Andreas Baudisch

(Humboldt-Universität Berlin)

1. Starting Theories

- ${\cal T}$ countable complete
- M, N models
- ${\mathbb C}$ monster model of T
- $\langle X \rangle$ substructure generated by X
- $\langle X \rangle^\ell$ linear hull

P(I) The models M of T are \mathbb{F}_q -vectorspaces with additional structure, where \mathbb{F}_q is a finite field. Furthermore we have a unary predicate R(x) for a subspace of M. For all $M \models T$ we have $\langle R(M) \rangle = M$.

Mainly we consider finite subspaces A, B, C of R(M). U, V, W are used for arbitrary subspaces of R(M).

P(II) We have a pregeometry " $a \in cl_d(A)$ " on R(M) and a notion "A is a strong subspace in R(M)" (short $A \leq M$). Both notions are invariant under automorphisms of \mathbb{C} . $\langle 0 \rangle^{\ell} \leq M$. For every B there exists a finite algebraic extension that is strong in M. Algebraic extensions of strong subspaces are strong. If M, N are models of T $A \subseteq R(M)$, $B \subseteq R(N)$, $tp^M(A) = tp^N(B)$ and a and b are geometrically independent of A and B respectively, then $tp^M(a, A) = tp^N(b, B)$. If furthermore $A \leq M$, then $\langle Aa \rangle^{\ell} \leq M$. $d(\mathbb{C})$ is infinite, where d is the geometrical dimension.

Let $B \subseteq R(M)$ be strong in M.

A is a minimal strong transcendental extension, if $A = \langle B, a \rangle^{\ell}$ and $a \notin \text{cl}_d(B)$.

A is a minimal strong algebraic extension, if $A = \langle B, a \rangle^{\ell}$ and a is algebraic over B.

We extend the notions in P(II) to infinite subspaces U of R(M) by the following definitions:

Definition $a \in cl_d(U)$, if $a \in cl_d(A)$ for some finite subspace A of U.

Definition $U \leq M$, if for every finite $B \subseteq U$ there is a finite $A \subseteq U$ with $B \subseteq A$ and $A \leq M$. P(III) There is a set \mathcal{X} of formulas $\varphi(\bar{x}, \bar{y})$ in L^{eq} such that $\varphi(\bar{x}, \bar{b})$ is either empty or strongly minimal. Furthermore $\varphi(\bar{x}, \bar{b}) \sim \varphi(\bar{x}, \bar{b}')$ implies $\bar{b} = \bar{b}'$. Length $(\bar{x}) = n_{\varphi} \geq 2$, $\varphi(\bar{x}, \bar{y})$ implies $x_i \in R$ and the linear independence of $x_1, \ldots, x_{n_{\varphi}}$. If \bar{b} is in dcl^{eq}(U) and $M \models \varphi(\bar{a}, \bar{b})$, then $\bar{a} \in \text{cl}_d(U)$. If furthermore $U \leq M$, then either $\bar{a} \subseteq U$ or \bar{a} is a generic solution over U. In the generic case $\langle U\bar{a} \rangle^{\ell} \leq M$. \mathcal{X} is closed under affine transformations.

Let $B \subseteq R(M)$ be strong in M.

A is a minimal strong prealgebraic extension of B, if $A = \langle B, \overline{a} \rangle^{\ell}$ and \overline{a} is a solution of some $\varphi(\overline{x}, \overline{b})$ in \mathcal{X} generic over B with $b \in dcl^{eq}(B)$.

P(IV) If $A \leq M$, $B \leq M$, and $\langle A \rangle \cong \langle B \rangle$, then tp(A) = tp(B). If $B \leq M$, $A \leq M$ and $B \subseteq A \subseteq cl_d(B)$, then there is a chain $B = A_0 \subseteq A_1 \subseteq$ $\ldots \subseteq A_n = A$ where $A_i \leq M$ and A_{i+1} is a minimal strong algebraic or prealgebraic extension of A_i .

 $B = A_0 \subseteq A_1 \subseteq \ldots \subseteq A_n = A$ above is a geometrical construction of A over B.

P(I) - P(IV) implies

- T is ω -stable.
- R(x) is connected.
- tp(A) can be described by chains as in P(IV) using also minimal strong transcendental extensions.

