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Geometric Theories

We say that a complete theory T is geometric if:

1. In every model of T , acl has the exchange property.

2. It eliminates the quantifier ∃∞.

Note: In T there is a notion of independence for real sets:
If M |= T , ~a ∈ Mn, B,C ⊂ M,
~a |̂

B
C if dim(~a/B) = dim(~a/BC ).

Examples:

1. strongly minimal theories.

2. o-minimal theories extending DLO

3. SU-rank one simple theories.
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Lovely pairs

Let T be a geometric theory. Let P be a new unary
predicate and let LP = L ∪ {P}.

Definition
We say that a structure (M,P(M)) is a lovely pair of models
of T if

1. P(M) � M |= T

2. (Coheir property) If A ⊂ M is algebraically closed and
finite dimensional and q ∈ S1(A) is non-algebraic, there
is a ∈ P(M) such that a |= q.

3. (Extension property) If A ⊂ M is algebraically closed
and finite dimensional and q ∈ S1(A) is non-algebraic,
there is a ∈ M, a |= q and a 6∈ acl(A ∪ P(M)).
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Previous work

Extends Poizat’s notion of beautiful pairs.
Simple theories: Ben Yaacov, Pillay, Vassiliev,
O-minimal theories: van den Dries.
Geometric theories: Hils: rich fusions.
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Basic Facts I

Let (M,P(M)), (N,P(N)) be lovely pairs of models of T ,
then

(M,P(M)) ≡ (N,P(N))

We write TP for the common theory.

The class of lovely pairs is not elementary, but if
(M,P(M)) |= TP is |L|+-saturated, then (M,P(M)) is a
lovely pair.
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Basic Facts II

Proposition

The theory TP is near model complete: every LP -formula is
equivalent to a boolean combination of formulas of the form:

∃y1 ∈ P . . .∃yk ∈ Pϕ(ȳ , x̄)

where ϕ(ȳ , x̄) is an L-formula.

If ψ(x̄) defines a subset of P, then there is ϕ(x̄) L-definable
such that ψ(x̄) = P(x) ∧ ϕ(x̄).



Lovely pairs of
geometric

structures and
linearity

Alexander
Berenstein

Lovely pairs of
geometric
structures

Basic Facts

Basic Facts

Examples

O-minimality

Linearity

Main example

Main Theorem

Questions I

Ranks and
Geometry

Examples of lovely pairs

T = ACF0 (C,+,×, 0, 1,Q(e0, e1, . . . ))

T = DLO (R,≤,Q)

T = RCF (R,+,×, 0, 1,≤,Q(e0, e1, . . . )
r
) |= RCFP
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The o-minimal case

Let T be o-minimal expansion of Th(R,+, <, 0, 1), where 1
stands for a positive constant.

Definition
A dense pair of models of T is a pair (M,P(M)) of models
of T such that P(M) � M,P(M) 6= M and P(M) is dense in
M.

It follows from work of van den Dries: dense pairs of models
of T are the models of TP .

It has nice topological features: o-minimal open core
(Dolich, Miller, Steinhorn).
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Properties induced by T on TP :

If T is strongly minimal, then TP is ω-stable and
MR(TP) ≤ ω (Poizat, Buechler).

If T is simple of SU-rank one, then TP is supersimple and
SU(TP) ≤ ω (Vassiliev).

If T is a rosy theory of thorn-rank one, then TP is
super-rosy and thorn-rank(Tp) ≤ ω (Boxall).

If T is (strongly) dependent, TP is also (strongly) dependent
(B., Dolich, Onshuus).

