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1. Starting Theories

T countable complete

M, N models

C monster model of T

(X') substructure generated by X
(X))t linear hull
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P(I) The models M of T are F,-vectorspaces
with additional structure, where I, is a
finite field.

Furthermore we have a unary predicate
R(x) for a subspace of M. Forall M =T
we have (R(M)) = M.

Mainly we consider finite subspaces A, B, C
of R(M). U, V, W are used for arbitrary
subspaces of R(M).
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P(II) We have a pregeometry "a € clz(A)” on
R(M) and a notion " A is a strong sub-
space in R(M)" (short A < M). Both
notions are invariant under automorphisms
of C. (0)¢ < M. For every B there ex-
ists a finite algebraic extension that is
strong in M. Algebraic extensions of
strong subspaces are strong. If M, N
are models of T A C R(M), B C R(N),
tpM(A) = tpN(B) and a and b are ge-
ometrically independent of A and B re-
spectively, then tpM(a, A) = tp?V (b, B).
If furthermore A < M, then (Aa)t < M.
d(C) is infinite, where d is the geomet-
rical dimension.
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Let B C R(M) be strong in M.

A is a minimal strong transcendental exten-
sion, if A= (B,a)! and a ¢ cly(B).

A is a minimal strong algebraic extension, if
A = (B,a)* and a is algebraic over B.
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We extend the notions in P(II) to infinite
subspaces U of R(M) by the following defi-
nitions:

Definition a € cly(U), if a € cly(A) for
some finite subspace A of U.

Definition U < M, if for every finite BCU
there is a finite A C U with B C A and
A< M.
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P(III) There is a set X of formulas p(z,y) in
L®9 such that ¢(z,b) is either empty or
strongly minimal. Furthermore ¢(z,b) ~
o(z,b) implies b = b. Length(z) =
ny, > 2, ¢(x,y) implies z; € R and the

linear independence of zi,...,zn,. If
b is in dcl®9(U) and M |= ¢(a,b), then
a € cly(U). If furthermore U < M, then
either a C U or a is a generic solution
over U. In the generic case (Ua)f < M.

X is closed under affine transformations.
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Let BC R(M) be strong in M.

A is a minimal strong prealgebraic exten-
sion of B, if A= (B,a)! and a is a solution
of some ¢(z,b) in X generic over B with
b € dcl®d(B).
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P(IV) If A< M, B< M, and (A) = (B), then
tp(A) = tp(B).
If B< M, A< M and BC A C cly(B),
then there is a chain B = Ag C A1 C
... C Ap = A where A; < M and A;4q
IS @ minimal strong algebraic or prealge-
braic extension of A,.

B = Ay C A1 C ... C A, = A above is a
geometrical construction of A over B.
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P(I) — P(IV) implies

e 7' is w-stable.

e R(x) is connected.

e tp(A) can be described by chains as in
P(IV) using also minimal strong tran-
scendental extensions.
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Let | be the non-forking independence in

T. Besides genericity of solutions a of pa(Z,b)
we introduce | “-genericity for these solu-

tions. If b € dcl®d(B), then in the known

examples | “-genericity of a over B means

that a is linearly independent over B and

é(a/B) = 0.
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P(V) Let o(z,y) € X, V a subspace of R(M),
and b € dcl®9(V). Then the | -generic
type of p(z,b) over V is | “-generic over
V and the | “-generics of o(z,b) over
V' have the same isomorphism type over
V. They are | “-generic over every U C
V with b € dcl®(U). Furthermore if
o(z,y) € X, U < M, b e dcl®(B), and
€o,€e1,... are solutions of ¢(z,b)
linearly independent over B with
e; Z (U B,ép,...,e_1)t, then there are
at most I.dim(B/U) many i such that ¢g;
is not | “-generic over (U, B, &g, ... ,&;_1).
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Let V be a strong subspace of M, b € dcl®9(V)
and p(z,y) € X. In this case P(III) and P(V)
imply that the solutions of ¢(z,b)
| "-generic over V are exactly the | -generic
solutions over V.
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o(z,b) defines a group set, if the generic
type of ¢(z,b) is the generic type of a de-
finable subgroup.

o(z,b) defines a torsor set, if the generic
type of ¢(z,b) is the generic type of a coset
of a definable subgroup.