Let \bigcup be the non-forking independence in T. Besides genericity of solutions \bar{a} of $\varphi_{\alpha}(\bar{x}, \bar{b})$ we introduce \bigcup^{w} -genericity for these solutions. If $\bar{b} \in \operatorname{dcl}^{\operatorname{eq}}(B)$, then in the known examples \bigcup^{w} -genericity of \bar{a} over B means that \bar{a} is linearly independent over B and $\delta(\bar{a}/B) = 0$.

P(V) Let $\varphi(\bar{x}, \bar{y}) \in \mathcal{X}$, V a subspace of R(M), and $\bar{b} \in dcl^{eq}(V)$. Then the \bot -generic type of $\varphi(\bar{x}, \bar{b})$ over V is \bot^w -generic over V and the \bot^w -generics of $\varphi(\bar{x}, \bar{b})$ over V have the same isomorphism type over V. They are \bot^w -generic over every $U \subseteq$ V with $\bar{b} \in dcl^{eq}(U)$. Furthermore if $\varphi(\bar{x}, \bar{y}) \in \mathcal{X}$, $U \leq M$, $\bar{b} \in dcl^{eq}(B)$, and $\bar{e}_0, \bar{e}_1, \ldots$ are solutions of $\varphi(\bar{x}, \bar{b})$ linearly independent over B with $\bar{e}_i \not\subseteq \langle U, B, \bar{e}_0, \ldots, \bar{e}_{i-1} \rangle^{\ell}$, then there are at most l.dim(B/U) many i such that \bar{e}_i is not \bigcup^w -generic over $\langle U, B, \bar{e}_0, \ldots, \bar{e}_{i-1} \rangle^{\ell}$.

Let V be a strong subspace of M, $b \in dcl^{eq}(V)$ and $\varphi(\bar{x}, \bar{y}) \in \mathcal{X}$. In this case P(III) and P(V) imply that the solutions of $\varphi(\bar{x}, \bar{b})$ \bigcup^{w} -generic over V are exactly the \bigcup -generic solutions over V. $\varphi(\bar{x}, \bar{b})$ defines a group set, if the generic type of $\varphi(\bar{x}, \bar{b})$ is the generic type of a definable subgroup.

 $\varphi(\bar{x}, \bar{b})$ defines a torsor set, if the generic type of $\varphi(\bar{x}, \bar{b})$ is the generic type of a coset of a definable subgroup.

P(VI) Assume $C \supseteq B \subseteq A$ are strong subspaces of R(M) linearly independent over B and both minimal strong extensions of B given by generic solutions of formulas in \mathcal{X} . If $b \in dcl^{eq}(E), E \subseteq A + C$, and there is a solution \overline{a} of some $\varphi(\overline{x}, \overline{b})$ in $\mathcal{X} \cup \bigcup^{w}$ generic over C + E and over A + E, then $\varphi(\overline{x}, \overline{b})$ defines a torsor set. If it defines a group set, then \overline{b} is in $dcl^{eq}(B)$.

- P(VII) Either M = R(M) and therefore connected,
 - or M is connected and there is a quantifier free formula $\theta(\bar{x}, y)$ in \mathcal{X} such that for every $B \subseteq R(M)$ and every tuple \bar{a} of geometrically independent generics over B in R(M) $M \models \theta(\bar{a}, b)$ implies that the canonical parameter b is a generic of M over B and $b \in dcl(\bar{a})$,
 - or for every substructure $H \subseteq M \models T$ with $\operatorname{acl}(R(H)) \cap R(M) = R(H)$ and $\langle R(H) \rangle = H$ we have some quantifier free definable function $\eta(\bar{x}) = y$ such that

$$H = \{b : M \models \eta(\bar{a}) = b$$

for some \bar{a} in $R(H)\}.$

2. Codes and Difference Sequences

Work in T^{eq} .

Replace \mathcal{X} by a set of good codes C such that P(I) - P(VII) remain true and some additional properties are fulfilled.

