ROTATION-INVARIANT WAVELET-BASED MATCHING OF LOCAL FEATURES, WITH ENHANCED TOLERANCE TO SHIFTS IN LOCATION AND SCALE

NICK KINGSBURY AND JAMES NELSON

Signal Processing and Communications Group, Dept. of Engineering University of Cambridge, Cambridge CB2 1PZ, UK.

ngk@eng.cam.ac.uk
www.eng.cam.ac.uk/~ngk

July 2009 – Banff Workshop on Multimedia, Mathematics and Machine Learning II

ROTATION-INVARIANT WAVELET-BASED MATCHING OF LOCAL FEATURES, WITH ENHANCED TOLERANCE TO SHIFTS IN LOCATION AND SCALE: SUMMARY OF TALK

- Properties of Dual-Tree Complex Wavelets (DTCWT) and why we use them
- Multiscale Keypoint Detection using Complex Wavelets (Julien Fauqueur and Pashmina Bendale)
- Rotation-invariant Local Feature Matching (an alternative to Lowe's popular SIFT system):
 - Modifications to DTCWT to improve rotational symmetry
 - Resampling using bandpass interpolation
 - The Polar Matching Matrix descriptor
 - Efficient Fourier-based matching
 - Similar to log-polar mapping of Fourier domain, but much more localised.
- Enhancements for resilience to keypoint location errors and scale estimates.

FEATURES OF THE DUAL TREE COMPLEX WAVELET TRANSFORM (DT CWT)

- Good **shift invariance** = **negligible aliasing**. Hence transfer function through each subband is independent of shift **and** wavelet coefs can be interpolated within each subband, independent of all other subbands.
- Good **directional selectivity** in 2-D, 3-D etc. derives from **analyticity** in 1-D (ability to separate positive from negative frequencies).
- Similarity to **Primary Cortex filters** of the human visual system.
- Perfect reconstruction with short support filters.
- Limited redundancy 2:1 in 1-D, 4:1 in 2-D etc.
- Low computation much less than the undecimated (à trous) DWT.

Q-SHIFT DUAL TREE COMPLEX WAVELET TRANSFORM IN 1-D

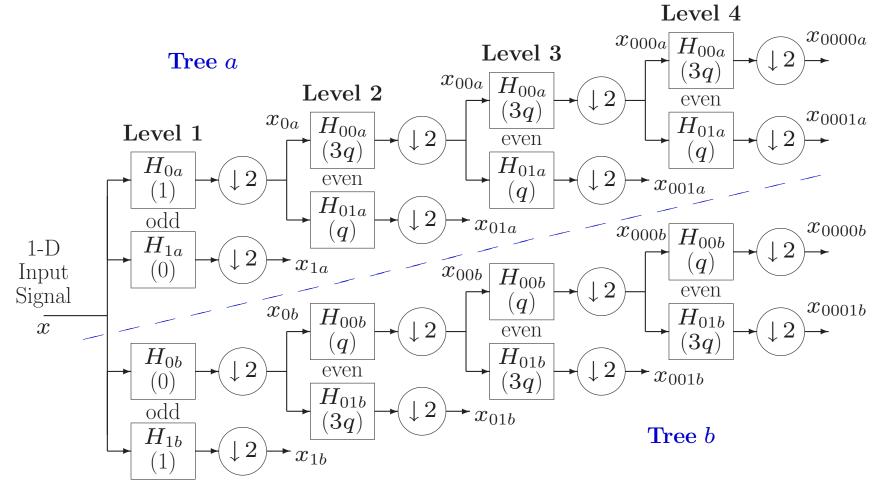


Figure 1: Dual tree of real filters for the Q-shift CWT, giving real and imaginary parts of complex coefficients from tree a and tree b respectively. Figures in brackets indicate the approximate delay for each filter, where $q = \frac{1}{4}$ sample period.

