theory T defined above has large directionality, and every T;.

Proof.

E.g. let / ={0,1}. Let M |= T, countable,with branch B in Py that is not
realized, and a dense branch C in P; with 2% cuts. p € S (M) says that
B < x, and that H} (x) = c for some ¢ € Py.

Note that this implies a complete type.

Let d |= p, and for all cut | C C, the type pU (I < H} (Fo (x,d)) < C\/)
is f.s. in M. O

v
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Directionality

In fact, even o-minimal theories are not immune, and not even RCF. This
next example was inspired by a conversation with Marcus Tressle.

Definition

Let K = RCF. A cut p is called dense if it is not definable and the
differences b — a with a, b € K and a < p < b, are arbitrary (w.r.t. K)
close to 0.

@ There are real closed fields with arbitrary size with dense cuts.

Q I/fg=tp(w/K) where K < w, and p is dense, then p and q are
weakly orthogonal, i.e. p U q implies a complete type.
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Directionality

Let K = RCF be countable with a dense type (for example, K could be
the real algebraic numbers, and the type is 7).

Let « realize some dense type over K. Let p(x,, xo) = tp(w, a/K). Now,
for every bounded first segment of K, | C K, let p; be

pr=pU{a+a/x, <xo<a+b/x,:acl b¢l}

then, this type is f.s. in K because of the weak orthogonality. For /,J 2
different first segments, p; and p, contradict each other.
So there is a finite A such that |K| < ufa (p).
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Generic pair

Here we give an example of a pair of structures M < My of a dependent
theory (even Ny stable) such that the pair (M, M) is independent. The
pair is also generic:

Definition

A pair as above is generic if it comes from the generic pair conjuncture.

In a generic pair, for all formula ¢ (x) with parameters from M, if ¢ has
infinitely many solutions in M, then it has a solution in M;\ M.
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Generic pair

Let L ={P1, P2, R, Q1, Q2} where R, P1, P> are unary predicates and
@1, Q> are binary relations. Let M be the following structure for L:
PV ={uCuwl|lu <R}, PM={uCwllul =1}, RMis the rest.
The universe is

M=PMU{(u,v,))|u,v Cw,|ul=1,]v|<Np,i cw,uCv=i<]|v|}

QY ={(u, (u,v. ) [Py (u)}, Q) ={(v.(u,v,))|P2(v)}.

Let T = Th(M). So T is X stable.

(why? Add the relations Ey ((u, v, i), (v',v',i")) & v = u and

E> ((u,v,i),(d,v',i") & v/ = v. With them, T eliminates quantifiers,
and the conclusion follows).
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Generic pair

Now let (M, M;) be a non-algebraic pair for T. In the language L U {P}
(P is a unary predicate), consider the formula

o(u,v) =P (u) AP (v) AN (VYz(Rz A Quuz A Quvz — z € P))

For all n < w, we can find up, ..., u,_1 in M such that for any subset

s C n, there is some v; such that: Py (u;) for all i < n, Py (vs) and most
importantly, |R (uj,vs, M)| < nif i € s and if not, R (uj, vs, M) is infinite
(they exist in the original model). Hence ¢ (uj, vs) < i € s, so we have the
independence property.
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Not all is lost

In [Shea] many things are proved, despite the above examples:

@ If T has bounded or medium directionality, then there exists
indiscernibles.

@ Smart counting of types: if M is saturated, then T is dependent iff the
number of types over M up to isomorphism of M is bounded by |M|.

@ A strong criteria for saturation is proved:
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Criteria for saturation

Assume o > p = (2IT1)+ + 3.
Then M is o-saturated iff

Q@ M is p-saturated

Q ifr € |p,0) and (aq : a < k) is an indiscernible sequence in M then
for some a € M the sequence (a, : a < k)" (a) is indiscernible

Q ifk €[, 0) is regular, (as : s € h + k) is an indiscernible sequence in
M where h = (k,<), b = (o, <) for some a < k + 1 then for some
a € N the sequence (as :s € ;)" (a)"(a; : t € h) is an indiscernible
sequence.
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