If $U \leq V$ both strong in \mathbb{C} , and V is linearly generated over U by a generic solution of a formula $\varphi_{\alpha}(\bar{x}, \bar{b})$ in C, then $\varphi_{\alpha}(\bar{x}, \bar{y})$ and \bar{b} are uniquely determined.

Let $\overline{e}_0, \ldots, \overline{e}_{\lambda}$, \overline{f} be a initial segment of a Morley sequence of some $\varphi_{\alpha}(\overline{x}, \overline{b})$ in C.

We create a formula ψ_{α} such that

$$\mathbb{C} \models \psi_{\alpha}(\bar{e}_0 - \bar{f}, \dots, \bar{e}_{\lambda} - \bar{f})$$
 and

 ψ_{α} describes some important properties of the sequence above.

A realization of ψ_{α} is called a difference sequence.

There is some m_{α} such that m_{α} -many common solutions of $\varphi_{\alpha}(\bar{x}, \bar{c})$ and $\varphi_{\alpha}(\bar{x}, \bar{e})$ imply that $\varphi_{\alpha}(\bar{x}, \bar{c})$ and $\varphi_{\alpha}(\bar{x}, \bar{e})$ almost coincide.

 $\mathbb{C} \models \psi_{\alpha}(\bar{e}_0, \dots, \bar{e}_{\lambda})$ implies:

There exists a unique \overline{b}' such that $\mathbb{C} \models \varphi_{\alpha}(\overline{e}_i, \overline{b}')$ for all i and $\overline{b}' \in \operatorname{dcl}^{\operatorname{eq}}(\overline{e}_{i_1}, \ldots, \overline{e}_{i_{m_{\alpha}}})$ for all $i_1 < \ldots < i_{m_{\alpha}}$.

Furthermore:

 $\mathbb{C} \models \psi_{\alpha}(\bar{e}_0 - \bar{e}_i, \dots, \bar{e}_{i-1} - \bar{e}_i, -\bar{e}_i, \bar{e}_{i+1} - \bar{e}_i, \dots, \bar{e}_{\lambda})$

and ψ_{α} holds for every permutation of the $e_i.$

3. Amalgamation

We consider functions $\mu(\alpha) > \mu^*(\alpha)$ from the set of good codes into the natural numbers that allow the results of this chapter.

Definition Let \mathbb{K}^{μ} be the class of all strong subspaces U of $R(\mathbb{C})$, such that for every good code α there is no difference sequence for α of length $\mu(\alpha) + 1$ in U. \mathbb{K}^{μ}_{fin} are the finite spaces in \mathbb{K}^{μ} . **Lemma** Let D be in \mathbb{K}^{μ} and $D \leq D'$ be a minimal strong extension. If D' has linear dimension one over D, then D' is in \mathbb{K}^{μ} . Otherwise, in the prealgebraic case, D' is in \mathbb{K}^{μ} if and only if none of the following two conditions holds:

a) There is a code $\alpha \in C$ and a difference sequence $\overline{e}_0, \ldots, \overline{e}_{\mu(\alpha)}$ for α in D' such that

i)
$$\bar{e}_0, \ldots, \bar{e}_{\mu(\alpha)-1}$$
 are contained in D.

- ii) $D' = \langle D\bar{e}_{\mu(\alpha)} \rangle^{\ell}$.
- iii) In this case α is the unique good code that describes D' over D.
- b) There exists a code $\alpha \in C$ and a difference sequence for α in D' of length $\mu(\alpha)+1$ with canonical parameter \overline{b} with a subsequence $\overline{e}_0, \ldots, \overline{e}_{\mu^*(\alpha)-1}$ such that \overline{e}_i is \bigcup^w -generic over $D + \langle \overline{e}_0, \ldots, \overline{e}_{i-1} \rangle^{\ell}$.

Theorem Assume T satisfies P(I) - P(VI). The set \mathbb{K}^{μ}_{fin} has the amalgamation property with respect to partial elementary maps.

Definition Let D be a subspace of R(M). D is called rich if it is in \mathbb{K}^{μ} and if for every finite $B \subseteq A$ in K^{μ} with $B \leq M$ and $B \subseteq D$, there exists an A' with $B \subseteq A' \subseteq D$ and tp(A'/B) = tp(A/B).