P(VI) Assume C D B C A are strong subspaces
of R(M) linearly independent over B and
both minimal strong extensions of B given
by generic solutions of formulas in X. If
b € dcl®9E), E C A+ C, and there is
a solution a of some (z,b) in X | “-
generic over C+ E and over A+ FE, then
o(z,b) defines a torsor set. If it defines
a group set, then b is in dcl®9(B).
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P(VII) Either M = R(M) and therefore con-
nected,

or

or

M is connected and there is a quanti-
fier free formula 8(z,y) in X such that
for every B C R(M) and every tuple a
of geometrically independent gener-
ics over B in R(M) M = 6(a,b) im-
plies that the canonical parameter b is
a generic of M over B and b € dcl(a),

for every substructure H C M|=T
with acl(R(H)) N R(M) = R(H) and
(R(H)) = H we have some quantifier
free definable function n(x) = y such
that

H={b: M=n(a)=5»
for some a in R(H)}.
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2. Codes and Difference Sequences

Work in T¢€9,

Replace X by a set of good codes (' such
that P(I) — P(VII) remain true and some
additional properties are fulfilled.

If U <V both strong in C, and V is linearly
generated over U by a generic solution of
a formula pa(Z,0) in C, then ¢.(z,y) and b
are uniquely determined.
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Let &p,...,ey, f be a initial segment of a
Morley sequence of some pq(Z,b) in C.

We create a formula v, such that

C’:¢a(50—f7---a€A_f) and

Yo describes some important properties of
the sequence above.

A realization of 1, is called a difference se-
quence.
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There is some mgy such that mog-many com-
mon solutions of vq(Z,c) and pq(Z,e) imply
that pa(x,c) and pq(x,e) almost coincide.

C k= valeg, ... ,€y) implies:

There exists a unique b’ such that C = ¢q(€;, b")
for all < and &' € dcl®(g;,,... &, ) for all

Furthermore:

C |: ¢a(50—§7;a JEICI éi—l_éia _éz'a éi—|—1_€7;7 - 75)\)
and v, holds for every permutation of the

€Z'.
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3. Amalgamation

We consider functions u(a) > p*(a) from
the set of good codes into the natural num-
bers that allow the results of this chapter.

Definition Let K# be the class of all strong

subspaces U of R(C), such that for every

good code « there is no difference sequence
: 1%

for a of length u(a) +1 in U. K are the

finite spaces in KX,



The Additive Collapse 19

Lemma Let D be in K* and D < D’ be
a minimal strong extension. If D’ has lin-
ear dimension one over D, then D’ is in K~.
Otherwise, in the prealgebraic case, D’ is in
K& if and only if none of the following two
conditions holds:

a) There is a code o € C and a difference

sequence eg, ... ,€,(y) for a in D’ such
that
i) eo,... ,€,(a)—1 are contained in D.

i) D' = (D&, ))"
iii) In this case a is the unique good code

that describes D’ over D.

b) There exists a code o € C and a dif-
ference sequence for a in D’ of length
u(a)—+1 with canonical parameter b with
a subsequence eq, ... ,€,+(4)—1 Such that
e; is | W-generic over D+ (eg, ... ,&;_1)%.
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Theorem Assume T satisfies P(I) — P(\VI).

The set Kﬁn has the amalgamation property

with respect to partial elementary maps.
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Definition Let D be a subspace of R(M).
D is called rich if it is in K¥* and if for every
finite BC A in K* with B< M and B C D,
there exists an A’ with B C A’ C D and
tp(A’/B) = tp(A/B).

By P(II) A’ < C. We call a substructure V
of C rich, if (R(V)) =V and R(V) is rich.

Corollary There is a unique (up to auto-
morphisms) countable rich subspace of R(C).
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L* is the extension of L by a unary predicate
PH.

Definition We call an LH-structure
M = (M \ L,P*(M)) rich, if M \ L|= T,
PH(M)NR(M) = RH*(M) is rich. PH(M) =
(RH(M)) is defined by a L-formula x, and
d(R(M)/RF(M)) > Ro.

d is the geometrical dimension.
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Lemma Let M be a rich LH-structure.
Code-formulas have only finitely many so-
lutions in RF(M).

Theorem Let M and N be rich L*-structures,
a € RH(M) and b € RH(N). If tpM N L(g) =
tpV N L(3), then (M,a) and (N,b) are Lk .-
equivalent.

Definition Let TH be the LH-theory of all
rich LH*-structures.

Corollary TH# is complete.



The Additive Collapse 24

4. Axiomatization of TH#

TH1) M N\ Lis a model of T.

TH2) acl(RH(M)) N R(M) = RH(M),
PHr(M) = (R*(M)) described by x.
d(RF(M)) and d(R(M)/RF(M)) are
infinite for w-saturated models.