Q-SHIFT DT CWT BASIS FUNCTIONS – LEVELS 1 TO 3

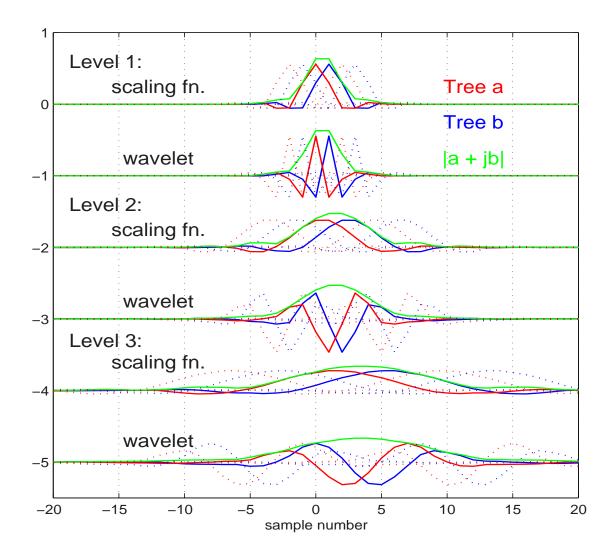
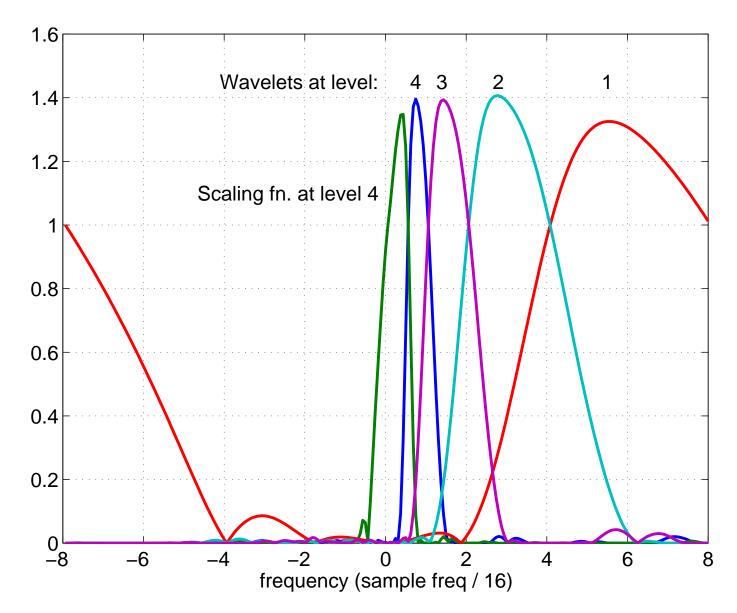


Figure 2: Basis functions for adjacent sampling points are shown dotted.

Frequency Responses of 18-tap Q-shift filters



THE DT CWT IN 2-D

When the DT CWT is applied to 2-D signals (images), it has the following features:

- It is performed separably, with 2 trees used for the rows of the image and 2 trees for the columns yielding a **Quad-Tree** structure (4:1 redundancy).
- The 4 quad-tree components of each coefficient are combined by simple sum and difference operations to yield a **pair of complex coefficients**. These are part of two separate subbands in adjacent quadrants of the 2-D spectrum.
- This produces 6 directionally selective subbands at each level of the 2-D DT CWT. Fig 3 shows the basis functions of these subbands at level 4, and compares them with the 3 subbands of a 2-D DWT.
- The DT CWT is directionally selective because the complex filters can **separate positive and negative frequency components** in 1-D, and hence **separate adjacent quadrants** of the 2-D spectrum. Real separable filters cannot do this!

2-D Basis Functions at level 4

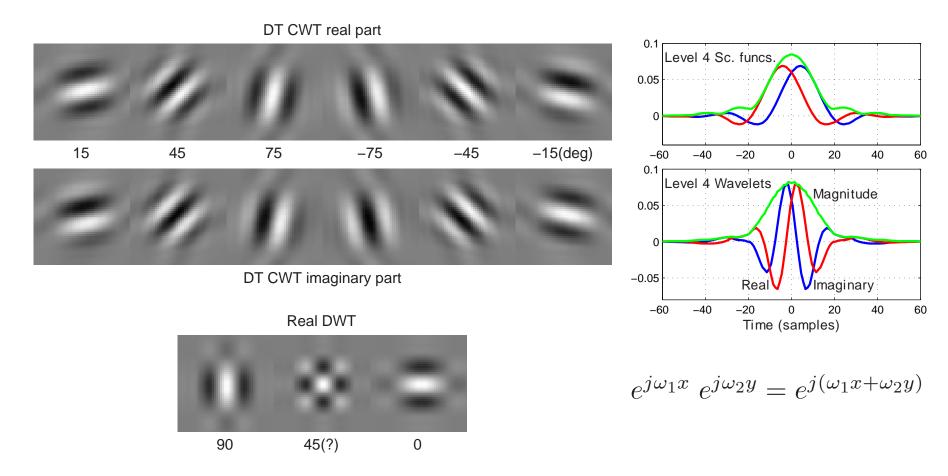
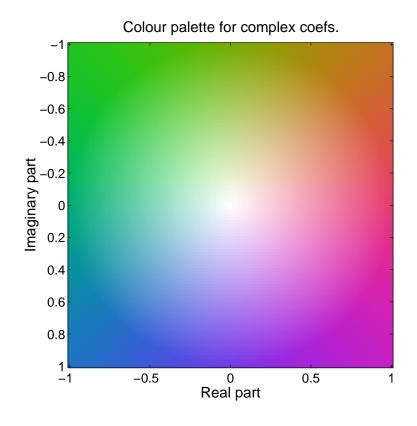


Figure 3: Basis functions of 2-D Q-shift complex wavelets (top), and of 2-D real wavelet filters (bottom), all illustrated at level 4 of the transforms. The complex wavelets provide 6 directionally selective filters, while real wavelets provide 3 filters, only two of which have a dominant direction. The 1-D bases, from which the 2-D complex bases are derived, are shown to the right.