By P(II) $A' \leq \mathbb{C}$. We call a substructure V of \mathbb{C} rich, if $\langle R(V) \rangle = V$ and R(V) is rich.

Corollary There is a unique (up to automorphisms) countable rich subspace of $R(\mathbb{C})$.

 L^{μ} is the extension of L by a unary predicate P^{μ} .

Definition We call an L^{μ} -structure $M = (M \upharpoonright L, P^{\mu}(M))$ rich, if $M \upharpoonright L \models T$, $P^{\mu}(M) \cap R(M) = R^{\mu}(M)$ is rich. $P^{\mu}(M) = \langle R^{\mu}(M) \rangle$ is defined by a *L*-formula χ , and $d(R(M)/R^{\mu}(M)) \ge \aleph_0$.

d is the geometrical dimension.

Lemma Let M be a rich L^{μ} -structure. Code-formulas have only finitely many solutions in $R^{\mu}(M)$.

Theorem Let M and N be rich L^{μ} -structures, $\overline{a} \in R^{\mu}(M)$ and $\overline{b} \in R^{\mu}(N)$. If $tp^{M} \upharpoonright {}^{L}(\overline{a}) =$ $tp^{N} \upharpoonright {}^{L}(\overline{b})$, then (M, \overline{a}) and (N, \overline{b}) are $L^{\mu}_{\infty, \omega}$ equivalent.

Definition Let T^{μ} be the L^{μ} -theory of all rich L^{μ} -structures.

Corollary T^{μ} is complete.

4. Axiomatization of T^{μ}

- T^{μ} 1) $M \upharpoonright L$ is a model of T.
- T^{μ} 2) $\operatorname{acl}^{L}(R^{\mu}(M)) \cap R(M) = R^{\mu}(M),$ $P^{\mu}(M) = \langle R^{\mu}(M) \rangle$ described by χ . $d(R^{\mu}(M))$ and $d(R(M)/R^{\mu}(M))$ are infinite for ω -saturated models.
- T^{μ} 3) $R^{\mu}(M)$ is in \mathbb{K}^{μ} .
- T^{μ} 4) If \overline{b} is in dcl^{eq}($R^{\mu}(M)$)) and \overline{a} is a solution of $\varphi_{\alpha}(\overline{x},\overline{b})$ in M generic over $R^{\mu}(M)$ for some code formula $\varphi_{\alpha}(\overline{x},\overline{b})$, then $R^{\mu}(M) + \langle \overline{a} \rangle^{\ell}$ is not in K^{μ} .

Theorem An L^{μ} -structure M that satisfies T^{μ} 1), T^{μ} 2) and T^{μ} 3) is rich if and only if it is an ω -saturated model of T^{μ} .

Corollary

- i) The deductive closure of $T^{\mu}1$) $T^{\mu}4$) is the complete theory T^{μ} .
- ii) $R^{\mu}(x)$ is strongly minimal.
- iii) $P^{\mu}(x)$ is of finite Morley rank.
- iv) T^{μ} is ω -stable.

5. Reduction

Let T be a countable complete theory with P(I) - P(VII)

Definition Let $\Gamma(T^{\mu})$ be the *L*-theory of all $P^{\mu}(M)$ where $M \models T^{\mu}$.

Theorem $\Gamma(T^{\mu})$ is uncountably categorical. R(x) is a strongly minimal formula in this theory. The pregeometry cl_d of R(x) is given by acl.

Theorem Every subset of $P^{\mu}(M)^n L^{\mu}$ defined in M can be defined in the L-structure $P^{\mu}(M)$.

6. New uncountably categorical groups

M $\,$ 2-nilpotent graded $\mathbb{F}_q\text{-Lie}$ algebra

$$M = M_1 \oplus M_2$$
 as \mathbb{F}_q -vectorspace

 $[M_1, M_1] \subseteq M_2$, $[M_1, M_2] = 0$, $[M_2, M_2] = 0$

 \boldsymbol{L} vectorspace language in addition with

[,],
$$R_1$$
 for M_1 , R_2 for M_2

c constant

Free algebra $F(M_1)$ is given by $(F(M_1))_2 = \Lambda^2 M_1$

 γ vectorspace homomorphism

Let N(M) be the kernel of γ .