TH3) RW(M) is in KM,

TH4) If b is in dcl®9(R*(M))) and a is
a solution of ¢q(Z,b) in M generic
over RF(M) for some code formula
0a(Z,0), then RH(M) + (a)t is not in
KH,
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Theorem An LH-structure M that satisfies
TH 1), TF2) and TH 3) is rich if and only if
it is an w-saturated model of TH.

Corollary

i) The deductive closure of TH1) — TH4) is
the complete theory TH*.

i) RH(x) is strongly minimal.
iii) PH(x) is of finite Morley rank.

iv) TH is w-stable.
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5. Reduction

Let T be a countable complete theory with
P(I) — P(VII)

Definition Let '(T*) be the L-theory of
all PH(M) where M = T*.

Theorem [ (TH) is uncountably categori-
cal. R(x) is a strongly minimal formula in
this theory. The pregeometry cl; of R(x) is
given by acl.

Theorem Every subset of PH(M)™ LH-
defined in M can be defined in the L-structure
PHr(M).
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6. New uncountably categorical groups

M 2-nilpotent graded [F,-Lie algebra

M = My & M»> as Fg-vectorspace

[, ] Lie multiplication

[My, M1] € M, [My, Ms] =0, [Mz, M3] =0
L vectorspace language in addition with

[, ], Ry for My, R> for M>

¢ constant
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Free algebra F'(M7) is given by
(F(M1))2 = N?M;

M1 x My AN A2 M

Y

[, ]
Mo

~ vectorspace homomorphism

Let N(M) be the kernel of ~.
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Fact If Hq is a subspace of My, then
— M ~ 2
H = (Hy)" = F(H1)/N(M)NN“Hy,

since there is a canonical embedding of F'(H1)
into F(Ml)

Definition We define
0(H) = Il.dim(Hy) — I.dim(N(H)) where
N(H) = N(M)NA?Hj.
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Definition B < U for B C U C M;

(B is strong in U), if §(B) < §(A) for all
BCACU.

Assumption We consider only M with
(0) < M.

That means §(A) > 0 for all A in M. Hence
we can define

Definition d(A)=min{é6(B): AC B C M}.
a € clg(Aq), if d(A) =d(AU{a}).
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Lemma
i) 6(A+ B) <6(A)+46(B) —6(ANB)

i) cl; defines a pregeometry on subspaces
of My with dimension function d.
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Let K be the class of all 2-nilpotent graded
F,-Lie algebras M with M = (M;) and
cM e My \ {0} such that

i) [a,b] #= O for linearly independent a, b in
Mj.

i) (0) < M; and (c)f < M;.

T heorem

i) K has the amalgamation with respect to
strong embeddings.

i) If BCU and B < A for A, B, U in K,
then there is an amalgam D of (A) and
(U) over (B) such that U < D.
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Theorem There is a countable structure
Mgy in K that satisfies the following condi-
tion:

(rich) If B < A are in K and there is a strong
embedding f of B in Mgy, then it is pos-
sible to extend f to a strong embedding
f of Ain Mgy.

Mgy is uniquely determined up to isomor-
phisms.

Definition A structure M in K that sat-
isfies the condition (rich) is called a rich
K-structure.

Theorem Let M and N berich K-structures,
(@) < M, () < N and (a) £ (b). Then

(M,a) =, (N,5).
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By the above theorem all rich K-structures
have the same elementary theory T'. To ax-
iomatize T' we write the following sets of
L-sentences:

T 1) M is a 2-nilpotent graded F4-Lie algebra
with Ri(c) Ac# 0.

T2) Vey € R1{("x and y are linearly indepen-
dent” — [z,y] # 0)
Vezdy(x € RiAx #= 0Nz € Ry — [x,y] =2).

T3) (0) <M, (¢ <M.

T4) If BC M and B< A arein K, then there
is an embedding of A in M.
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Theorem
i) A rich K-structure satisfies T 1)—T 4).

ii) Let M be a model of T1), T2) and
T3). Then M is a rich K-structure if
and only if M is a w-saturated model of
T1)-T4).
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Theorem 7T is a theory that satisfies the
conditions P(I)—P(\VII).

Corollary 7T provides us uncountably cat-
egorical theories '(TH*) of Morley rank 2
where Rq(x) is a strongly minimal set. By
interpretation we get the corresponding the-
ories of nilpotent groups of class 2 and ex-
ponent p > 2.