Test Image and Colour Palette for Complex Coefficients



2-D DT-CWT DECOMPOSITION INTO SUBBANDS

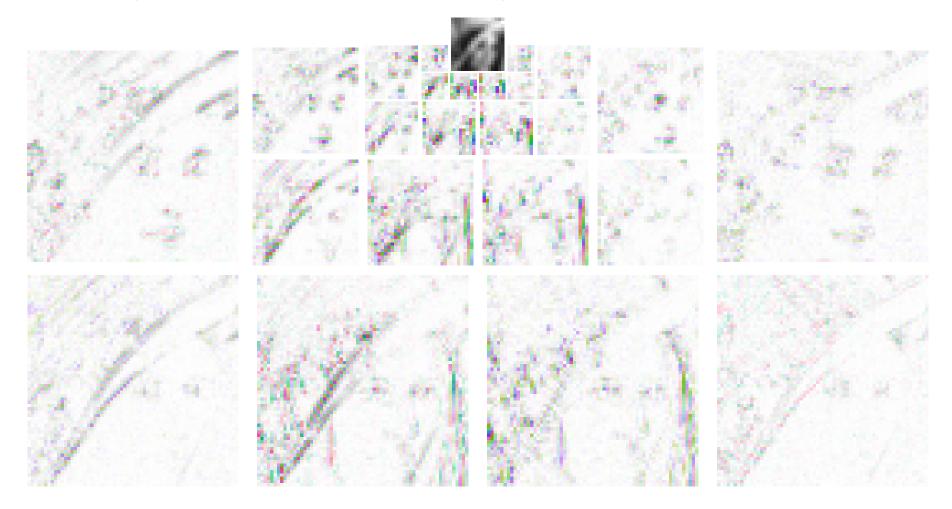


Figure 4: Four-level DT-CWT decomposition of Lenna into 6 subbands per level (only the central 128×128 portion of the image is shown for clarity). A colour-wheel palette is used to display the complex wavelet coefficients.

2-D Shift Invariance of DT CWT vs DWT

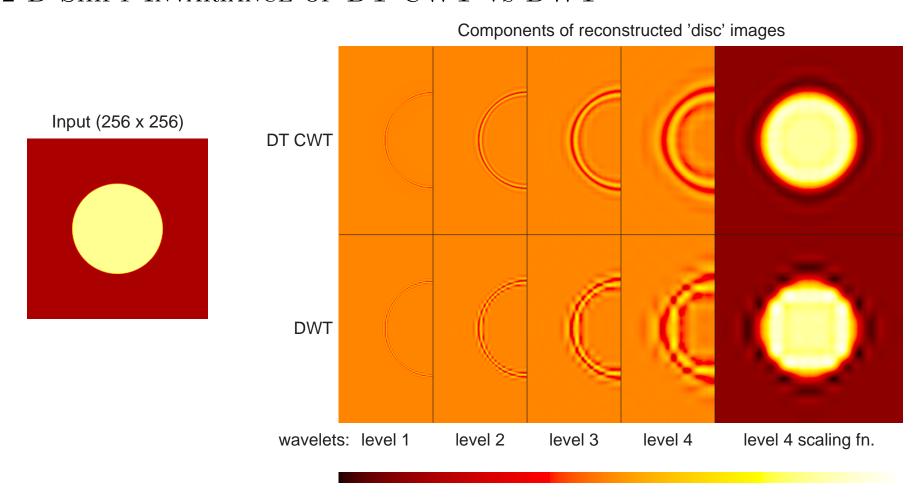


Figure 5: Wavelet and scaling function components at levels 1 to 4 of an image of a light circular disc on a dark background, using the 2-D DT CWT (upper row) and 2-D DWT (lower row). Only half of each wavelet image is shown in order to save space.

Multi-scale Keypoint Detection using Accumulated Maps

Subject of work by **Julien Fauqueur** (IEEE ICIP, Atlanta 2006).