Fact If H_1 is a subspace of M_1 , then

$$H = \langle H_1 \rangle^M \cong F(H_1) / N(M) \cap \Lambda^2 H_1,$$

since there is a canonical embedding of $F(H_1)$ into $F(M_1)$.

Definition We define $\delta(H) = 1. \dim(H_1) - 1. \dim(N(H))$ where $N(H) = N(M) \cap \Lambda^2 H_1.$ **Definition** $B \leq U$ for $B \subseteq U \subseteq M_1$ (*B* is strong in *U*), if $\delta(B) \leq \delta(A)$ for all $B \subseteq A \subseteq U$.

Assumption We consider only M with $\langle 0 \rangle \leq M$.

That means $\delta(A) \ge 0$ for all A in M. Hence we can define

Definition $d(A) = \min\{\delta(B) : A \subseteq B \subseteq M\}.$ $a \in \operatorname{cl}_d(A_1), \text{ if } d(A) = d(A \cup \{a\}).$

Lemma

- i) $\delta(A+B) \leq \delta(A) + \delta(B) \delta(A \cap B)$
- ii) cl_d defines a pregeometry on subspaces of M_1 with dimension function d.

Let \mathbb{K} be the class of all 2-nilpotent graded \mathbb{F}_q -Lie algebras M with $M = \langle M_1 \rangle$ and $c^M \in M_1 \setminus \{0\}$ such that

- i) $[a,b] \neq 0$ for linearly independent a, b in M_1 .
- ii) $\langle 0 \rangle^{\ell} \leq M_1$ and $\langle c \rangle^{\ell} \leq M_1$.

Theorem

- i) \mathbb{K} has the amalgamation with respect to strong embeddings.
- ii) If $B \subseteq U$ and $B \leq A$ for A, B, U in \mathbb{K} , then there is an amalgam D of $\langle A \rangle$ and $\langle U \rangle$ over $\langle B \rangle$ such that $U \leq D$.

Theorem There is a countable structure M_{FH} in \mathbb{K} that satisfies the following condition:

(rich) If $B \leq A$ are in \mathbb{K} and there is a strong embedding f of B in M_{FH} , then it is possible to extend f to a strong embedding \overline{f} of A in M_{FH} .

 $M_{\rm FH}$ is uniquely determined up to isomorphisms.

Definition A structure M in \mathbb{K} that satisfies the condition (rich) is called a rich \mathbb{K} -structure.

Theorem Let M and N be rich \mathbb{K} -structures, $\langle \overline{a} \rangle \leq M$, $\langle \overline{b} \rangle \leq N$ and $\langle \overline{a} \rangle \cong \langle \overline{b} \rangle$. Then $(M, \overline{a}) \equiv_{L_{\infty,\omega}} (N, \overline{b}).$ By the above theorem all rich \mathbb{K} -structures have the same elementary theory T. To axiomatize T we write the following sets of L-sentences:

- T1) *M* is a 2-nilpotent graded \mathbb{F}_q -Lie algebra with $R_1(c) \wedge c \neq 0$.
- T 2) $\forall xy \in R_1("x \text{ and } y \text{ are linearly indepen-} dent" \rightarrow [x, y] \neq 0)$ $\forall xz \exists y (x \in R_1 \land x \neq 0 \land z \in R_2 \rightarrow [x, y] = z).$
- T3) $\langle 0 \rangle \leq M$, $\langle c \rangle \leq M$.
- T 4) If $B \subseteq M$ and $B \leq A$ are in \mathbb{K} , then there is an embedding of A in M.

Theorem

- i) A rich \mathbb{K} -structure satisfies T 1)–T 4).
- ii) Let M be a model of T1, T2) and T3). Then M is a rich \mathbb{K} -structure if and only if M is a ω -saturated model of T1)–T4).

Theorem T is a theory that satisfies the conditions P(I)-P(VII).

Corollary *T* provides us uncountably categorical theories $\Gamma(T^{\mu})$ of Morley rank 2 where $R_1(x)$ is a strongly minimal set. By interpretation we get the corresponding theories of nilpotent groups of class 2 and exponent p > 2.