Question: What if T has the NTP2 property?
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Strongly minimal theories

Assume T is strongly minimal, M |= T . Then TFAE:

1. T is 1-based: whenever A,B ⊂ M,

A |̂
acleq(A)∩acleq(B)

B

2. T is linear: for a, b ∈ M, C ⊂ M such that
b ∈ acl(aC ), then MR(Cb(tp(a, b/C ))) ≤ 1.

3. T is locally modular: for a ∈ M not algebraic, and
A,B ⊂ M,

aA |̂
acl(aA)∩acl(aB)

aB
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Linearity

We have the following characterization of linearity in the
SU-rank 1 case (note that in the SU-rank 1 case linearity is
strictly weaker than local modularity):

Theorem (Vassiliev)
For an SU-rank 1 theory T the following are equivalent:

1. T is linear (Cb of any plane curve has rank ≤ 1)

2. T is 1-based (A is independent from B over
acleq(A) ∩ acleq(B))

3. TP has SU-rank ≤ 2 (=2 if non-trivial)

4. for any lovely pair (M,P) the quotient pregeometry
(M, acl( ∪ P(M))) is modular

5. acl = aclP in TP
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Main example, Loveys-Peterzil

Let N = (R,+, 0, f ,≤), where

f (x) =

{
πx for x ∈ (−1, 1)

0 otherwise.

Let T = Th(N), (M,P(M)) |= TP saturated. Then:

1. It has the CF property: every interpretable NORMAL
family of plane curves has dimension ≤ 1.

2. It is NOT 1-based, there are sets A,B ⊂ M such that
A 6 |̂

acleq(A)∩acleq(B)
B.

3. thorn-rk(Tp) = 2.

4. It is not modular after adding any set as parameters.

5. The quotient geometry acl( ∪ P(M)) is modular.
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Main theorem,

Theorem (B.,Vassiliev)
Let (M,P(M)) |= TP saturated. Then TFAE:

1. acl( ∪ P) is modular.

2. For A,B sets there is C |̂ ∅ AB such that
A |̂

acl(AC)∩acl(BC)
B.

3. acl = aclP in the home sort.

We call such a T linear.

Examples: SU-rank one linear structures, ”linear” o-minimal
structures: global addition and CF-property.
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Questions I

Let (M,P) |= TP be saturated. If acl( ∪ P) is modular
non-trivial, when is there a group interpretable (or something
weaker) in M?

Positive answers:

1. T strongly minimal (group conf.)

2. T simple of SU-rank 1 (group conf.) but not
interpretable.

3. T o-minimal (trichotomy-group interval).

4. T geometric C -minimal under modularity (Fares
Malouf).
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Questions II

1. A geometric rosy theory has CF property if any
interpretable family of plane curves has dimension at most
one. Our notion of linearity implies CF. Is linearity
equivalent to CF? True if the theory has almost Cb.

2. We can define a weak version of 1-basedness for
geometric theories by requiring that for any ā and B, there
exists ā′ |= tp(ā/B) such that ā′ |̂

B
ā and ā |̂

ā′ B. Then it
implies linearity. Is the converse true?
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Ranks and Geometry

Theorem (Buechler, Vassiliev)
Let T be a strongly minimal theory (SU(T ) = 1),
(M,P) |= TP be saturated. Then

1. If T is trivial, MR(TP) = 1.
(SU(TP) = 1)

2. If T is linear non-trivial, MR(TP) = 2.
(SU(TP) = 2)

3. If T is not linear, MR(TP) = ω.
(SU(TP) = ω)
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o-minimal case

Theorem (B., Vassiliev)
Let T be an o-minimal theory extending DLO and let
(M,P) |= TP be saturated. Then

1. If a ∈ M is trivial, SU-thorn (tpP(a)) ≤ 1 (= 1 iff
a 6∈ dcl(∅)).

2. If M has global addition (i.e. expands the theory of
ordered abelian groups) and does not interpret an
infinite field, a 6∈ P(M), then SU-thorn (tpP(a)) = 2.

3. If M induces the structure of an o-minimal expansion of
a real closed field in a neighborhood of a 6∈ P(M), then
SU-thorn (tpP(a)) = ω.
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Questions III

1. For T rosy, is there a correspondence with the
pregeometry type and the thorn-rk of TP?

Understand thorn forking in TP .
Let B ⊂ C ⊂ M be sets, a ∈ acl(CP(M)) \ acl(BP(M)).
Does tp(a/C ) thorn forks over B?

2. Can we characterize thorn rank one theories? Are they
characterized by property (E )?

3. If T is ω-categorical and linear, is TP ω-categorical?

4. If Th(M) is dependent, A ⊂ M is small, and the induced
structure on A is dependent, is Th(M,A) dependent?
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