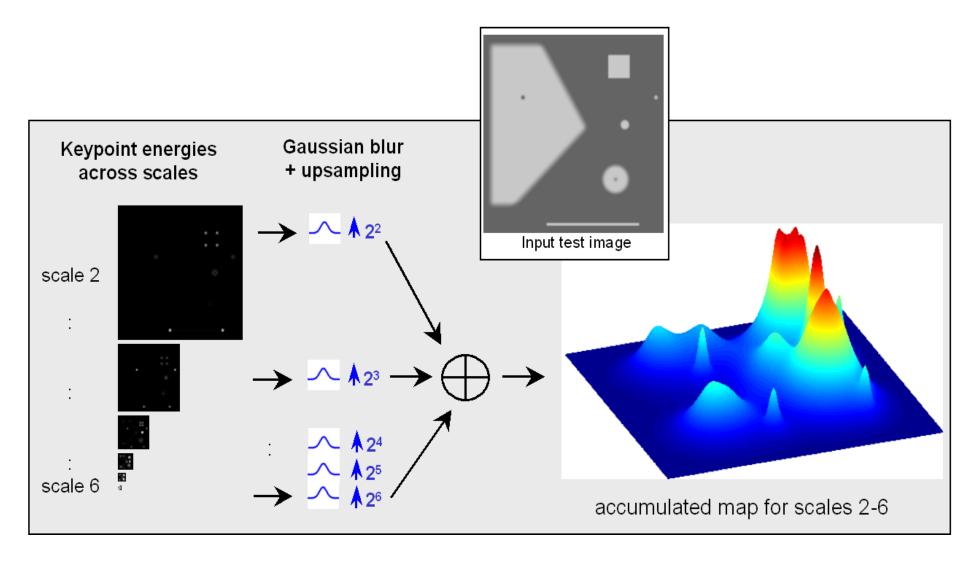
Basic Method:

• Detect keypoint energy as locations \mathbf{x} at scale k where complex wavelet energy exists in multiple directions d using:

$$E_{kp}(k, \mathbf{x}) = \left(\prod_{d=1}^{6} |w_{k,d}(\mathbf{x})|\right)^{\frac{1}{6}}$$

- Interpolate and accumulate $E_{kp}(k, \mathbf{x})$ across all relevant scales k to create the **Accumulated Map**.
- Pick keypoints as locations of maxima in the Accumulated Map.
- Estimate a dominant scale for each keypoint, based on radius of maximum gradient in the Accumulated Map.

Multi-scale Keypoint Detection using Accumulated Maps



MANUAL 37 kp

DTCWT 15 of 31 kp close to manual kp

SIFT: 8 of 50 kp close to manual kp

Harris: 8 of 44 kp close to manual kp

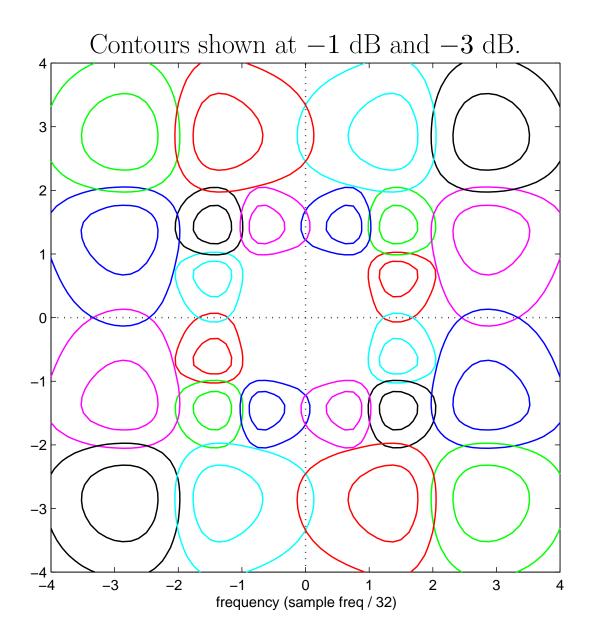
ROTATION-INVARIANT LOCAL FEATURE MATCHING

Aims:

- To derive a **local feature descriptor** for the region around a detected keypoint, so that keypoints from similar objects may be **matched reliably**.
- Matching must be performed in a **rotationally invariant** way if all rotations of an object are to be matched correctly.
- The feature descriptor must have **sufficient complexity** to give good detection reliability and low false-alarm rates.
- The feature descriptor must be **simple enough** to allow rapid pairwise comparisons of keypoints.
- Raw DTCWT coefficients provide multi-resolution local feature descriptors, but they are tied closely to a **rectangular sampling** system (as are most other multi-resolution decompositions).

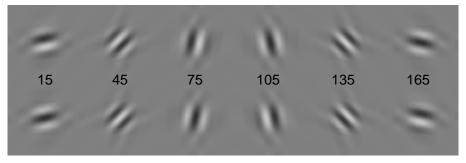
Hence we first need **better rotational symmetry** for the DTCWT.

