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Notation and Basic Definitions

(G , ·, . . .) – a group with some first order structure

G ∗ – saturated extension of (G , ·, . . .) (model monstrum,
κ-saturated, κ-strongly homogeneus)

A ⊂ G ∗ some small set of parameters (|A| < κ)

Definition

G ∗0
A =

⋂
{H < G ∗ : H is A-def. and [G ∗ : H] < ω}

G ∗00
A =

⋂
{H < G ∗ : H is A-type def. and [G ∗ : H] < κ}

G ∗∞A =
⋂
{H < G ∗ : H is Aut(G ∗/A)-inv. and [G ∗ : H] < κ}

We say, that G ∗∞ exists, if for every small A ⊂ G ∗,

G ∗∞A = G ∗∞∅ .

E.g. when G has NIP, G ∗∞, G ∗00 and G ∗0 exist.
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Motivation

G ∗0
A, G ∗00

A and G ∗∞A correspond to the strong types over A in
some structure related to G (a regular action of G ):

G ∗0
A to the Shelah strong type (just strong type)

G ∗00
A to the Kim-Pillay strong type (the compact strong type)

G ∗∞A to the Lascar strong type (the invariant strong type)

Recall that the theory is non-G -compact, when
Kim-Pillay strong types 6= Lascar strong types.

Problem

Find a group G with
G ∗00

A 6= G ∗∞A

for some small A.
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Another Description of G∞A

Definition

(G , ·) – an arbitrary group, P ⊆ G , n < ω

P is n-thick ⇔ P = P−1 and for every g0, . . . , gn−1 ∈ G there
are i < j < n such that

g−1
i gj ∈ P,

P is thick ⇔ P is n-thick for some natural n.

Every subgroup of G with finite index is thick.

Lemma

G ∗∞A =
〈⋂
{P ⊆ G ∗ : P is A-def. and thick }

〉
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A Short Interjection on (K×, ·)

Theorem (V. Bergelson, D. B. Shapiro, PAMS ’92)

Let K be an infinite field and G < K× with finite index, then
G − G = K .

The proof of this generalizes to the thick subsets of K×:

Theorem

Let K be an infinite field and P ⊆ K× is thick, then
(P · P)− (P · P) = K .

Moreover
(K ∗×)∞A − (K ∗×)∞A = K ∗,

where K ∗ is a monster model of an arbitrary first order expansion
of K and A ⊂ K ∗ is small.
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A Short Interjection on (K , +)

Theorem

Let K be an infinite field and P ⊆ (K ,+) is thick, then

(P \ {0})−1 · P = K .

Moreover
(K ∗,+)∞A

−1 · (K ∗,+)∞A = K ∗,

where K ∗ is a monster model of an arbitrary first order expansion
of K and A ⊂ K ∗ is small.

If (K ∗,+)∞ exists (e.g. K has NIP), then

(K ∗,+)∞ = K ∗,

because then (K ∗,+)∞ is an ideal in K ∗ (for (K ∗,+)00 it was
noticed by A. Pillay).
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When G ∗∞ exists and G ∗∞ = G ∗?

Proposition

(G , ·, . . .) – a group with some first order structure, G ∗ – monster
model. TFAE

G ∗∞ exists and G ∗∞ = G ∗

there is a natural number N such that for every definable and
thick P ⊆ G ∗

PN = G ∗.

Proposition

(G , ·) – a group. TFAE

G ∗∞ exists and G ∗∞ = G ∗, where G ∗ is a monster model of
an arbitrary first order expansion of G

there is a natural number N such that for every thick P ⊆ G

PN = G .
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Absolutely connected groups

Definition

G is N-absolutely connected (N-ac) if for every thick P ⊆ G

PN = G .

G is absolutely connected if G is N-absolutely connected for
some natural N.

Let CN = {N-absolutely connected groups} and
C∞ =

⋃
N<ω CN .

Proposition

If for every natural N, C∞ 6= CN , then there is a group G with

G ∗∞∅ 6= G ∗00
∅ .
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Examples of absolutely connected groups

Example

1. (κ > ω) Symκ(Ω) = {σ ∈ Sym(Ω) : | supp(σ)| < κ} is 16-ac

2. if V – a vector space over a division ring with dim(V ) =∞,
then GL(V ) is 128-ac

3. K – infinite field, n < ω, SLn(K ) is 24-ac

Proof.

We use an auxiliary class of weakly simple groups. Let

GN(G ) = {g ∈ G :
(

gG ∪ g−1G
)N

= G}.
A group G is N-weakly simple if GN(G ) is ”big” in some sense:

G \ GN(G ) is not thick.
It can be proved that N-weak simplicity ⇒ 4N-ac.
Now use description of the conjugacy classes: in 1. results of E. A.
Bertram ’73 and G. Moran ’76; in 2. — V. A. Tolstykh ’06; in 3.
— A. Lev ’96.
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Muranov’s groups

Theorem

Absolutely connected groups are perfect (i.e. G = [G ,G ]).

Question

Do absolutely connected groups have a finite commutator width?

Every weakly simple group has a finite commutator width.

Alexey Muranov constructed (using small cancellation theory and
GGT) a collection of simple torsion free groups {Mn}n<ω satisfying

Mn is (2n + 2)-boundedly simple (so (8n + 8)-ac),
the commutator width of Mn is between (n + 1) and (2n + 2).

Using Muranov’s groups we can prove:

Proposition

Either ∀N, C∞ 6= CN (so there is a group G with G ∗∞∅ 6= G ∗00
∅ ) or

there is an absolutely connected group an with infinite commutator
width.
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Related question

An intermediate step in proving ∀N, C∞ 6= CN is to answer the
following question:

assume that an infinite (torsion free) group G has no proper
subgroup of finite index. One can show that an infinite direct sum

G⊕ω

also does not have any proper subgroup of finite index.

Question

Is it also true for an infinite direct product? i.e. is it true that

Gω

does not have any proper subgroup of finite index?

When G is abelian, the answer is YES, since abelian group has no
proper subgroup of finite index iff it is divisible.

Thank you for your attention
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