Frequency Responses of 2-D Q-shift filters at levels 3 and 4



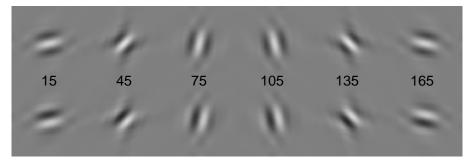
Modification of 45° and 135° subband responses for improved rotational symmetry (shown at level 4).

(a) Dual-Tree Complex Wavelets: Real Part

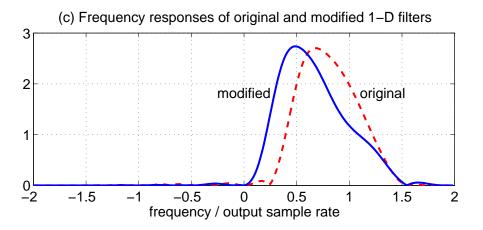


Imaginary Part

(b) Modified Complex Wavelets: Real Part



Imaginary Part

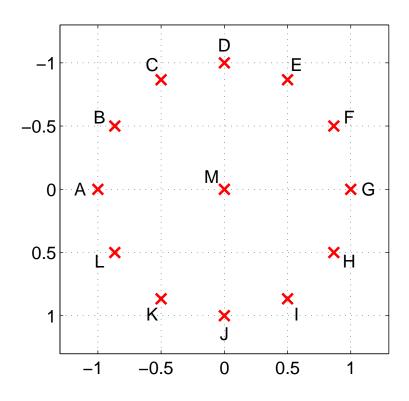


- (a) Original 2-D impulse responses;
- (b) 2-D responses, modified to have lower centre frequencies (reduced by $1/\sqrt{1.8}$) in the 45° and 135° subbands, and even / odd symmetric real / imaginary parts;
- (c) Original and modified 1-D filters.

Better rotational symmetry is achieved, but we have lost Perfect Reconstruction.

13-POINT CIRCULAR PATTERN FOR SAMPLING DTCWT COEFS AT EACH KEYPOINT LOCATION

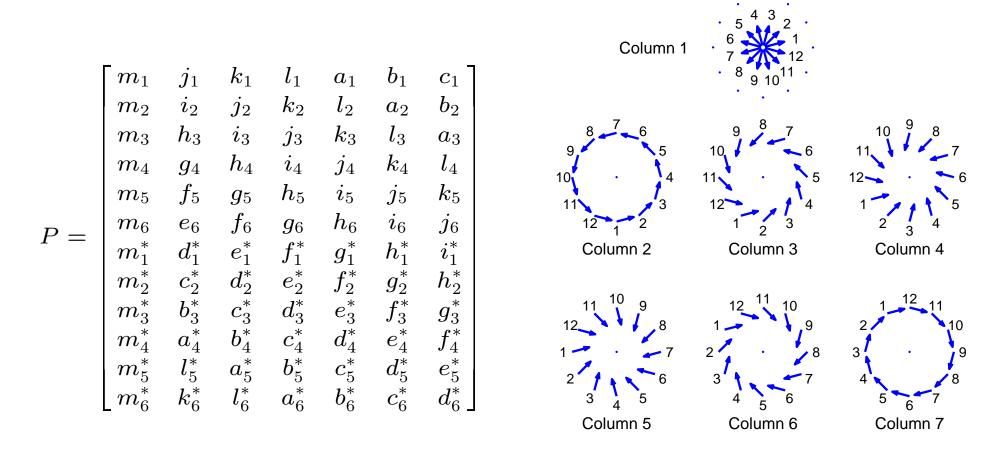
M is a precise keypoint location, obtained from the keypoint detector.



Bandpass interpolation calculates the required samples and can be performed on each subband independently because of the shift-invariance of the transform:

- 1. Shift by $\{-\omega_1, -\omega_2\}$ down to zero frequency (i.e. multiply by $e^{-j(\omega_1 x_1 + \omega_2 x_2)}$ at each point $\{x_1, x_2\}$);
- 2. Lowpass interpolate to each new point (spline / bi-cubic / bi-linear);
- 3. Shift up by $\{\omega_1, \omega_2\}$ (multiply by $e^{j(\omega_1 y_1 + \omega_2 y_2)}$ at each new point $\{y_1, y_2\}$).

Form the Polar Matching Matrix P



Each column of P comprises a set of **rotationally symmetric** samples from the 6 subbands and their conjugates (*), whose orientations are shown by the arrows.

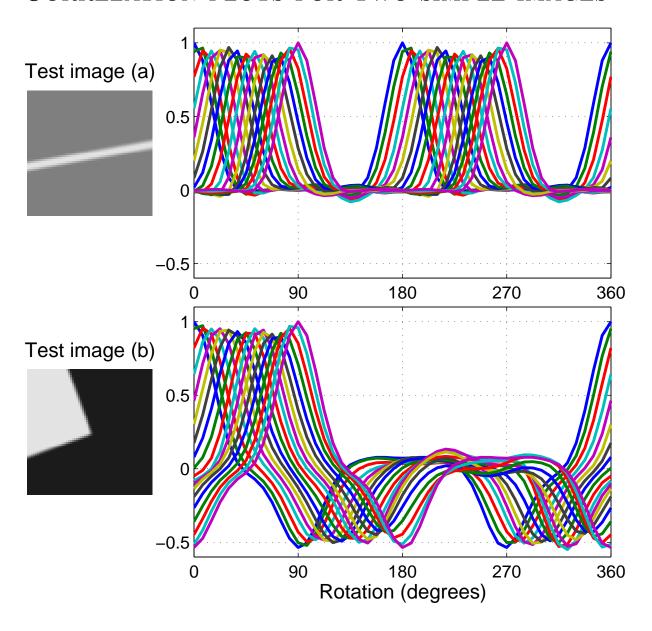
Numbers for each arrow give the row indices in P.

Efficient Fourier-based Matching

Columns of P shift cyclically with rotation of the object about keypoint M. Hence we perform correlation matching in the Fourier domain, as follows:

- First, take **12-point FFT** of each column of P_k at every keypoint k to give \overline{P}_k and **normalise** each \overline{P}_k to unit total energy.
- Then, for each pair of keypoints (k, l) to be matched:
 - Multiply \overline{P}_k by \overline{P}_l^* element-by-element to give $\overline{S}_{k,l}$.
 - Accumulate the 12-point columns of $\overline{S}_{k,l}$ into a 48-element spectrum vector $\overline{\mathbf{s}}_{k,l}$ (to give a 4-fold extended frequency range and hence finer correlation steps). Different columns of $\overline{S}_{k,l}$ are bandpass signals with differing centre frequencies, so optimum interpolation occurs if zero-padding is introduced over the part of the spectrum which is likely to contain least energy in each case.
 - Take the real part of the **inverse FFT** of $\bar{\mathbf{s}}_{k,l}$ to obtain the 48-point correlation result $\mathbf{s}_{k,l}$.
 - The **peak** in $\mathbf{s}_{k,l}$ gives the **rotation and value** of the best match.
- Extra columns can be added to P for multiple scales or colour components.

CORRELATION PLOTS FOR TWO SIMPLE IMAGES

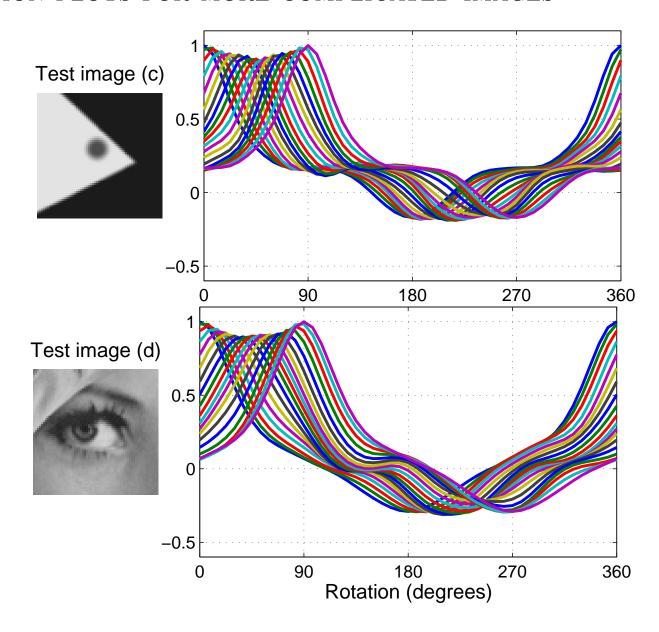


Each set of curves shows the output of the normalised correlator for 48 angles in 7.5° increments, when the test image is rotated in 5° increments from 0° to 90°.

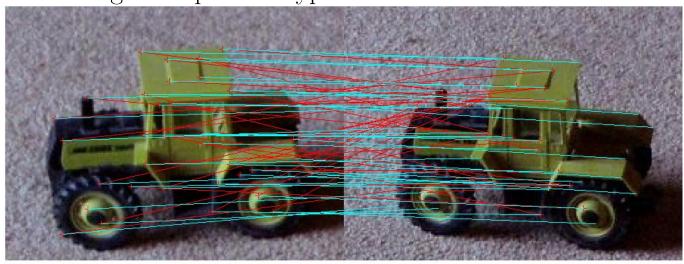
Levels 4 and 5 of the DTCWT were used in an 8-column P matrix format.

The diameter of the 13-point sampling pattern is half the width of the subimages shown.

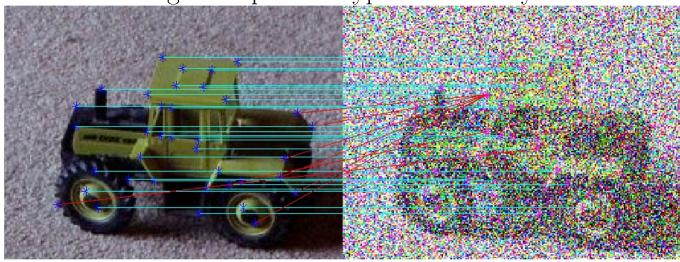
CORRELATION PLOTS FOR MORE COMPLICATED IMAGES



Matching hand-picked keypoints across different 3D views:



Matching hand-picked keypoints in heavy noise:



Improving resilience to errors in keypoint location and scale

The basic P-matrix normalised correlation measure is **highly resilient to** changes in illumination, contrast and rotation.

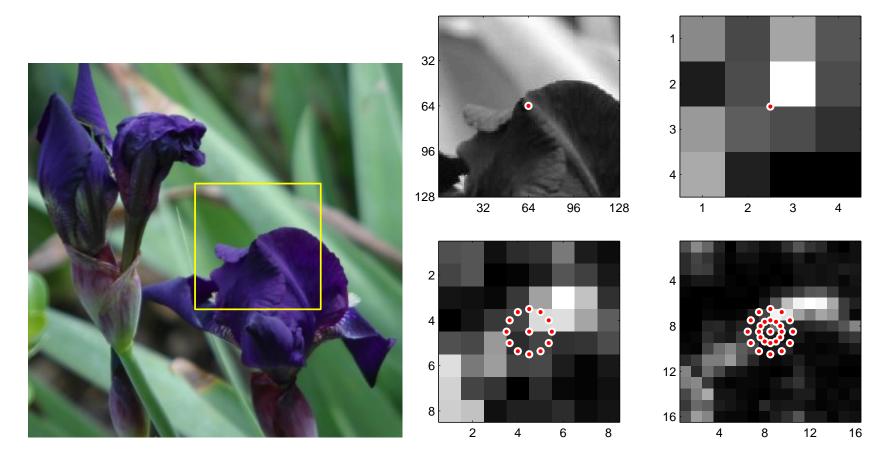
BUT it is still rather sensitive to discrepancies in **keypoint location and** estimated dominant scale.

To correct for small errors (typically a few pixels) in keypoint location, we modify the algorithm as follows:

- Measure derivatives of \overline{P}_k with respect to shifts \mathbf{x} in the sampling circle.
- Using the derivatives, calculate the shift vectors $\mathbf{x_i}$ which maximise the normalised correlation measures $\mathbf{s}_{k,l}$ at each of the 48 rotations i (using LMS methods with approximate adjustments for normalised vectors).
- By regarding the 48-point IFFT as a sparse matrix multiplication, the computation load is only **3 times** that of the basic algorithm.

We do the same for small scale errors using a derivative of \overline{P}_k wrt scale dilation, ψ , increasing computation to **4 times** that of the basic algorithm.

A keypoint and its corresponding sampling circles over levels $5,\ 4$ and 3

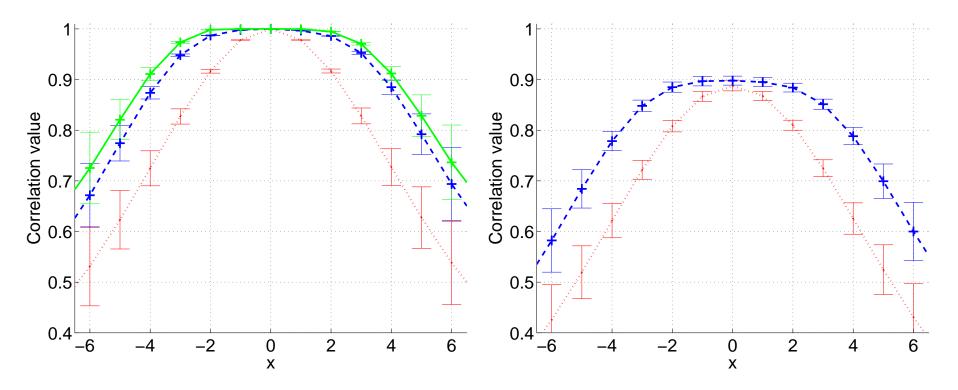


Background images show magnitudes of DTCWT coefs for subband 1, oriented for edges at 15° above the horizontal.

Mean correlation surfaces with no change of scale

Results averaged over 73 images from Caltech PP Toys 03 dataset, using the centre of the image as the keypoint.

red – no tolerance; **blue** – shift tolerance; **green** – shift + scale tolerance.



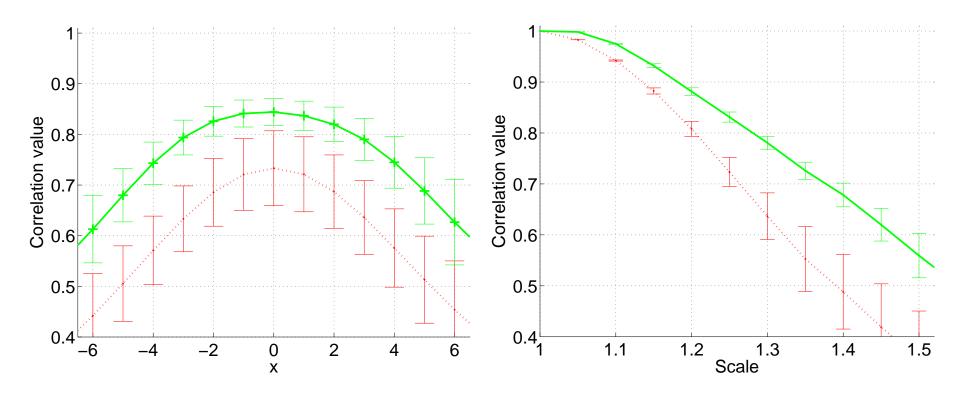
Left) No change of orientation;

Right) Average over rotations from 0° to 90° in steps of 7.5° .

MEAN CORRELATION SURFACES WITH CHANGE OF SCALE (DILATION)

Results averaged over 73 images from Caltech PP Toys 03 dataset, using the centre of the image as the keypoint.

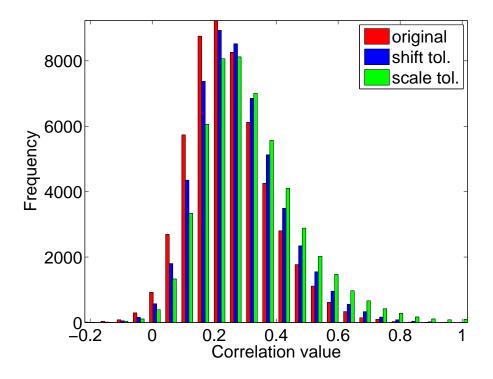
red – no tolerance; **green** – shift + scale tolerance.



Left) Average over dilations from 1.0 to 1.4, with respect to shift; Right) Mean correlation values with respect to scale change (dilation), no shift.

HISTOGRAMS OF NON-TARGET CORRELATION SCORES

red – no tolerance; **blue** – shift tolerance; **green** – shift + scale tolerance.



Demonstrates increase in false positive detection rate when shift and scale tolerances are introduced.

METHODS FOR HANDLING COLOUR AND LIGHTING CHANGES

- For colour keypoint detection, we add the wavelet energies from the DT-CWT of each R, G and B component, so that we get the total wavelet response to any changes in RGB space; and use this to form a single Accumulated Map. Alternatively we could do this in a perceptually more uniform space such as Lab.
- We perform **contrast equalisation** over local image regions to handle variations between lighted / shaded parts of the image and between images.
- For **colour feature matching**, we form 3 polar-matching matrices into a single matrix $[P_R \ P_G \ P_B]$ and perform matching with this.
- Prior to matching, we normalise each composite P-matrix with a **single scaling factor for all 3 colours**, so that relative amplitudes of colour variations are maintained, despite lighting changes.

Conclusions

A new local **Feature Descriptor** is proposed for use when comparing the similarity of **detected keypoints**. It has the following properties:

- It is based on a modified form of the efficient **Dual-Tree Complex Wavelet Transform**. The modifications improve the rotational symmetry of the 6 directionally selective subbands at each scale.
- The 12-point circular sampling patterns and Polar Matching Matrix P are defined such that rotations about the centre of the sampling pattern produce cyclic shifts down the columns of P.
- Shift-tolerant and scale-tolerant extensions of the basic P-matrix method give greater robustness at the expense of some increase in false-positive rate.
- There is scope for applying **non-linear pre-processing** (e.g. magnitude compression and phase adjustment) to the complex wavelet coefficients prior to matching, to improve resilience to illumination and viewpoint changes.

Papers on complex wavelets are available at:

http://www.eng.cam.ac.uk/~ngk/